STERA 3D ver.5.5

<u>ST</u>ructural <u>Earthquake Response Analysis</u> 3D

BUILDING RESEARCH INSTITUTE, JAPAN

Preface

This software is developed for the following analyses of reinforced concrete (RC) buildings:

- 1) Linear modal analysis,
- 2) Nonlinear static push-over analysis,
- 3) Nonlinear earthquake response analysis.

This software is distributed for free for the use of research and educational purpose.

Since this software is still under development, the author can not take any responsibility for the results of this software. It is greatly appreciated to have any opinions for future improvement.

12 September, 2005

Dr. Taiki SAITO E-mail: <u>tsaito@kenken.go.jp</u> Chief Researcher Building Research Institute, Japan

Update history

STERA_3D Ver.2.7 is uploaded.	
\cdot $$ To save response data to output files, you can select a folder to store	
output files. Also, the program, "response.exe", to save response	
output is automatically executed from STERA_3D.	
STERA_3D Ver.2.8 is uploaded.	
• "Error in Shell Command" is fixed.	
• Program bug for the base spring is fixed.	
STERA_3D Ver.2.9 is uploaded.	
• Program bug of freezing window in playing a movie is fixed.	
STERA_3D Ver.3.0 is uploaded.	
• Program bug of unable to change damping factor is fixed.	
· 230 N/mm ² is added to the list of steel strength of members. (Because	
of this change, you must modify the previous building data.)	
• UBC (Uniform Building Code, USA) distribution for vertical seismic	
load in nonlinear static analysis is added.	
• The graph of top drift (top displacement / building height) and base	
shear coefficient is added in the view list of earthquake response	
analysis.	
• The button to change the color of 3D view to white and black is	
added.	
STERA_3D Ver.3.1 is uploaded.	
• Static cyclic loading is possible in nonlinear static analysis.	
STERA_3D Ver.3.2 is uploaded.	
• "Error message" appears in case of wall data without side columns.	
• Zero floor mass is accepted.	
• The graph of story drift includes base isolation story.	
STERA_3D Ver.3.3 is uploaded.	
• Ground movement is shown in 3D View.	
• Static Loading using dominant mode shape is added.	
• In the option view of dynamic analysis, the mode number for circular	
frequency is designated for proportional damping.	
Different steel strengths for vertical reinforcement and shear	
reinforcement are possible.	
• Different Yong modulus for each member is possible.	

• Eccentricity ratio is calculated.

	 In Option Menu, you can select 2-Dimension Analysis.
2007/05/10	STERA_3D Ver.3.4 is uploaded.
	• Black and White buttons are added in both Views.
	• Ratio of response amplification is displayed in 3D View.
	Pause button is added.
	• Rotation angle at the center of mass is saved in an output file.
2007/07/17	STERA_3D Ver.3.5 is uploaded.
	· Nonstructural wall is added in the list of elements and the color of
	element is changed.
	• In Option Menu, you can input restrained freedom numbers.
2007/10/01	STERA_3D Ver.3.6 is uploaded.
	• You can get the time-history response of the designated member.
2007/10/18	STERA_3D Ver.3.7 is uploaded.
	• You can select the numerical integration method.
	• Output data is added more.
2007/10/31	STERA_3D Ver.3.8 is uploaded.
	Program bugs in transformation matrix are fixed.
2008/05/20	STERA_3D Ver.3.9 is uploaded.
	• You can set isolation devices in the middle story.
2008/07/10	STERA_3D Ver.4.2 is uploaded.
	• You can directly input material strength (steel and concrete).
	Masonry element is added.
	· In Masonry and Damper Edit Views, you can set the upper beam
	types.
	• The maximum number of element type is increased to be 30.
2009/01/12	STERA_3D Ver.4.3 is uploaded.
	• You can change the default values for Column, Beam and Wall
	elements by Option Button in the Edit View.
	• You can select NRB or LRB for the Isolator element.
	• You can select Hysteresis Damper or Viscous Damper for the Damper
	element.
2009/10/22	STERA_3D Ver.4.4 is uploaded.
	• You can get the energy response in the time-history analysis.
	• You can set more detail dimension for Beam and Column elements.
2010/03/30	STERA_3D Ver.4.5 is uploaded.
	• Formulation of P-D effect is changed.
	• Slight change of output format.

STERA 3D Manual

2010/05/06	STERA_3D Ver.4.6 is uploaded.
	• You can select 100 member types.
	• You can select 20 members for output of time-history response.
2010/08/16	STERA_3D Ver.4.7 is uploaded.
	• You can set "default values" for member type.
	• You can keep previous member settings after changing floor and
	span numbers.
	\cdot $% \left({{\rm{You}}\;{\rm{can}\;{\rm{select}\;response}\;{\rm{output}\;{\rm{for}\;{\rm{floors}}}} \right)$ and members from
	Option Menu.
	• You can select 100 members for output of time-history response.
2010/09/02	STERA_3D Ver.4.8 is uploaded.
	• You can get the response of side columns of wall element.
	\cdot $$ When you select the folder of output files, the previous path of the
	folder will be displayed.
2010/10/25	STERA_3D Ver.4.9 is uploaded.
	• Shear deformation at the beam-column connection is included.
	\cdot For beam elements, the shape of hysteresis model for nonlinear
	bending springs can be controlled by option parameters.
	• For column elements, you can input X and Y direction shear
	reinforcements respectively.
2010/11/07	STERA_3D Ver.5.0 is uploaded.
	• The bug was fixed in case several walls are connected.
2010/12/01	STERA_3D Ver.5.1 is uploaded.
	• The bug was fixed for yield rotation of nonlinear spring.
2011/01/17	STERA_3D Ver.5.4 is uploaded.
	• You can neglect nonlinear shear spring by option menu.
	• You can set the value to amplify the original earthquake directly.
	• The maximum spans are 30 in X spans and 20 in Y spans.
2011/03/07	STERA_3D Ver.5.5 is uploaded.
	• The bug for Ai-distribution is fixed.
	• The definition of mass distribution is improved.
	• You can analyze L-shape wall or sequence walls.

STERA 3D Manual

Quick User Manual

(2) "File" \rightarrow "Open"

Select an example building "Structure7F.stera"

MOVE THE BUILDING

(1) Click f to be actual size.

- 2 Drag the right mouse on the image to rotate the building.
- ③ Drag the left mouse on the image to enlarge and reduce.

EARTHQUAKE RESPONSE

"Response Setting Dialog" will appear.

STERA 3D - Stera7Estera		
File(F) Pattern(P) Member(M) Option(O) View(V) Help(H)		
	-	
Response Setting	X	🗇 3D 📃 🗖 🔀
Image: Image	ŕ	-2 +# ● Time = 4.36 sec ■ 1 < U < 5 ■ 5 < U Amp 8.00
STATIC LOAD Direction Distribution Target Drift X 1:Ai View 1: Drift - Shear Relation	Е	
EARTHQUAKE C1 EARTHQUAKE File Name Power 10000 B9 File (X) Kobe(EW) 1.0 - File (Y) Kobe(NS) 1.0 - - - File (Y) Kobe(NS) 1.0 -		
10000 B9 View 1: Input Earthquake Ground Motion C1 File	I	x
RESPONSE	► 7F	Z → 4 × 0 0 1 1 ► 1 ■ × × 0
Ready		

- 6 Start the response
 - Stop the response
 - Amplify the response 3
 - ✓ ∶ Reduce the response
 - Change the view from double screen to single screen

STERA 3D Manual

User Manual

Basic Assumptions

- 1) In a default setting, the displacement freedom of a floor diaphragm is considered to be rigid for in-plane displacement and free for out-of-plane displacement. Elastic deformation of a floor diaphragm in-plane can be considered by the option menu.
- 2) All structural elements are modeled by line-elements with nonlinear springs except floor diaphragms which are modeled by FEM models.
- 3) Beam element is represented by a model with nonlinear flexural springs at the both ends and a nonlinear shear spring in the middle of the element,
- 4) Column element is represented by a MS (multi spring) model with nonlinear axial springs in the sections of the both ends and two directional nonlinear shear springs in the middle of the element,
- 5) Wall element is represented by a MS (multi spring) model with nonlinear axial springs in the sections of the both ends and nonlinear shear springs in the middle of the wall panel as well as in the two side columns,
- 6) Nonlinear springs are introduced for base-isolation elements or vertical elements at the basement. Base-isolation element is represented by the MSS (multi shear spring) model with nonlinear shear springs in X-Y plane,
- 7) Hysteresis damper and nonstructural element are introduced as nonlinear shear models,
- 8) The shear deformation of connection panel between beam and column is considered to be rigid or elastic..
- 9) In a default setting, structural damping is proportional damping to initial stiffness. It can be changed to be proportional damping to instantaneous stiffness by the option menu.

Other assumptions will be written in the technical manual which is under preparation.

1. File Arrangement

Please check if you have the following files and folders in the folder "STERA 3D V*.*":

Stera 3D.exe	Main program
response.exe	Sub-program for response output
Stera7F.stera	Sample building
Stera7F(SI).stera	Sample building with seismic isolation
DataWaves	Folder of earthquake files
OutFiles	Folder of output files (empty)

If you change the places of these files, please put save two executable files; "Stera 3D.exe" and "response.exe" in a same folder.

2. Initial View

Please double crick "Stera 3D.exe"

The left view is "PLAN EDIT VIEW" where you input building plan data, and the right view is "3D VIEW" where you can see the building shape and its response after the analysis..

To open the building data already saved, [File] \rightarrow [Open], and select the file.

PLAN EDIT VIEW

3D VIEW

3. Setting Element Pattern

"PLAN EDIT VIEW" starts from 1st floor (1F) of a building.

- Please click the place you want to set.
- Please click again to change the element. It will be changed in the following order:
 - ♦ Column (green) -- > Empty -- > Column(green)
 - ♦ Beam (green) -- > Wall (dark green) -- > Empty -- > Beam (green)

But, in case of the basement floor (BF), the order is changed as:

♦ Base Spring (brown) -- >Empty -- > Base Spring (brown)

If you select Masonry element, Damper element and Isolator element,

- ♦ Column (green) -- > Isolator (brown) -- > Empty -- > Column(green)
- ♦ Beam (green) --> Damper (brown) --> Masonry (brown) --> Wall (dark green)
 --> Empty --> Beam (green)
- By dragging your mouse in a region, you can set all the elements in the region at once.
- By clicking the right button of your mouse, you can change the element type number for column (C1-C100), for beam (B1-B100), and for wall (W1-W100) etc.

- To move to another floor and copy or clear the member patterns, you can use the following buttons arranged at the bottom of the PLAN EDIT VIEW:

You can check the arrangement of members on the "3D VIEW".

4. Input Building and Element Information

4-1. Input Element Information

Column Editor	· · · · · · · · · · · · · · · · · · ·
	COLUMN
	COLOMIN
Type C1 C2 C3 C4 C5 C6 C7	Size (mm) B $\boxed{0}$ d1 40 D $\boxed{0}$ d2 40 B $\boxed{1}$
C8 C9 C10 C11 C12 C13 C14 C15	Vertical Reiforcementcorner4-D \bullet X-side0 \bullet -D6 \bullet Y-side0 \bullet -D6 \bullet SD295
C16 T	Shear Reinforcement
Сору	X-side 2 • D 6 • - @ 50 •
	Y-side 2 ▼ D6 ▼ -@ 50 ▼
	SD 295
	Concrete (N/mm2) Fc 24 OPTION
	ADD OK

Column Option Editor	
COLUMN OPTION	
1. Amplification Factor for Steel Strength (0-10)	1.1
	ок

- Please input the section size where d1 and d2 are the distances of X-rebars and Y-rebars respectively. If rebars are arranged in two layers, the distance is determined as the center of rebar area.
- For the number of reinforcement bars and their size, please select the values from the popup windows.
- For the material strength, SD and Fc, you can input values by changing the default values.
- To move to the next element type, please click [ADD] button.
- You can copy the previous element by [COPY] button.
- Please click [OK] to finish.
 - The default steel strength used for the analysis is assumed to be 1.1 times larger than the nominal strength. You can change the ratio in [OPTION] menu.

Column Editor	8
	COLUMN
Type C87 C88 C89 C90 C91 C92 C93 C94 C95 C96	Size (mm) B 600 d1 40 D 600 d2 40 Vertical Reiforcement
C97 C98 C99 C100 Cdef	Set default values for all members? //mm2) 95 YES NO
Сору	X-side 2 - D13 - @ 50 -
	Y-side 2 • D13 • -@ 50 •
	SD 295
	Concrete (N/mm2) Fc 24 OPTION
	ADD OK

- You can set default values for all members by selecting the last member type "Cdef". BEAM (

Beam Editor	
	BEAM
Type B1 B2 B3 B4 B5 B6	Size (mm) B 0 d1 40 D 0 d2 40 S 150 B 150 B
B7 B8 B9 B10 B11 B12 B13 B14 B15	Vertical Reiforcement UP 2 - D 6 - (N/mm2) DOWN 2 - D 6 - SD 295 Shear Reinforcement
B17 B18	2 • - D6 • -@ 50 • SD 295
Сору	Slab Reinforcement
	Fc 24 OPTION
	ADD OK

Beam Option Editor	
BEAM OPTION	
1. Amplification Factor for Steel Strength [0,10]	1.1
2. Amplification Factor for Slab Effect [0,10]	1
3. Stiffness Degrading Ratio [0,1]	0.5
4. Slip Stiffness Ratio [0,1]	0
5. Strength Degrading Ratio [0,1]	0
6. Ultimate Rotation Angle (Ru) [0,1]	0.02
7. Stiffness Ratio over Ru [-1, 1]	0.01
	ОК

- Please input the section size where d1 and d2 are the distances of upper rebars and bottom rebars respectively. If rebars are arranged in two layers, the distance should be the center of rebar area.
- For the number of reinforcement bars and their size, please select the values from the popup windows.
- For the material strength, SD and Fc, you can input values by changing the default values.
- To move to the next element type, please click [ADD] button.
- You can copy the previous element by [COPY] button.
- You can set default values for all members by selecting the last member type "Bdef".
- Please click [OK] to finish.
- The default steel strength used for the analysis is assumed to be 1.1 times larger than the nominal strength.
- The moment of inertia of the beam with slab is assumed to be 1.2 times larger than the rectangular beam.
- The parameters to control the shape of hysteresis model are as follows:
- The default value of stiffness degrading ratio in the trilinear hysteresis is 0.5. (0: no degradation)
- The default value of slip stiffness ratio in the trilinear hysteresis is 0.0 (0: no slip).
- The default value of strength degrading ratio in the trilinear hysteresis is 0.0.
- The default value of Ultimate rotation angle Ru is 1/50 (=0.02)
- The default value of stiffness ratio over Ru is 0.01 (could be negative)

WALL (

Wall Editor	×
WALL	-
Type Size t (mm) 0 W 2 0 W 3 0 W 4 0 W 5 0 W 6 0 W 7 0 W 7 0 W 7 0 W 7 0 W 7 0 W 8 0 W 9 0 W10 Shear Reinforcement in a Panel SD (N/mm2) 1 W11 1 W12 Concrete (N/mm2) Copy Fc Fc 24	
OPTION	
ADD OK	

Wall Option Editor	
WALL OPTION	
1. Amplification Factor for Steel Strength (0-10)	1.1
2. Reduction Factor for Stiffness (0-10)	1
3. Reduction Factor for Strength (0-10)	1
	ОК

- Please input the section size.
- For the number of reinforcement bars and their size, please select the values from the popup windows.
- For the material strength, SD and Fc, you can input values by changing the default values.
- To move to the next element type, please click [ADD] button.
- You can copy the previous element by [COPY] button.
- You can set default values for all members by selecting the last member type "Wdef".
- Please click [OK] to finish.
- The default steel strength used for the analysis is assumed to be 1.1 times larger than the nominal strength. You can change the ratio in [OPTION] menu.
- If there is an opening in wall element, you can reduce the stiffness and shear strength by multiplying reduction factors in [OPTION] menu. The default values are 1.0

CONNECTION PANEL (-+-)

Rigid Zone

Panel Zone

You can set the ratio of the length of rigid zone or panel zone inside connection area. The default value is 1.0 (to the member face). NONSTRUCTURE (=) (NOTE: only available when you select in Option menu)

Masonry E	ditor 🔀
	MASONRY WALL
Type M 1 M 2 M 3 M 4 M 5 M 5 M 7 M 8 M 9	Size (mm) Hb (brick) 0 tb (brick) 0 Hm (mortal) 0
M10 M11 M12 M13 M14 M15 M16	Compression Strength (N/mm2) Fcb (brick) 0 Fcm (mortal) 0
Сору	OPTION
	ADD OK

Masonry Option Editor	
MASONRY WALL OPTION	
1. Reduction Factor for Stiffness (0-10)	1
2. Reduction Factor for Strength (0-10)	1
	ок

- Please input the size of brick unit and thickness of mortal and compression strength of these materials.
- If there is a reinforcement concrete beam upper of Masonry Wall as shown below, please select the beam type number from the pop-up menu.

- You can set default values for all members by selecting the last member type "Mdef".
- If there is an opening in wall element, you can reduce the stiffness and shear strength by multiplying reduction factors in [OPTION] menu. The default values are 1.0

ISOLATOR (S) (NOTE: only available when you select in Option menu)

for NRB Isolator

Isolator	
	ISOLATOR
Type	Type of Isolator NRB (Natural Rubber Bearing) LRB (Lead Rubber Bearing)
13 14 15 16 17 18 19 110	
11 12 13 14 15 16 ♥	Vertical Stiffness Kv / K0 1000 PROPERTY
Сору	ADD OK

- You can select NRB (Natural Rubber Bearing) or LRB (Lead Rubber Bearing) for Isolator element.
- You can input the properties of isolator by [PROPERTY] view.
- The default value of the ratio between vertical stiffness, Kv, and the horizontal stiffness, K0, is 1000.
- You can set default values for all members by selecting the last member type "Idef".

Property Editor	×
Elastic Spring	
Stiffness (kN/mm) K0 0	OK

for LRB Isolator

Isolator	X
	ISOLATOR
Type	Type of Isolator
12 13 14 15 ≣ 16	
17 18 19 110	
112 113 114	Vertical Stiffness
Copy	
	ADD OK

Property Editor	$\overline{\mathbf{X}}$
Bilinear I	Hysteresis
Stiffness (kN/mm)	
Stiffness ratio	Force (kN) Fy 0
	ОК

DAMPER DEVICE ((NOTE: only available when you select in Option menu)

Damper Edit	or	×
	SHEAR SPRING DEVICE	_
Type D 1 D 2 D 3 D 4 D 5 D 6 D 7 D 8 D 9 D10 D11 D12 D13 D14 D15 D16	Upper Beam Type none Type of Shear Spring Elastic Hysteresis 1. Bilinear Viscous 1. Oil F Ko D D C C C C C C C C C C C	
Сору	PROPERTY	
	ADD OK	

- Please select damper type from Elastic, Hystersis and Viscous and its detail characteristics from the pull down menu.
- If there is a reinforcement concrete beam upper of Damper, please select the beam type number from the pop-up menu.
- You can set default values for all members by selecting the last member type "Ddef".
- You can input the detail characteristic of the Damper in [PROPERTY] view.

For Viscous Damper

For Hysteresis Damper

BASE SPRING () (NOTE: only a	vailable at the Basement Floor, Default is PIN)
Spring Editor	
NONLINEAR SPRING Type Type of Support Pin Vertical Spring \$2 \$3 \$4 \$5 \$6 \$7 \$8 \$9 \$10 \$11 \$12 \$13 \$14 \$15 \$16 Opy Yielding Stiffness Ky = Sy * (Fy/Dy) \$y \$2 ADD OK	 You can set default values for all members by selecting the last member type "Sdef".

VERTICAL SPRING

SLAB (

(NOTE: only available when you select in Option menu.)

Floor Editor	—
	FLOOR
Type F2 F3 F4 F5 F6 F7 F8 F9	Thickness t (mm) 150 Concrete (N/mm2) Fc 24
Сору	
	ADD OK

- In a default setting, the slab is assumed to be rigid in plane. You can consider elastic deformation in the option menu.
- You can set default values for all members by selecting the last member type "Fdef".

MAX. SIZE OF BUILDING (
FLOOR / SPAN
Number of Floors
H 8 🗸
Number of Spans
X 3 🗸
Y 3 -
Cancel OK

You use this button to change the maximum number of spans and stories of the building.

For the moment, the maximum numbers you can select are:

Story	:	up to 61
Span	:	up to 30 in X-direction
		up to 20 in X-direction

	Frame Editor	
	FLOOR / SPAN	
_	ті ті ті на на ул т	
	Dialog 🗧	×
	Clear all building information?	
	YES NO	
	Number of Spans	Γ
	χ 5 💌	
	Y 5 ▼	
	Cancel OK	

You can clear all building information by answering "YES" or you can keep the same building information after changing floor and span numbers by answering "NO".

4-2. Output Member

You can obtain Force-Displacement relationship of the designated member.

OUTPUT MEMBER (

If you click this bottom, you can designate the output member. By one more click, you can cancel it.

By the right click, you can cancel the selection.

29

4-3. Option Menu

You can change default values in the option menu. $[Option (\underline{O})]$

OPTION → STRUCTURE

[1]. Restrained freedom number

Please indicate the freedom numbers to restrain the freedoms.

[2]. Floor Assumption

Flexible Floor \rightarrow slab is modeled as a FEM model to consider in-plane elastic deformation.

[3]. P-Delta Effect

Considered \rightarrow P-Delta effect is considered in element stiffness matrix of column and wall.

[4]. Nonlinear Shear Spring

If it is not considered, shear spring is elastic.

[5] Mass distribution at nodes in a floor

- [6]. Passive Damper Device
- [7]. Isolator
- [8]. Masonry Wall
- [9]. Young's Modulus of Steel

$\text{OPTION} \rightarrow \text{ANALYSIS} \rightarrow \text{STATIC}$

Cyclic loading is possible controlling with the drift of the top of a building.

1. No. of Maximum Segment

The total number of segments in cyclic loading,

2. No. of Separation of Segment

Number of calculation steps in one segment for static analysis to increase the accuracy of nonlinear analysis,

Loading program is defined by the target drift angle, D1, D2 ... D150, at the top of a building in each loading segment. To move to the next angle, please click [ADD] button.

OPTION \rightarrow ANALYSIS \rightarrow DYNAMIC

Option for Dynamic Analysis	X							
Dura uni da staria								
Dynamic Analysis								
No. of Separation of Time 5								
Damping								
Damping Type 1. [C]=a[K0]								
Damping Factor h1 0.03 💌								
h2 0.03 💌								
Numerical Integration Method								
 Average Acceleration 								
C Force Correction								
ОК								

1. No. of Separation of Time

Separating the original time interval of input earthquake into a smaller time interval will increase accuracy and stability in numerical integration, however, it also increase calculation time. For example, if the original time interval is $0.02 \sec$ and "No. of Separation of Time" = 5, then, the time interval of numerical integration will be $0.004 \sec (= 0.02 \sec / 5)$.

2. Damping

Three types of damping matrix are available:

1) [C] = a[K0]: proportional to [K0]

2) [C] = a[Kp] : proportional to [Kp]

3) [C] = a[K0]+b[M]: Rayleigh damping The first mode damping factor, h1, is used for type 1) and 2). The second mode damping factor, h2, is used for type 3).

3. Numerical Integration Method

You can select the method from the Average Acceleration Method and the Force Correction Method.

$\text{OPTION} \rightarrow \text{ANALYSIS} \rightarrow \text{OUTPUT}$

You can select response output to create files to save data.

1. Floor response

Output of story displacement and shear force at the center of gravity in each floor will be saved. It is marked as a default setting.

2. Nodal response

Output of deformation and external force at all nodes will be saved. Note that the file size will be quite large.

It is not marked as a default setting.

3. Member response

Response of the members marked by circles will be saved. It is marked as a default setting.

5. 3D View of Building

5-1. 3D View of Building

- [1] [Default] () set the ratio between span and story height as 1 and 0.5.
- [2] [Actual] () use the actual ratio between span and story height using input data.

[3] You can change the view by moving the mouse as follows:

- Rotation: Left-click and dragging
- Enlargement and Reduction: Right click and dragging

- [4] If the [Analyze] () is activated, by clicking the button, you can make an initial analysis for getting natural periods and mode shapes.
- [5] If the analysis is successfully done, the following message will appear on the screen.By click [OK] button, RESPONSE SETTING DIALOG will also appear.

Stera 🔀
Analysis is completed.
OK
Ţ
Response Setting
MODE 0 1 2 3 4 5 6
STATIC LOAD Direction Distribution Target Drift X • 1: Ai • 1/50 •
View 1: Drift - Shear Relation
EARTHQUAKE
File Name Power
File (X) 1.0
File (Y) 1.0
File (Z) 1.0
View 1: Input Earthquake Ground Motion
MOVIE
File
RESPONSE
C Movie

RESPONSE SETTING DIALOG

5-2. Modal Analysis

- On the RESPONSE SETTING DIALOG, please click the MODE number from [0] to [6] to see the view of mode shape and the value of natural period.
- [2] On the 3D VIEW, () starts the vibration of each mode, () stops the vibration and () pauses the vibration.

[3] (\bigstar) <u>amplifies the response</u> (\bigstar) reduces the response.

- 33
- [4] Slider (changes the speed of vibration.
- [5] () will save the results into text files.
- [6] (changes the color of the view to be black and white.

5-3. Nonlinear Static Push-Over Analysis

[1] Please set loading conditions for the STATIC LOAD:

"Direction":	please select loading direction from the menu.									
	1. X 2. –X (opposite to X) 3. Y 4Y (opposite to Y)									
"Distribution":	please select a loading distribution along the height of the									
	building. The load is applied at the center of gravity in each floo									
	1. Ai 2. Triangular 3. Uniform 4. UBC 5. Mode									
"Target Drift":	please set the target drift ratio which is defined by the ratio									
	between the top displacement and the height of the building.									
	1. 1/50 2. 1/100 3. 1/200 4. Cyclic									

[2] Please select the response for the lower view window.

[3] On the 3D VIEW, (**b**) starts, (**l**) pauses and (**b**) stops the response.

In the upper view, you can see an arrow under the building to indicate the loading direction, also a progressing bar, and colors of ductility factors (U).

[4] () will change the view from 2-screens to 1-screen and vise versa.

5-4. Nonlinear Earthquake Response Analysis

[1] On the RESPONSE SETTING DIALOG, please set earthquake data:

"File(X)":	Please select earthquake input file for X-direction.
"File(Y)":	Please select earthquake input file for Y-direction.
"File(Z)":	Please select earthquake input file for Z-direction (up-down).
"Power":	Set the value to amplify the original earthquake

- [2] Please select the response for the lower view window.
- [3] On the 3D VIEW, (**b**) starts, (**l**) pauses and (**b**) stops the response.

In the lower view, you can see the input earthquake wave and present status.

[4] () will change the view from 2-screen to 1-screen and vise versa.

[5] (H) will save the response animation as a movie file (see 5-5).

STERA 3D Manual

Format of input earthquake data file

When you prepare an input earthquake file by yourself, please arrange the data format as follows:

Order	Туре	Information	Comments
1 st data	INT	0 or 1	0: Earthquake ground acceleration data only
(ID)			1: Earthquake ground acceleration data and
			ground displacement data
2 nd data	INT	Number of data	If ID=1, the number of data for acceleration
(NDATA)			must be the same as that for displacement.
			The maximum value of NDATA accepted is
			20,000.
3 rd data	REAL	Time interval	(sec)
(DT)			
4 th data	REAL	Acceleration	1, 2,, NDATA (cm/sec ²)
and later		Displacement	1, 2,, NDATA (cm)

Example)

0						
750						
0.020						
-1.40	-10.80	-10.10	-8.80	-9.50	-12.00	-14.20
-12.80	-11.00	-8.50	-8.50	-13.10	-17.60	-19.40
-16.20	-14.40	-10.80	-8.20	-4.20	-6.60	-13.10
-19.00	-19.60	-6.60	3.00	14.10	-4.90	-12.80
-14.40	-20.30	-26.00	-32.50	-30.60	-17.20	-19.70

5-5. Save Nonlinear Earthquake Response as a Movie File

Generally, it takes long time to calculate earthquake response of a building. You can save the response of the building in a movie file and later you can open the movie to see the response quickly.

1) Record movie

[1] On the RESPONSE SETTING DIALOG, please select earthquake input files in the menu "EARTHQUAKE".

[2] Please push the movie button () and write the file name such as "Movie.txt".

[3] () displays the response. () stops the response.

2) Play movie

[1] On the RESPONSE SETTING DIALOG, please push **File** in the "MOVIE" menu to

select a movie file.

[2] () displays, () pauses and () stops the response.

5-6. Change Analysis

[1] On the RESPONSE SETTING DIALOG, you can change the analysis:

Mode:	Modal Analysis
Static:	Nonlinear Static Push-Over Analysis
Earthquake:	Nonlinear Earthquake Response Analysis
Movie:	Movie for Nonlinear Earthquake Response Analysis

esponse Setting	
MODE	
0 1 2 3	4 5 6
STATIC LOAD	
Direction Distribution	Target Drift
X 💌 1: Ai	▼ 1/50 ▼
View 1: Drift - Shear Relation	1 •
EARTHQUAKE	
File Name	Power
File (X)	1.0
File (Y)	1.0
View 1: Input Earthquake Gro	ound Motion 💌
MOVIE	
File	
RESPONSE	
	Farthquake
Mode C Static C	Editinguality

6. Save and Open Files

6-1. Save Building Data

You can save the building data in a file and open it later. The file has an extension ".stera".

6-2. Save Results of Analysis into Text Files

To save the results of analysis in text files, you must run another program.

[1] On the RESPONSE SETTING DIALOG, please set the condition of analysis.

- [2] Please push the "Save Data" button
- [3] Please select folder to save output files.

[4] When you push "OK", a window appears to start calculation and save output data to the designated folder.

🖾 C:¥Documents and Settings¥SAITO¥My Documents¥SAITO¥SAITO_2006¥Program¥C++ 💶 🗙
Are you ready to start calculation ? Y,y(yes) / N,n(no) ? y
>>>> Start elestic response analysis
>>>> Start nonlinear static analysis 10 % finished 20 % finished 30 % finished 40 % finished 50 % finished 60 % finished 70 % finished 80 % finished 90 % finished 100 % finished
>>>> Calculation completed
press any key to continue

In the designated folder, the following files are automatically created:

beam	: Beam
column	: Column
wall	: Wall
damper	: Damper and Nonstructural wall
spring	: Vertical spring
bi	: Base Isolator
structure	Building

1) "response_eigen.txt"

In this file, the results of modal analysis including natural periods, mode vectors, stimulus functions are saved.

			Natural Pe	riod	
++	1-mode ++	t = 1.006	5 sec		
x,y,z	mode	0.000 bx	6.423 by	0.000 bz	
I	0.00	Mode Vector	0. Stim	ulus Function	ı
0	0.000 0.000 0.000 0.000 0.000 0.000 0.000	0.000 0.000 0.000 0.000 0.000 0.000 0.000	0.000 0.000 0.000 0.000 0.000 0.000 0.000	0.000 0.000 0.000 0.000 0.000 0.000 0.000	
2	0.000 0.022 0.062 0.101 0.135 0.164 0.187 0.203	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	0.000 0.141 0.395 0.647 0.870 1.053 1.203 1.306	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	
3	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	

2) "response_structure.txt"

[1] In case of nonlinear static analysis, the following data are saved for each story.

kstep	sd	Sa	max drift	F	sdx	sdy	SSX	ssy	sfx	sfy	d×	dy	rz	F
0	0.0000E+00	0.0000E+00	0.00000	0	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	-0.5561E-12	-0.1368E-12	0.0000E+00	0.0000E+00	0.0000E+00	1
1	0.7990E-01	0.1667E+02	0.00005	0	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	0.6131E+03	-0.5684E-13	0.0000E+00	0.0000E+00	0.0000E+00	1
2	0.1598E+00	0.3329E+02	0.00010	0	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	0.1224E+04	-0.1084E-12	0.0000E+00	0.0000E+00	0.0000E+00	1
3	0.2396E+00	0.4990E+02	0.00015	0	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	0.1835E+04	-0.2363E-12	0.0000E+00	0.0000E+00	0.0000E+00	1
4	0.3191E+00	0.6283E+02	0.00020	0	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	0.2304E+04	-0.1936E-12	0.0000E+00	0.0000E+00	0.0000E+00	1
5	0.3986E+00	0.6976E+02	0.00024	0	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	0.2555E+04	-0.4974E-13	0.0000E+00	0.0000E+00	0.0000E+00	1
6	0.4781E+00	0.8760E+02	0.00029	0	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	0.3207E+04	-0.9770E-13	0.0000E+00	0.0000E+00	0.0000E+00	1
7	0.5577E+00	0.1040E+03	0.00034	0	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	0.3809E+04	-0.1421E-12	0.0000E+00	0.0000E+00	0.0000E+00	1
8	0.6373E+00	0.1164E+03	0.00039	0	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	0.4263E+04	-0.2132E-12	0.0000E+00	0.0000E+00	0.0000E+00	1
9	0.7167E+00	0.1278E+03	0.00044	0	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	0.4674E+04	-0.1510E-12	0.0000E+00	0.0000E+00	0.0000E+00	1
10	0.7959E+00	0.1296E+03	0.00049	0	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	0.4732E+04	-0.2851E-12	0.0000E+00	0.0000E+00	0.0000E+00	1
11	0.8752E+00	0.1397E+03	0.00054	0	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	0.5098E+04	-0.1412E-12	0.0000E+00	0.0000E+00	0.0000E+00	1

kstep calculation step in static analysis

< Equivalent 1DOF system> sd displacement (cm)

sa acceleration (gal)

<Relative story displacement> F

story number sdx

sdy

story drift in X-direction (cm) story drift in Y-direction (cm) rotational angle around Z-direction (torsion angle) srź

<Story shear force> sfx

story shear force in X-direction (kN) story shear force in Y-direction (kN)

sfy

<Displacement from the ground at the center of gravity in each floor> dx displacement in X-direction (cm) dy displacement in Y-direction (cm)

- dy rz

rotational angle around Z-direction

[2] In case of earthquake response analysis, the following data are saved for each story:

kstep	t	F	sdx	sdy	SSX	SSY	sfx	sfy	dx	dy	rz	ах	ау	F
0	0.0000	0	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	-0.5561E-12	-0.1368E-12	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	1
5	0.0200	0	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	-0.4253E-13	0.7851E-12	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	1
10	0.0400	0	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	-0.1093E-10	-0.9877E-12	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	1
15	0.0600	0	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	-0.1451E-10	0.1215E-11	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	1
20	0.0800	0	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	-0.7334E-11	0.6395E-13	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	1
25	0.1000	0	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	-0.1252E-10	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	1
30	0.1200	0	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	-0.7099E-11	-0.1483E-12	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	1
35	0.1400	0	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	-0.5970E-11	0.2149E-12	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	1
40	0.1600	0	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	-0.5672E-11	-0.1634E-12	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	1

time step in dynamic analysis

<Relative story displacement>

F story number

sdx

story drift in X-direction (cm) story drift in Y-direction (cm) sdv

rotational angle around Z-direction (torsion angle) srz

<Story shear force>

dy rz

t

story shear force in X-direction (kN) story shear force in Y-direction (kN) sfx

sfy

<Displacement from the ground at the center of gravity in each floor>

- displacement in X-direction (cm) displacement in Y-direction (cm) dx

 - rotational angle around Z-direction

3) "response_eccentricity.txt"

This file includes the output of eccentricity ratio and rigidity ratio based on Japanese standards.

```
== Output for rigidity ratio ==
<X-direction>
             R×
   NF
      0.220E+01
   1
    2 0.105E+01
    3
      0.813E+00
    4 0.725E+00
    5 0.709E+00
    6 0.723E+00
    7 0.781E+00
<Y-direction>
            Rу
  NF
      0.143E+01
   1
    2 0.747E+00
    3
      0.743E+00
    4
      0.811E+00
    5 0.924E+00
    6 0.103E+01
    7 0.131E+01
== Output for eccentricity ratio ==
< 0 F>
                                          0 F : basement floor
< 1 F>
Center of rigitity (cm)
    C× =
           900.00
    Су =
           1517.95
Center of gravity (cm)
           900.000
    Gx =
    Gy = 1500.000
Eccentricity distance (cm)
    Ex =
             0.000
    Ey =
            17.948
Radius of gyration (cm)
    rx = 1455.956
    ry = 3034.104
Eccentricity ratio
             0.012
    R× =
    Ry =
             0.000
< 2 F>
```

4) "response_member.txt"

[1] In case of Beam

BE	No.	47	_			_						
	$\begin{array}{c} 0.000\\ 1.000\\ 2.000\\ 3.000\\ 4.000\\ 5.000\\ 6.000\\ 7.000\\ 8.000\\ 9.000\\ 10.000\end{array}$	-0.7202E -0.1200E -0.2159E -0.2159E -0.2650E -0.3118E -0.3706E -0.4313E -0.4327E -0.5511E -0.6092E	Rya -04 -0.5208 -03 -0.8533 -03 -0.1186 -03 -0.1186 -03 -0.1185 -03 -0.2125 -03 -0.2246 -03 -0.248 -03 -0.248 -03 -0.2480 -03 -0.2724	Mya BE+04 -0. BE+05 -0.	Uya 013 021 038 046 055 065 076 086 097 107	Rpa -0.4177E-04 -0.6844E-04 -0.9510E-04 -0.1218E-03 -0.1757E-03 -0.2329E-03 -0.2329E-03 -0.3520E-03 -0.405E-03 -0.4065E-03	-0.5209E -0.8533E -0.1186E -0.1185E -0.11859E -0.2125E -0.2243E -0.2243E -0.22606E -0.2606E -0.2724E	Mpa +04 - +05 - +05 - +05 - +05 - +05 - +05 - +05 - +05 - +05 -	Upa -0.011 -0.024 -0.031 -0.038 -0.044 -0.059 -0.074 -0.059 -0.074 -0.089 -0.089 -0.104 -0.118	Ryb -0.8340E-04 -0.1324E-03 -0.2304E-03 -0.2304E-03 -0.3317E-03 -0.3861E-03 -0.4425E-03 -0.4425E-03 -0.5569E-03 -0.6137E-03	Myb 0.5492E+04 0.8849E+04 0.1219E+05 0.1554E+05 0.2151E+05 0.2316E+05 0.2316E+05 0.2662E+05 0.2682E+05 0.2833E+05 0.2305E+05	Uyb -0.015 -0.023 -0.040 -0.040 -0.058 -0.058 -0.068 -0.078 -0.088 -0.098 -0.098 -0.108
		< Momen Disp. Rya Rpa Ryb Rpb < Shear F Disp. Rsx	t > Force. Mya Mpa Myb Mpb Force > Force. Qsx	Ductility Uya Upa Uyb Upb Ductility Usx	Factor End Non Non Factor Non	r A B Ilinear Rota Ilinear Rota r Ilinear Shea	i					
[2]	In ca	se of Col	umn									
CO	No. 0.000 1.000 2.000 3.000 4.000 5.000 6.000 7.000 8.000 9.000 10.000	1 0.9130E 0.2028E 0.3949E 0.5875E 0.7703E 0.9534E 0.1142E 0.1333E 0.1522E 0.1694E 0.1856E	Rya -06 0.4333 -04 0.2514 -04 0.459 -04 0.8667 -04 0.8667 -03 0.1067 -03 0.127 -03 0.127 -03 0.188 -03 0.2035	Mya 22+03 0 32+04 0 72+04 0 72+04 0 22+05 0 72+05 0 32+05 0 22+05 0 22+05 0 22+05 0 52+05 0	Uya 000 000 000 000 000 000 000 000 000 0	Ryb 0.6594E-05 0.2078E-05 -0.2424E-05 -0.6925E-05 -0.1094E-04 -0.1562E-04 -0.1957E-04 -0.2852E-04 -0.2862E-04 -0.3687E-04	0.8325E 0.1242E 0.1651E 0.2060E 0.2480E 0.2821E 0.3507E 0.4216E 0.4282E 0.4884E 0.4717E	Myb +03 +04 +04 +04 +04 +04 +04 +04 +04 +04 +04	Uyb 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	Rxa 0.5818E-07 0.6740E-07 0.8504E-07 0.8545E-07 0.8354E-07 0.8354E-07 0.8772E-07 0.1075E-06 0.1032E-06 0.1010E-06 0.1037E-06	Mxa 0.2760H20 0.3197E+02 0.3616E+02 0.4035E+02 0.3963E+02 0.4162E+02 0.4162E+02 0.4162E+02 0.4898E+02 0.4791E+02 0.4917E+02	Uxa 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
		< Momen Disp. Rya Ryb Rxa Rxb < Shear F	t > Force. Mya Myb Mxa Mxb Force >	Ductility Uya Uyb Uxa Uxb	Ductility FactorJyaEnd A(Bottom)Y-directionJybEnd B(Bottom)Y-directionJxaEnd A(Bottom)X-directionJxbEnd B(Bottom)X-direction							
		Disp. Rsx Rsy	Force. Qsx Qsy	Ductility Usx Usy	Facto	Factor Nonlinear Shear Spring Nonlinear Shear Spring			X-direc Y-direc	X-direction Y-direction		
		< Multi-sp Disp. C1D(a) C2D(a) C3D(a) C4D(a) S1D(a) S2D(a) S4D(a) S4D(a) S5D(a) C1D(b) C2D(b) C3D(b) C3D(b) C3D(b) S1D(b) S2D(b) S3D(b) S3D(b) S3D(b) S5D(b)	$\begin{array}{l} \text{Dring} > \\ \text{Force.} \\ \text{C1F(a)} \\ \text{C2F(a)} \\ \text{C3F(a)} \\ \text{C3F(a)} \\ \text{S1F(a)} \\ \text{S1F(a)} \\ \text{S2F(a)} \\ \text{S3F(a)} \\ \text{S4F(a)} \\ \text{S4F(b)} \\ \text{C2F(b)} \\ \text{C1F(b)} \\ \text{S1F(b)} \\ \text{S2F(b)} \\ \text{S3F(b)} \\ \text{S3F(b)} \\ \text{S3F(b)} \\ \text{S4F(b)} \\ \text{S5F(b)} \\ \end{array}$	Ductility C1U(a) C2U(a) C3U(a) C5U(a) S1U(a) S2U(a) S3U(a) S4U(a) S4U(a) C1U(b) C2U(b) C3U(b) C3U(b) C4U(b) S1U(b) S2U(b) S3U(b) S3U(b) S3U(b) S3U(b)	Factor	r End End End End End End End End End End	АААААААААВВВВВВВВВВВВВВВВВВВВВВВВВВВВВ	oncre oncre oncre oncre teel S teel S teel S teel S oncre oncre oncre oncre oncre s teel S teel S teel S teel S teel S teel S	te Spring te Spring te Spring te Spring te Spring te Spring 3 oring 3 oring 5 te Spring te Sprin	91 92 93 94 95 91 92 93 94 95		

[3] In case of Wall

WA No	1									
0.000	-0.2314E 0.2021E	Rya -19 0.14550 -04 0.28350	Муа Uya E-10 0.000 - E+06 0.000	R -0.2314E- 0.1978E-	≀yb •19 -0.727 •05 -0.213	Муb 6Е-10 9Е+06	Uyb 0.000 0.000	Rsx -0.2224E-19 0.1066E-04	Qsx -0.5183E-12 0.2485E+03	Usx 0.000 0.018
2.000 3.000 4.000 5.000 6.000 7.000	0.4037E 0.6052E 0.7957E 0.9870E 0.1180E 0.1374E	-04 0.56631 -04 0.84911 -04 0.11071 -04 0.13281 -03 0.15681 -03 0.18081	+06 0.000 +06 0.000 +07 0.000 +07 0.000 +07 0.000 +07 0.000	0.3937E- 0.5896E- 0.7364E- 0.8626E- 0.9408E- 0.9606E-	·05 -0.427 ·05 -0.640 ·05 -0.848 ·05 -0.105 ·05 -0.121 ·05 -0.138	4E+06 9E+06 4E+06 0E+07 4E+07 6E+07	0.000 0.000 0.000 0.000 0.000 0.000	0.2129E-04 0.3191E-04 0.4177E-04 0.5129E-04 0.6023E-04 0.6880E-04	0.4962E+03 0.7438E+03 0.9735E+03 0.1195E+04 0.1404E+04 0.1604E+04	0.037 0.055 0.072 0.089 0.104 0.119
8.000 9.000 10.000	0.1565E 0.1745E 0.1916E	-03 0.20111 -03 0.22131 -03 0.23561	+07 0.000 +07 0.000 +07 0.000	0.9497E- 0.8142E- 0.6466E-	·05 -0.154 ·05 -0.169 ·05 -0.184	1E+07 9E+07 7E+07	0.000 0.000 0.000	0.7668E-04 0.8341E-04 0.8958E-04	0.1787E+04 0.1944E+04 0.2088E+04	0.132 0.144 0.155
	< Moment Disp. Rya Ryb Rxa Rxb < Shear F	t > Force. Mya Myb Mxa Mxb	Ductility Factor Uya Uyb Uxa Uxb	Ei Ei Ei	nd A nd B nd A nd B	(Bottom (Bottom (Bottom (Bottom) Y-dire) Y-dire) X-dire) X-dire	ction ction ction ction		
	 Onear T Disp. Rsx < Multi-sp Disp. 	Force. Qsx ring > (spr	Ductility Factor Usx ings 11-15 in a v	N vall pan	onlinear el)	Shear S	pring	X-dired	ction	
	C11D(a) C12D(a) C13D(a) C14D(a) C15D(a) S11D(a) S12D(a) S13D(a)	C11F(a) C12F(a) C13F(a) C14F(a) C15F(a) S11F(a) S12F(a) S13F(a)	C11U(a) C12U(a) C13U(a) C14U(a) C15U(a) S11U(a) S12U(a) S13U(a)		nd A nd A nd A nd A nd A nd A nd A	Concret Concret Concret Concret Steel Sp Steel Sp	e Spring e Spring e Spring e Spring oring 11 pring 12 pring 13	11 12 13 14 15		
	S14D(a) S15D(a) C11D(b) C12D(b) C13D(b) C14D(b) C15D(b) S11D(b) S12D(b)	S14F(a) S14F(a) C11F(b) C12F(b) C13F(b) C14F(b) S11F(b) S12F(b) S13F(b)	S14U(a) S15U(a) C11U(b) C12U(b) C13U(b) C14U(b) C15U(b) S11U(b) S12U(b) S12U(b)		nd A nd A nd B nd B nd B nd B nd B nd B nd B nd B	Steel Sp Steel Sp Concret Concret Concret Concret Steel Sp Steel Sp	oring 14 oring 15 e Spring e Spring e Spring e Spring oring 11 oring 12 oring 13	11 12 13 14 15		
	S14D(b) S15D(b)	S14F(b) S15F(b)	S14U(b) S15U(b)	E	nd B nd B	Steel Sp Steel Sp	oring 14 oring 15			
[4] In cas	se of Vert	ical Sprir	ng							
	< Axial Fo Disp. Dz	rce > Force. Fz	Ductility Factor Uz							
[5] In cas	se of Bas	e Isolato	r							
	< Shear F Disp. Dx Dy	orce > Force. Qx Qy	Ductility Factor Ux Uy	X- Y-	-directior -directior	ר ו				
[6] In cas	se of Dan	nper and	Nonstructural	Wall						
	< Shear F Disp. Dx	orce > Force. Qx	Ductility Factor Ux	X	-directior	ו				

7) "response_node.txt"

Node OF	numbe	er			2						
1F	t 13 cente	1 2 5 6 9 10 3 14 er of	3 7 11 15 gravit	4 8 12 16 y:	17	> Node	e number	in each f	loor		
	18 22 28 30	8 19 2 23 6 27 0 31	20 24 28 32	21 25 29 33	J						
kstep 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	node 1 2 3 4 5 5 6 7 8 9 1 6 1 7 8 9 1 10 1 12 1 13 1 14 1 15 1 16 1 17 1 18 1 19 1 20 1 20 1 19 1 19 1 19 1 19 1 19 1 19 1 19 1 1	0.0000E+ 0.000E+ 00	dx 00 0.001 00 0.001 17 -0.181 17 -0.275	dy DDE+00 DDE+00 DDE+00 DDE+00 DDE+00 DDE+00 DDE+00 DDE+00 DDE+00 DDE+00 DDE+00 DDE+00 DDE+00 DDE+00 DDE+00 DDE+00 DDE+00 DDE+01 SDE-17 S3E-17	dz 0.0000E+0000E+0000E+0000E+0000E+0000E+0000E+000E+000E+0000E+0	rx 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.3191E-05	ry 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.5681E-05 0.0000E+00 0.0000E+00	rz 0.0000E+00 0.1790E-20 0.1790E-20	fx 0.0000E+00 0.5645E-07 0.5645E-07	fy 0.0000E+0000E+00000E+0000E+0000E+0000	fz 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+03 -0.4500E+03 -0.4500E+03
	katon adjulation aton in statia analysia										

	kstep node	node number
< Displac	ement>	
	dx	displacement in X-direction (cm)
	dy	displacement in Y-direction (cm)
	dz	displacement in Z-direction (cm)
	rx	rotational angle around X-direction
	ry	rotational angle around Y-direction
	rz	rotational angle around Z-direction)
<force></force>		
	fx	force in X-direction (kN)
	fy	force in Y-direction (kN)
	fz	force in Z-direction (kN)

6) "max_****.txt"

In this file, the maximum stress and displacement of each member and the maximum story responses are saved.

[1] "max baem txt" Beam	Ductility factor
[1] "max_baem.txt" Beam EL.NO.= 31 disp force MY 1 -0.2048E-01 -0.1649 BE 1 -0.1940E-01 -0.1649 MY 2 -0.1900E-01 -0.1576 BE 2 -0.1815E-01 -0.1576 0 1 0.1575 0.0 0.000	duct +06 -4.34 +06 -5.68 +06 -4.02 Hat the end of flexural part A M at the nonlinear spring A M at the end of flexural part B M at the nonlinear spring B M at the nonlinear spring B

Elastic element

Nonlinear bending spring

٦

[2] "max_column.txt" Column

EL.NO.= 1 disp MY 1 0.1892E CO 1 0.9352E CO 2 -0.6541E CO 3 0.9370E CO 4 -0.6149E CO 5 0.4656E MY 2 0.1627E CO 1 -0.4900E CO 2 0.8132E CO 3 -0.4907E CO 4 0.7735E CO 5 0.3856E Q 1 0.1113E	force -01 0.1102E+06 +00 -0.5956E+03 -02 -0.8083E+03 +00 -0.5952E+03 -02 -0.7599E+03 +00 -0.1498E+03 -02 0.6002E+05 -02 -0.6055E+03 -01 -0.5916E+03 -01 -0.5925E+03 -01 -0.5925E+03 -01 -0.1498E+03 -03 0.5848E+03	duct 3.91 -7.22 / 0.05 / -7.23 / 0.05 / -3.59 / 0.34 0.04 / -0.63 / 0.04 / -0.60 / -0.30 / 0.03	disp MX 1 0.2307E-04 ST 1 0.9352E+00 ST 2 -0.6541E-02 ST 3 0.9370E+00 ST 4 -0.6149E-02 ST 5 0.0000E+00 MX 2 0.1666E-03 ST 1 -0.4900E-02 ST 2 0.8132E-01 ST 3 -0.4907E-02 ST 4 0.7735E-01 ST 5 0.0000E+00	force 0.6891E+04 0.1243E+04 -0.1408E+03 0.1246E+04 -0.1323E+03 0.0000E+00 0.1575E+05 -0.1055E+03 0.8726E+03 0.8431E+03 0.0000E+00	duct 0.00 7.22 -0.05 7.23 -0.05 0.00 0.00 -0.04 0.63 -0.04 0.60 0.00
Q 2 0.1542E N 0.5191E	-04 0.8097E+02 +00 -0.2963E+04	0.00	MX: Moment in X-o MY: Moment in Y-d ST: Steel Q : Shear	lirection irection CO : Concrete N: Axial force	

[3] "max_wall.txt", Wall

[4] "max_structure.txt" Floor response

F	h	sdx	sdy	SSX	SSY	sf×	sfy	dx	dу	dz	rz
7	0.400E+03	0.730E+01	0.114E-01	0.658E+01	-0.446E+03	0.854E+04	0.765E+02	0.560E+02	0.948E-02	0.000E+00	0.121E-06
6	0.400E+03	0.738E+01	0.146E-01	0.666E+01	-0.377E+03	0.139E+05	0.124E+03	0.487E+02	0.830E-02	0.000E+00	0.000E+00
5	0.400E+03	0.746E+01	0.163E-01	0.676E+01	-0.309E+03	0.183E+05	0.164E+03	0.413E+02	0.711E-02	0.000E+00	0.000E+00
4	0.400E+03	0.813E+01	0.185E-01	0.746E+01	-0.240E+03	0.219E+05	0.197E+03	0.339E+02	0.583E-02	0.000E+00	0.000E+00
3	0.400E+03	0.899E+01	0.202E-01	0.838E+01	-0.171E+03	0.249E+05	0.224E+03	0.257E+02	0.455E-02	0.000E+00	0.000E+00
2	0.400E+03	0.947E+01	0.201E-01	0.896E+01	-0.103E+03	0.272E+05	0.245E+03	0.167E+02	0.309E-02	0.000E+00	0.000E+00
1	0.400E+03	0.726E+01	0.105E-01	0.704E+01	-0.343E+02	0.289E+05	0.262E+03	0.726E+01	0.157E-02	0.000E+00	0.000E+00

story number
story height (cm)
story displacements
story drift in X-direction (cm)
story drift in V direction (cm)
story drift in Y-direction (cm)
story drift in X-direction (cm), shear component
story drift in Y-direction (cm), shear component
ear force>
story shear force in X-direction (kN)
story shear force in Y-direction (kN)
ment from the ground at the center of gravity in each floor>
displacement in X-direction (cm)
displacement in Y-direction (cm)

rz rotational angle around Z-direction

7) "data_****.txt"

To know the member number and member properties, please refer to "data_***.txt".

Member	numb	er fo	or Bea	m (total	=	178)		Mombe	or number	r	
15	0 4 0 11 0 18 0	1 0 8 0 15 0 22	0 5 0 12 0 19 0	2 9 0 16 0 23	0 6 13 0 20 0	3 0 10 17 0 24	0 7 14 0 21 0		CB B C 	-CBC)	
ΠĽ	0 27 0 34 0 41 0	25 0 31 0 38 0 45	0 28 0 35 0 42 0	0 0 32 0 39 0	0 29 0 36 0 43 0	26 0 33 0 40 0 46	0 30 0 37 0 44 0					
 stee (u shea 2 mate 5 bend M Bend M Ri shea Q	inela rei own) r rei c = 2 c = 2	stic nforc = 5. strer 2.50 pring 17142 0.258 pring 17142 0.258 ing N 1984 0.204	prope > at - at - at 267 @ ngth 3 - 632 - 632 - 632 - 632 - 632 - 632 - 618 - 618 - 618 - 618 - 618	rties = 11. = 11. = 5.0 Sy 1 My Ry 2 My Ry Qy Ry	s me 400 400 = 2 = 651 = 0. = 651 = 0.	ember 12.90 427. 258E 427. 258E 3969. 102E	r = 1 .895 E-02 .895 E-02 .236 E-02	(Sy(sh Qu = Ru =	type = 1 near) = 3979. 0.204E	1) 42.90 159 -02		Properties