
1

Fortran programming for
beginner seismologists

Lesson 2
Lecturer

Tatsuhiko Hara

IISEE lecture for group training

Reference
Introduction to FORTRAN90/95 by S. J. Chapman (New York: McGraw-Hill, 1998)

2

A small project

• Now we start a small project in which we
make a program to compute travel times for
a layered crust model to learn Fortran
programming.

3

An example of travel time curves

0

10

20

30

40

50

60

70

80

90

0 50 100 150 200 250 300

"direct" using 2:3
"direct" using 2:4

"u_c" using 2:3
"u_c" using 2:4

"moho" using 2:3
"moho" using 2:4

Distance (km)

Ti
m

e
(s

ec
)

4

First Step

• We start our project from the most simple
case, homogeneous half space shown below.

∆

Earthquake

Station

z
l

5

Travel times

The travel times of P and S waves (Pt and St) are given by the

following formula, respectively:

SS
S

PP
P

V
z

V
lt

V
z

V
lt

22

22

+∆==

+∆==

where pV and sV are P and S wave speeds, respectively.

6

From maths to Fortran

• The equations in the previous slide are
mathematical expressions. We have to
translate them into those of Fortran to carry
out calculations.

• Note that it is necessary to define seismic
wave speeds (Vp and Vs), epicentral
distance (), and depth (z) to calculate tp
and ts.

∆

7

What is a “variable”?
• As already mentioned, we have to define

the values of physical parameters such as Vp.
How can we do that using Fortran?

• First of all, we have to decide the name and
type of a “variable” which stores a value of
a certain physical parameter.

• Here, as an example, we use “vp” as a
variable to store the value of Vp (although
you can choose another name, it is good to
choose a name to make it easy to remember
which physical parameter is assigned).

8

On naming a variable

• Names are case insensitive. The followings
are the same in Fortran programs:

vp, VP, Vp, vP

• The maximum number of characters that
you can use for a variable is 31.

• You can use alphabets, numbers, and the
underscore (_) character to name variables.

9

Data type (1)

• Now the name of the variable for Vp is vp. How
about the “data type” for vp?

• In Fortran90/95, the following (intrinsic) data
types are available:
real, integer, complex, character,
logical

Example
‘Hello!’ in the hello.f is a character
constant.

10

Data type (2)
• We use the real type for vp.
• Declaration statement must be put in the

declaration section at the beginning part of a
program as shown below:

11

implicit typing

• In Fortran, so called implicit typing is
available, by which

- The names beginning with i, j, k, l, m
and n are implicitly recognized as a
integer variable if they are not explicitly
declared.
- Other names are implicitly recognized as a
real variable.

12

IMPLICIT NONE
• By putting the IMPLICIT NONE statement

after the PROGRAM statement, you can
disable implicit typing.

• In this lecture, we do not use implicit typing.
This is because
– it it easy to find typos in programs (if you use

an undefined variable, you will find an error
message in compilation).

– it is requested to use the IMPLICIT NONE
statement in some systems.

13

Let’s assign the value to vp

• There are four ways to assign a value to a
variable vp:

(1) read(*,*) vp

(2) real :: vp = 6.0

(3) data vp/6.0/

(4) vp = 6.0

14

READ statement

• The following READ statement
read(*,*) variable name [, variable name, etc.]

reads one or more values from the standard
input device (i.e., keyboard) specified by
the first “*”, and loads them into the
variables in the list.

• The second “*” specifies the standard
format.

15

EXERCISE 2-1

i) Make a program to read a value of the variable
vp from the keyboard and print out it on the
display.

ii) Make a program to read values of the variables
vp and vs from the keyboard and print out them
on the display.

Hint: the following expression may be used:

read(*,*) vp, vs

16

EXERCISE 2-2

i) Compile the following program, and see what
happens:

program cal_tt

implicit none

real :: vp, vs

write(*,*) 'Input Vp, Vs:'

read(*,*) vp, vs

write(*,*) 'vp: ', vp, 'km/s'

write(*,*) 'vs: ', vp, 'km/s'

stop

end program cal_tt

ii) Correct the above program.

17

Declaration with initialization

• A type declaration statement can be used for
initialization of variables as

type :: var1 = value [, var2 = value, …]
An example:

real :: vp=6.0, vs=4.0

18

Data statement
• Data statement initializes variables.
Example
program cal_tt
implicit none
real :: vp, vs
integer :: i
data vp, vs/6.0, 4.0/
data i/0/
write(*,*) 'vp: ', vp, 'km/s'
write(*,*) 'vs: ', vs, 'km/s'
write(*,*) 'i: ', i
stop

end program cal_tt

19

Assignment statement

• vp = 6.0 is an example of Assignment
statement.

• The right hand side is evaluated first, and the
result is assigned to the left hand side variable.

• The followings are invalid:
6.0 = vp

vp + vs = 10.0

vp = vs = 6.0

20

Let’s calculate travel times
A program to calculate travel times will
consist of the following parts:

• Declaration section
– Declaration of variables
– Initialization of variables

• Execution section
– Input (to set values for variables)
– Calculation
– Output

• Termination section

21

Declaration of variables (1)

• As mentioned, variables for Vp, Vs, , z, tp and ts
are necessary. The first four variables are
necessary to compute travel times and the
remaining two are necessary to store the results.

• Here, we develop a program only for Tp, and leave
a part of Ts as an exercise.

• We use vp, delta, z, and tp for the names of
Vp, , z and tp, respectively.∆

∆

22

Declaration of variables (2)

• A part for the declaration section can be
written as:

program cal_tt

implicit none

real :: vp, delta, z,

When you see this symbol, the code is incomplete. Please be careful.

23

Assignment of values to each
variable (1)

• Here, we make a program in which vp is a
constant, and z and delta are read from the
keyboard.

• So we initialize the value of vp by the
declaration statement and use a READ
statement for z and delta.

24

Assignment of values to each
variable (2)

• The program can be developed as:

program cal_tt
implicit none
real :: vp=6.0, delta, z, tp
write(*,*) 'Focal depth (km):'
read(*,*) z
write(*,*) 'Epicentral distance (km):'
read(*,*)

Declaration section

Execution
section

25

What is necessary to calculate
travel times?

• Now we are ready to calculate travel times.
• To perform calculations, we have to learn

arithmetic operations and intrinsic
procedures in Fortran.

26

Arithmetic operation (1)

Math Fortran
ba + a+b

ba − a-b

ba × a*b

ba ÷ a/b
2a a**2 or a*a
3a a**3

27

Arithmetic operation (2)

Math Fortran

z
yx +

 (x+y)/z

z
yx + x+y/z

28

Exercise 2-3

• Translate the following mathematical
expressions into those of Fortran:

cb
a

c
baba

c
babcaxyz

+
++

+−

 (6) (5) (4)

 (3) (2) (1)

3

29

Intrinsic functions

• Intrinsic functions are built-in functions in
Fortran to calculate functions such as sin(x),
cos(x), and log(x).

30

Generic
name

Description Specific
names

Type of
argument(s)

Type of
result

sin REAL REAL
dsin DOUBLE DOUBLE sin(x)

Sine

X in radians
csin COMPLEX COMPLEX
cos REAL REAL
dcos DOUBLE DOUBLE cos(x)

Cosine

X in radians
ccos COMPLEX COMPLEX
sqrt REAL REAL
dsqrt DOUBLE DOUBLE sqrt(x)

Square root

csqrt COMPLEX COMPLEX
alog REAL REAL
dlog DOUBLE DOUBLE log(x)

Natural
logarithm

clog COMPLEX COMPLEX

Examples of intrinsic functions

31

Travel time calculations

• We can calculate travel time Tp by combining
assignment statement, arithmetic expressions, and
intrinsic functions as follows:

tp = sqrt(z**2+delta**2)/vp

• Remember that in assignment statement, the right
hand side is evaluated first, and then the value of
the right hand side expression is assigned to the
variable in the left hand side.

32

Adding the part of calculation
• The program can be developed as:

program cal_tt
implicit none
real :: vp=6.0, delta, z, tp
write(*,*) 'Focal depth (km):'
read(*,*) z
write(*,*) 'Epicentral distance (km):'
read(*,*) delta
tp = sqrt(z**2+delta**2)/vp

33

Output and End statement
• The program can be developed as:
program cal_tt

implicit none
real :: vp=6.0, delta, z, tp

write(*,*) 'Focal depth (km):'
read(*,*) z

write(*,*) 'Epicentral distance (km):'
read(*,*) delta

tp = sqrt(z**2+delta**2)/vp

write(*,*) 'P-wave velocity (km/s):', vp
write(*,*) 'Travel tiem of P-wave (s):',

stop
end program cal_tt

34

Exercise 2-4

• Change the program developed in this
lecture to calculate both Tp and Ts and print
out them to the screen.

35

Exercise 2-5-1

• Compile and run the following program:

program ex2_5_1
implicit none

real :: pi
pi = acos(-1.0)

write(*,*) pi

write(*,*) sin(0.0), sin(pi/2.0), sin(pi)
stop

end program ex2_5_1

36

Exercise 2-5-2

• Compile and run the following program:
program ex2_5_2
implicit none
real :: pi

pi = acos(-1.0)
write(*,*) pi
write(*,*) tan(0.0), tan(pi/4.0)

stop
end program ex2_5_2

37

Exercise 2-5-3
• Compile and run the following program:
program ex2_5_3

implicit none

real :: pi, rad2deg

pi = acos(-1.0)

write(*,*) pi

rad2deg = 180./pi

write(*,*) atan(1.0), atan(-1.0)

write(*,*) atan(1.0)*rad2deg, atan(-1.0)*rad2deg

write(*,*) atan2(1.0,1.0), atan2(1.0,-1.0)

write(*,*) atan2(1.0,1.0)*rad2deg, atan2(1.0,-1.0)*rad2deg

write(*,*) atan2(-1.0,1.0), atan2(-1.0,-1.0)

write(*,*) atan2(-1.0,1.0)*rad2deg, atan2(-1.0,-1.0)*rad2deg

stop

end program ex2_5_3

