Data Processing

By

T. HARA

International Institute of

Seismology and Earthquake Engineering, Building Research Institute

Contents

Due to copyright and references, only a part of chapters 5 and 9 are shown in this open version.

1. Statistical background
1.1 Gaussian distribution
1.2 Maximum likelihood
2. Fitting straight line
3. General linear least squares
4. How to solve a simultaneous linear equation
4.1 Gaussian elimination
4.2 Gauss-Jordan elimination
4.3 Matrix inversion calculation
4.4 GAUSSJ.F
5. Polynomial curve fitting
6. Variance
6.1 Incorporation of data variance
6.2 Error estimation
7. Linear inversion under constraints
7.1 Incorporation of prior information
7.2 Maximum likelihood solution
7.3 Error estimation
8. Non-linear inversion under constraints
8.1 Maximum likelihood solution
8.2 Error estimation
9. Application to hypocenter determination

5. Polynomial Curve Fitting

In this chapter, using the results of Chapter 3 and 4, we fit a polynomial function to a set of given data. Suppose that we have N pairs of data, $\left(x_{i}, y_{i}\right)(i=1, N)$. The observational equation is as follows:

$$
\begin{align*}
& y_{1}=a_{1}+a_{2} x_{1}+a_{3} x_{1}^{2}+\ldots+a_{M} x_{1}^{M-1}+\varepsilon_{1} \\
& y_{2}=a_{1}+a_{2} x_{2}+a_{3} x_{2}^{2}+\ldots+a_{M} x_{2}^{M-1}+\varepsilon_{2} \tag{5-0-1}\\
& y_{N}=a_{1}+a_{2} x_{N}+a_{3} x_{N}^{2}+\ldots+a_{M} x_{N}^{M-1}+\varepsilon_{N}
\end{align*}
$$

where ε_{i} is the error of i-th data.

EXERCISE 5

Let us develop a program to fit a polynomial curve to a set of given data. The structure of the program will be the following:
(1) Determine the order of the polynomial.
(2) Read the data. \Rightarrow Display them.
(3) Construct the matrix \mathbf{G} and the vector $\mathbf{d} . \Rightarrow$ Display them.
(4) Calculate the matrix $\mathbf{A}\left(=\mathrm{G}^{\mathrm{T}} \mathrm{G}\right)$ and $\mathbf{b}\left(=\mathrm{G}^{\mathrm{T}} \mathbf{d}\right) . \Rightarrow$ Display them.
(5) Solve the nomal equation, $\mathbf{A x}=\mathbf{b} . \Rightarrow$ Display the solution.
(6) Plot the determined polynomial together with the data.

EXERCISE 5-1

Fit a straight line for the two data: $(1.0,1.0)$ and $(2.0,2.0)$. The result will be the following:

Input order:

EXERCISE 5-2

Fit the 3 -rd order polynomial to the four data: (1.0, 1.0), (2.0, 4.0), (4.0, 2.0), (6.0, 8.0).

Input order:

3

Number of data: 4
Data (x, y) :
$1.00000 \quad 1.00000$
$2.00000 \quad 4.00000$
$4.00000 \quad 2.00000$
$6.00000 \quad 8.00000$
Matrix G:
$1.0 \quad 1.0 \quad 1.0 \quad 1.0$
$\begin{array}{llll}1.0 & 2.0 & 4.0 & 8.0\end{array}$
$\begin{array}{llll}1.0 & 4.0 & 16.0 & 64.0\end{array}$
$\begin{array}{llll}1.0 & 6.0 & 36.0 \quad 216.0\end{array}$
Vector d:
$\begin{array}{llll}1.0 & 4.0 & 2.0 & 8.0\end{array}$
Matrix $A(=G t G)$
$4.0 \quad 13.0 \quad 57.0 \quad 289.0$
$\begin{array}{llll}13.0 & 57.0 & 289.0 \quad 1569.0\end{array}$
$57.0 \quad 289.0 \quad 1569.0 \quad 8833.0$
289.01569 .08833 .050817 .0
vector b:
$15.0 \quad 65.0 \quad 337.0 \quad 1889.0$
A inverse :
$\begin{array}{llll}20.3 & -23.9 & 7.5 & -0.7\end{array}$
$\begin{array}{llll}-23.9 & 29.6 & -9.5 & 0.9\end{array}$
$\begin{array}{llll}7.5 & -9.5 & 3.1 & -0.3\end{array}$
$\begin{array}{llll}-0.7 & 0.9 & -0.3 & 0.0\end{array}$
Solution:
$\begin{array}{llll}-8.4 & 13.5 & -4.6 & 0.5\end{array}$

EXERCISE 5－3

Fit the 3－rd order polynomial to the eight data：

x	1.0	1.0	1.0	2.0	3.0	4.0	5.0	6.0
y	1.0	2.0	3.0	4.0	4.0	2.0	3.0	8.0

Input order：$\quad 10$															
Number of data： 8						8									
Data（ x, y ）：															
1.00000		1.00000													
1.00000		2.00000													
1.00000		3.00000				6	－								－
2.00000		4.00000													
3.00000		4.00000			$>$										
4.00000		2.00000						（1）							
5.00000		3.00000						田							
6.00000		8.00000						田				－			
Matrix G ：															
1.0	1.0	1．0	1.0			2		甲							
1.0	1.0	1.0	1．0												
1.0	1.0	1.0	1.0												
1.0	2.0	4.0	8.0 ．			0									
1.0	3.0	9.0	27.0				0	2	4	6	8	10			
1.0	4.0	16.0	64.0												
1.0	5.0	25.0	125.0												
1.0	6.0	36.0	216.0												
Vector d：				4.0			． 0	3.0							
1.0	2.0	3.0	4.0	4.0											
Matrix $A(=G t G)$ ：															
8.0	23.0	93.0	443.0												
23.0	93.0	443.0	2277.0												
93.04	443.0	2277.01	2203.0												
443.022	277.01	12203.06	7173.0												
Vector b：															
27.0	97.0	453.0	2377.0												
A inverse ：															
8.1 －	-10.2	3.3	－0．3												
－10．2	13.5	－4．4	0.4												
3.3	－4．4	1.5	－0．1												
-0.3	0.4	－0．1	0.0												
Solution：															
－5．9	11.4	-4.0	0.4												

EXERCISE 5-4

Try to fit the 3 -rd order polynomial to the three data, $(1.0,1.0),(2.0,1.0),(4.0$, 3.0) and what happens?

9. Application to hypocenter determination

Here, we apply the theory derived in Chapter 8 to hypocenter determination in homogeneous half-space. The observational equation is given by:

$$
\begin{equation*}
t_{i}=t_{0}+\frac{L_{i}}{V}+\varepsilon_{i} \tag{9-1}
\end{equation*}
$$

where t_{i} is the arrival time observed at the \dot{i} th station, t_{0} is the origin time, V is the velocity of the seismic wave, ε_{i} is the error for the \dot{r} th station, and L_{i} is the distance between the event and the \dot{I} th station defined by:

$$
\begin{equation*}
L_{i}=\left(\left(x_{e}-x_{s}^{i}\right)^{2}+\left(y_{e}-y_{s}^{i}\right)^{2}+\left(z_{e}-z_{s}^{i}\right)^{2}\right)^{1 / 2} \tag{9-2}
\end{equation*}
$$

where $x_{e}, y_{e}, z_{e}, x_{s}^{i}, y_{s}^{i}, z_{s}^{i}$ are the latitude, longitude and depth of the event and the i th station in the Cartesian coordinate, respectively (we consider the case in which we can neglect the curvature of the earth's surface). The partial derivatives of the arrival time of the \dot{r} th station with respect to hypocentral parameters are given by:

$$
\left\{\begin{array}{l}
\frac{\partial t_{i}}{\partial t_{0}}=1 \tag{9-3}\\
\frac{\partial t_{i}}{\partial x_{e}}=\frac{1}{V} \frac{1}{2}\left(\left(x_{e}-x_{s}^{i}\right)^{2}+\left(y_{e}-y_{s}^{i}\right)^{2}+\left(z_{e}-z_{s}^{i}\right)^{2}\right)^{-1 / 2} 2\left(x_{e}-x_{s}^{i}\right)=\frac{1}{V} \frac{1}{L_{i}}\left(x_{e}-x_{s}^{i}\right) \\
\frac{\partial t_{i}}{\partial y_{e}}=\frac{1}{V} \frac{1}{L_{i}}\left(y_{e}-y_{s}^{i}\right) \\
\frac{\partial t_{i}}{\partial z_{e}}=\frac{1}{V} \frac{1}{L_{i}}\left(z_{e}-z_{s}^{i}\right)
\end{array}\right.
$$

Note that the partial derivatives with respect to spatial parameters depend on the guess. The matrix \mathbf{G}_{k} in eq. ($8-1-5$) is given by:

$$
\left[\begin{array}{cccc}
\frac{\partial t_{1}}{\partial t_{0}} & \frac{\partial t_{1}}{\partial x_{e}} & \frac{\partial t_{1}}{\partial y_{e}} & \frac{\partial t_{1}}{\partial z_{e}} \tag{9-4}\\
\frac{\partial t_{2}}{\partial t_{0}} & \frac{\partial t_{2}}{\partial x_{e}} & \frac{\partial t_{2}}{\partial y_{e}} & \frac{\partial t_{2}}{\partial z_{e}} \\
\cdot & \cdot & \cdot & \cdot \\
\frac{\partial \dot{t}_{N}}{\partial t_{0}} & \frac{\partial \dot{t}_{N}}{\partial x_{e}} & \frac{\partial \dot{t}_{N}}{\partial y_{e}} & \frac{\partial \dot{t}_{N}}{\partial z_{e}}
\end{array}\right]
$$

We assume the following:
(9-5) $\left\{\begin{array}{l}\mathbf{C}_{\mathbf{d}}=\sigma^{2} \mathbf{I} \\ \mathbf{C}_{\mathbf{m}}=\gamma^{2} \mathbf{I}\end{array}\right.$
The second equation in eqs. $(8-1-6)$ reduces as:
(9-6) $\left(\frac{1}{\sigma^{2}} \mathbf{G}_{k}{ }^{\mathrm{T}} \mathbf{G}_{k}+\frac{1}{\gamma^{2}} \mathbf{I}\right)\left(\mathbf{m}-\mathbf{m}_{k}\right)=\frac{1}{\sigma^{2}} \mathbf{G}_{k}^{\mathrm{T}}\left(\mathbf{d}-\mathbf{f}\left(\mathbf{m}_{k}\right)+\frac{1}{\gamma^{2}}\left(\mathbf{m}_{\mathbf{0}}-\mathbf{m}_{k}\right)\right.$

$$
\therefore \mathbf{m}_{k+1}=\mathbf{m}_{k}+\left(\mathbf{G}_{k}{ }^{\mathrm{T}} \mathbf{G}_{k}+\varepsilon^{2} \mathbf{I}\right)^{-1}\left(\mathbf{G}_{k}^{\mathrm{T}}\left(\mathbf{d}-\mathbf{f}\left(\mathbf{m}_{k}\right)+\varepsilon^{2}\left(\mathbf{m}_{\mathbf{0}}-\mathbf{m}_{k}\right)\right)\right.
$$

where $\varepsilon^{2}=\sigma^{2} / \gamma^{2}$.

