
International Institute of Seismology
and Earthquake Engineering (IISEE)
Seismology Course Lecture Notes

TRAINING COURSE IN
SEISMOLOGY AND EARTHQUAKE ENGINEERING

Introduction to
Digital Data Processing

Ver. 3.3.1
2010

by
Toshiaki Yokoi

International Institute of Seismology and
Earthquake Engineering (IISEE)

Japan International Cooperation Agency (JICA)

 i

Contents

1. INTRODUCTION 1
1.1 Linear System 1

1.1.1 Signal, Input and Output 1
1.1.2 Linear System 2
1.1.3 Response Characteristics of Linear System 3

1.2 Digitization of Time-Dependent Functions 4
1.2.1 Dirac Comb Function 4
1.2.2 Time Series Discretization 5
1.2.3 Folding and Aliazing 5

2. FAST FOURIER TRANSFORM 8

2.1 Fourier Expansion of a Finite Time Series 8
2.2 Sinusoidal Functions and Fourier Spectra of Amplitude and Phase 9
2.3 Discrete Fourier Spectra 11
2.4 Algorithm for FFT 12

2.4.1 Removal of DC Component and Linear Trend 12
2.4.2 Tapering or Windowing 12
2.4.3 Zero Padding 13
2.4.4 Algorithm 14
2.4.5 Time Window and Periodicity 18
2.4.6 Spectral Smoothing 19

2.5 Practice for FFT 21
2.5.1 Cosine and Sine Wave 22
2.5.2 Constant 26
2.5.3 Impulse 27
2.5.4 Time Shift 28
2.5.5 Aliasing 30
2.5.6 Assumption of Periodicity 31

3. FILTERING TECHNIQUES 32

3.1 Weighted Moving Average 32
3.2 Convolution-Filtering in the Time Domain 34

3.2.1 Convolution 34
3.2.2 Filtering in the Time Domain by Convolution 34

3.3 Feature of Filter Wavelet 36
3.3.1 Phase 36
3.3.2 Frequency Components 40
3.3.3 Causality or Non-Causal Filtering 42

3.4 Recursive Filter 47
3.4.1 Laplace Transform 48
3.4.2 Filter Operation in the s-domain 48
3.4.3 Z-Transform 51
3.4.4 Filter Operator on the Z-domain 52
3.4.5 Analog Filters and their Transfer Functions 62
3.4.6 Excersize for Digital Filtering 68

3.5 Deconvolution or Inverse Filtering 71
3.6 Integration of Accelerograms or Base Line Correction 80

Fortran Programs 90
Reference for Further Reading 107

 1

1. Introduction

In this lecture note, several basic and essential topics that are useful for understanding digital
data processing techniques are explained. These topics are directly related to measurements using digital
equipment.

1.1. Linear System
Almost all measuring equipment is “linear systems.” This is because “linear systems” make it

easier to reproduce the measured value of the physical parameters from the results of the measurement.

1.1.1. Signal, Input, and Output
Since it could be difficult to define the terms “signal”, “input” and “output” exactly, we

employ their practical definitions.
A signal is any quantity that we measure or input. For example, mechanical signals may be

displacement, velocity, acceleration, or force, whereas electric signals may be charge, voltage, or current.
Signals often depend on time. In seismology, we typically treat time-dependent signals. Such signals can
have many relations. A system can be defined either as a relation between more than two signals itself, or
an equipment (or algorithm) that yields such relations. The input can be defined as the conditions given to a
system. The signal generated in the system that corresponds to the input is called the output (Fig. 1).

For example, consider ground motion. Ground motion will be the input to a seismograph
(which is the “system”). The output is the recorded seismogram. If we consider a seismometer to be the
system, the input will be the ground motion again while the voltage imbalance between the two terminals
of the seismometer will be the output.

Fig. 1 Block diagram of a system.

 2

1.1.2. Linear System
Almost all the systems used in the measurement of physical quantities have “linear”

characteristics. This can imply the following. Suppose that the output of a system that corresponds to the
input x1(t) is y1(t) while the output that corresponds to the input x2(t) is y2(t). The first requirement of a
linear system is that the output corresponding to the input x1(t) + x2(t) is y1(t) + y2(t). The second is that the

output corresponding to αx1(t) is αy1(t), where α is a constant. These requirements lead to a proportional
relation between the input and the output. Such a relation is called “linearity.” Namely,

If
() ()
() ()⎩

⎨
⎧

→
→

tytx
tytx

22

11 , then
() () () ()

() ()⎩
⎨
⎧

→
+→+

tytx
tytytxtx

11

2121

αα

Such “linear” characteristics of the relation between an input and an output ensure that the

input signal can be reconstructed by using the output signal. This is why almost all measuring equipment is
linear systems. However, in reality, linear characteristics can be usually obtained only for a limited range of
the input signal. Clipping of a seismometer and saturation of an amplifier are simple examples. When
“linearity” is lost, the system becomes “non-linear” (Fig. 2).

There are several important “linear” transformations in mathematics that can be applied to
physics, for example, the Fourier transform.

Fig. 2 Schematic figure showing both linearity and non-linearity.

INPUT

OUTPUT

O

LINEA

NON-LINEAR

NON-LINEAR

 3

1.1.3. Response Characteristics of Linear Systems
Suppose that g(t) is the output of a system when the input signal is a unit impulse δ(t). An

arbitrary function x(t) can be expressed by using the technique of “convolution” as follows.

() () () () () () ()∑∫∫
∞

−∞=

∞

∞−

∞

∞−
ΔΔ−

→Δ
==−=

m
umumtx

u
duuu-txduutuxtx δδδ

0
lim

.

The last term shows that x(t) is the weighted sum of the delta functions at an infinitively small Δu. Each
delta function δ(mΔu) gives the output g(mΔu). The second requirement (mentioned previously in 1.1.2)
suggests that the input x(t – mΔu)δ(mΔu) gives x(t – mΔu)g(mΔu), since x(t – mΔu) is a constant. The first
requirement suggests that the input, that is, the sum of x(t – mΔu)δ(mΔu), gives the sum of the output for
each weighted delta function x(t – mΔu)g(mΔu).
Thus, the output signal that corresponds to the input signal x(t) is given by the following.

() () () () () () ().
0

lim
tyduutguxduugu-txumgum-tx

u m
=−==ΔΔ

→Δ ∫∫∑
∞

∞−

∞

∞−

∞

−∞=
.

For a seismic signal, it is reasonable to suppose that g(t) = 0 at t < 0 ; then

() () ()y t x u g t u du = −
∞

∫0
.

These formulas show that the output that corresponds to an arbitrary input signal can be defined by g(t). In
other words, the response to the unit impulse g(t) contains all information on the characteristics of a linear
system. We call such a response “impulse response” or “system characteristics.”

Fig. 3 System response, input, and output signals.

SYSTEM

System Response Function R(t)

Input Time Series I(t) Output Time Series O(t)

O(t) = I(t)*R(t)

 4

1.2. Digitization of Time-Dependent Functions
Today, digital data acquisition and processing systems are so dominant in physical

measurements that we can expect analog or continuous systems to become obsolete by the first half of the
twenty-first century. We can convert every analog signal to a digital once they are converted to the form of
a voltage imbalance. Some basic knowledge is required to prevent difficulties that might occur during such
analog-to-digital conversions, which are referred to as “discretization.”

1.2.1. Dirac Comb Function

First, let us understand the discretization process. Consider a box car function b(t):

()b t
B t t

t t
=

≤
>

⎧
⎨
⎩

, / ,
, / .

0

0

2
0 2

The Fourier expansion in [–T/2, T/2] (T>t0) gives

()
b t

Bt
T

t
t

t n Tn

nn
n n()

sin /
/

cos , /= +
⎡

⎣
⎢

⎤

⎦
⎥ =

=

∞

∑0 0

01

1 2
2

2
2

ω
ω

ω ω π .

Note that the time window of the length T is used implicitly. T has to be longer than t0 and no other
constraint is placed on it.

Let t0 tend to zero under the condition Bt0 = 1; in this manner, the Fourier expansion of δ(t) is obtained.

δ ω ω πω() cos , / .t
T

t
T

e n Tn
n

i t

n
n

n= +
⎡

⎣
⎢

⎤

⎦
⎥ = =

=

∞

=−∞

∞

∑ ∑1 1 2 1 2
1

The Fourier expansion of the signal in a limited time window implicitly assumes the periodicity of the
signal. This formula, when written in exact terms, represents an infinite series of the impulse and it is called
as the Dirac comb function. Note that the interval between the delta functions is T.

Let us change the notation from T to Δt for the convenience of the following description (Fig. 4).

Fig. 4 Dirac comb function.

 5

Fig. 5 Continuous function, Dirac comb function, and time series.

1.2.2. Time Series Discretization

Today, it is popular and convenient to handle time-dependent data by using computers. For
doing this, it is necessary that recorded data is digital or discrete. The process for converting an continuous
analog signal f(t) to its digital equivalent is called “analog-to-digital conversion,” “digitization,” or
“discretization.” This process is expressed mathematically as the multiplication of a continuous function

f(t) with the Dirac comb function C(t), in which the interval of the neighboring delta function is Δt (Fig. 5).
() () ()h t f t C t= ⋅ .

1.2.3. Folding and Aliasing
From the above, we obtain the Fourier expansion as follows:

C t
t

ei n t t

n

() ,(/)=
=−∞

∞

∑1 2

Δ
Δπ

where Δt is the sampling interval.
The Fourier transform of the discrete function h(t) is given by

() () () .21)()/2(∑∑ ∫∫
∞

−∞=

∞

−∞=

∞

∞−

Δ−−
∞

∞−

− ⎟
⎠
⎞

⎜
⎝
⎛

Δ
−=

Δ
=⋅=

nn

ttniti

t
nFdtetf

t
dtetCtfh πωω πωω

This shows that h(ω) is a repetition of F(ω) with an interval 1/Δt and that a spectra outside the frequency
range [–1/2Δt, 1/2Δt] does make any sense (Fig. 6). This border frequency 1/2Δt is called the folding
frequency or the Nyquist frequency.

 6

Fig. 6 Spectra of a time series.

The influence of digitization can be minimized easily when the Fourier spectra of the original
continuous function have a negligible value at the Nyquist frequency. Otherwise, the foot of the

neighboring spectral peak invades in the range [–1/2Δt, 1/2Δt] and contaminates the signal. This
phenomenon in the frequency domain is referred to as folding. The above consideration suggests that the

sampling interval Δt must be shorter than half of the shortest period that is included in the original
continuous function. In other words, the frequency components of the period that is shorter than twice the
sampling interval must be eliminated before digitization.

The disturbance is more clearly shown in the time domain. Fig. 7 clearly shows that coarse

discretization cannot identify fine peaks of the original continuous function, and the result is completely
different from the original one.

Folding in the frequency domain and aliasing in the time domain represent the same

phenomenon. The relationship between aliasing and folding is schematically shown in Fig. 8.

An analog filter that is applied to the original analog signal in order to prevent the aliasing or
folding is called an anti-alias filter. Re-sampling of the digital data also requires the application of an
anti-alias filter.

 7

Fig. 7 Example of Aliasing in the time domain. (a) Original analog signal
where dots denote the sampling, (b) digitized signal, and (c) Re-constructed
analog signal by the linear interpolation of the digitized data. Produced newly
based on the concept of Yilmaz(1994).

Fig. 8 Example of Folding in the frequency domain. A waveform sampled at
0.1sec has Nyquist frequency of 5.0 Hz. Resampling to 0.2 and 0.4 sec confines
the frequency band to 2.5 and 1.25 Hz, respectively. Note the loss of high
frequencies at larger sampling intervals. Produced newly based on the concept
of Yilmaz(1994).

 8

2. Fast Fourier Transform (FFT)
The Fourier transform is one of the basic mathematical tools used for data processing. A signal

in the time domain can be converted to one in the frequency domain by applying the Fourier transform and
in this manner, different features of the converted data can be obtained. The Fourier transform of digital
data is defined in this chapter.

There are several published subroutines of FFT in BASIC, FORTRAN, and C, which are very
useful and simplify our task. However, we must focus on the definitions of the Fourier transform and its
inverse transform that are given in different books. There are several possible definitions and
mathematically they are all equivalent. When we use a subroutine given in a textbook, it is important to
carefully read the main text. This lecture note employs the definition of Papoulis (1962, 1984) and Ohsaki
(1976).

() ()

() ()
⎪
⎪
⎩

⎪
⎪
⎨

⎧

⋅=

⋅=

∫

∫
∞

∞−

∞

∞−

−

.
2
1

,

ωω
π

ω

ω

ω

deXtx

dtetxX

ti

ti

2.1. Fourier Expansion of a Finite Time Series
The Fourier expansion of a time series xm (m = –N/2 + 1,...–1, 0, 1, ...N/2) is given as follows.

The coefficient of expansion is given by

() .2,,1,0,1,,12,1 2/

12/

/2 NNkex
N

C
N

Nm

Nkmi
mk LL −+−== ∑

+−=

− π (1)

By using these coefficients, the original time series xm is
expanded as

.2/,12/,
2/

12/

/2 NNmeCx
N

Nk

Nkmi
km L+−== ∑

+−=

π (2)

Naturally, these formulas imply that any limited time series
can be expanded into a finite number of sinusoidal waves of
which the frequency is discrete, as shown in Fig. 9. Note that
the periodicity in the time domain is implicitly introduced.

Fig. 9 A series of sinusoidal curves with different
frequencies, peak amplitudes, and phase lags can be
superimposed to synthesize a waveform on the left-most
curve as indicated by the asterisk. The sampling
frequency of this waveform is 512Hz. The sinusoidal
curves of frequencies higher than 33 Hz are omitted
because their amplitudes are negligible. Produced newly
based on the concept of Yilmaz(1994).

 9

Fig. 10 Three sinusoids (left) and their amplitude (center) and phase spectra
(right). The time between two consecutive peaks is the period of the sinusoid,
the inverse of which is called frequency. Finally, the time delay of the onset is
defined as phase lag. Produced newly based on the concept of Yilmaz(1994).

2.2. Sinusoidal Functions and Fourier Spectra of Amplitude and Phase
Yilmaz(1994) shows a persuasive way of explaining Fourier Spectra of Amplitude and Phase. A

sinusoidal function is defined by its frequency, amplitude, and time shift, as shown by an example given in
Fig. 10. A phase lag, that is, a time shift normalized by the period is usually used. Assume that the phase
lag of the signals in the top panels is zero and its amplitude is unity. The frequency of signals in the top
panels is 12.5 Hz. The middle panels have a half amplitude, frequency of 25.0 Hz and the phase lag is zero.

The bottom panels have unit amplitude, a frequency of 12.5 Hz, and phase lag of –π/2.

Every sinusoid drawn in Fig. 9 has a frequency, amplitude, and phase lag. The latter two

variables can be plotted against the frequency (Fig. 11). Each point along the amplitude spectrum curve
(Fig. 11 Top) corresponds to the peak amplitude of the sinusoid at that frequency, as shown in Fig. 9. Note
the correspondence of the peak in the amplitude spectra with the high-amplitude frequency range in Fig. 9.
Each point along the phase spectrum (Fig. 11 Bottom right) corresponds to the phase delay of a peak or
trough along the sinusoid at that frequency with respect to the timing line at t = 0 in Fig. 9. Note the
correspondence of the phase curve with the trend of a positive peak from trace to trace (Fig. 12).

 10

Fig. 11 Bottom left: The waveform in Fig.9, its amplitude and phase spectra
(top and bottom right panels). Produced newly based on the concept of
Yilmaz(1994).

Fig. 12 An enlarged view of Fig. 9 that delineate the trend of the phase curve
from curve to curve in comparison of the phase spectra in Fig. 11 bottom right
panel. Produced newly based on the concept of Yilmaz(1994).

 11

 2.3. Discrete Fourier Transform
Define the time window length of the time series xm as T = NΔt . Eq. (1) can be written as

() .2,,1,0,1,,12,1 2/

12/

/2 NNktex
tN

C
N

Nm

tNtkmi
mk LL −+−=Δ

Δ
= ∑

+−=

ΔΔ− π

Let Δt tend to zero while T is kept constant (ttm →Δ). This gives a continuous function in a limited time
window.

() () .:,,1 2/

2/

/2 discretekkdtetx
T

C
T

T

Tkti
k ∞≤<∞−= ∫−

− π (3)

Similarly,

() .2/2/,)/2(TtTeCtx Tkti
k ≤<−= ∑

∞

∞−

π (4)

The frequency f in these formulas is given by f = k/T. Since k is an integer, the frequency f takes a discrete

value with an interval Δf = 1/T. Eq. (3) and Eq. (4) show the Fourier expansion of a continuous
time-windowed time function. Note again that Eq. (4) shows the repetitive nature of the re-constructed time
function.

Change Eq. (4) by using Δf = 1/T.

()x t TC e f f t fk
i k ft= − < ≤

−∞

∞

∑ () , / / .()2 1 2 1 2π Δ Δ Δ Δ

Let Δf tend to zero, i. e., let T tend to infinity (ffk →Δ). This means that the periodicity in Eq. (3) and
Eq. (4) becomes eliminated. Eq. (3) gives

() ()TC x t e dt k k continuousk
i ft= − ∞ < ≤ ∞−

∞

∞

∫ 2π , , : . (5)

() .,)(
2
1)()2()2(∞≤<∞−== ∫∫

∞

∞−

∞

∞−
tdeTCdfeTCtx ti

k
fti

k ω
π

πωπ (6)

A comparison with the definition of Fourier transform shows that (TCk) corresponds to the Fourier
transform. Thus, the discrete Fourier transform is given by

()F f TC T
N

x e

f k T k N N

k m
i km N

m N

N

() ,

/ , , , , , , , .

/

/

/

= =

= = − + −

−

=− +
∑ 2

2 1

2

2 1 1 0 1 2

π

L L

 (7)

If the time series is defined in [0, T = NΔt], the limit of the summation has to be changed to [from m = 0 to
m = N].

Fig. 13 Comparison of the calculation time of DFT and FFT.

 12

2.4. Algorithm for FFT
The calculation of discrete Fourier transform by using Eq. (7) (denoted by DFT) uses

considerable time. The time that is necessary for the calculation increases proportionally with N2, where N
is the number of samples. For example, the time is 40 s for N = 1024 on a 486 DX2 50 MHz PC.

Fast Fourier transform (FFT) is a technique to compute the Fourier transform of a time series
efficiently; this was invented by J. W. Cooley and J. W. Tukey. The calculation time increases
proportionally with (N/2)log2N (Fig. 13).

2.4.1. Removal of DC Component and Linear Trend
When the time series has a DC component or a linear trend, the Fourier spectrum cannot be

estimated correctly because of the assumption of periodicity. Therefore, it is necessary to remove them
before the application of the FFT. It is usually sufficient to remove the straight line connecting the first and
last data; however, least square fitting is a recommended method.

Let the discrete time variable tn = nΔt, and the objective time series xn = x(tn). The misfit function S is
defined as

() (){ } ,
1

2

1

2 ∑∑
==

+−==
N

n
nn

N

n
n batxrS

where rn denotes the residual of the fitting; a, the linear trend; and b, the DC component. The minimum
value of this misfit function is given at

.0,0 =
∂
∂

=
∂
∂

b
S

a
S

Thus,

()

⎪
⎪
⎩

⎪⎪
⎨

⎧

=⋅+⋅Δ⎟
⎠

⎞
⎜
⎝

⎛

=⋅⎟
⎠

⎞
⎜
⎝

⎛
+⋅Δ⎟

⎠

⎞
⎜
⎝

⎛

∑∑

∑∑∑

==

===

.

,

11

111

2

N

n
n

N

n

N

n
n

N

n

N

n

xbNatn

nxbnatn
 (8)

where the formulas

,
2

)1(
1

+
=∑

=

NNn
N

n
 and ,

6
)12)(1(

1

2 ++
=∑

=

NNNn
N

n

can make the calculation easier.
The coefficients of these linear simultaneous equations a and b can be easily obtained.

2.4.2. Tapering or Windowing
After removing the DC offset and linear trend, the processed time series begins with one value

and ends with another. This causes an unexpected jump or step due to the implicit assumption of periodicity
by FFT and results in a bad influence on the estimation of the Fourier transform. A method of preventing
such an artificial effect is tapering or windowing, which causes the time series to start with zero and end
with zero.

 13

The processing comprises a multiplication with the window function w(t) in the time domain. The
box car window is the simplest solution, but it also has the abovementioned problem.
The tapered window is given as follows:

() ()
⎪
⎪
⎩

⎪
⎪
⎨

⎧

<
≤<−−

−≤≤
<≤

=

.0
,

,1
,0

ttfor
ttttforttt

ttttfor
ttfortt

tw

win

wintaperwintaperwin

taperwintaper

tapertaper

 (9.1)

The sine tapered window is given as follows:

()

()

(){ }
⎪
⎪
⎩

⎪
⎪
⎨

⎧

<
≤<−−

−≤≤
<≤

=

.0
,2sin

,1
,02sin

ttfor
ttttforttt

ttttfor
ttfortt

tw

win

wintaperwintaperwin

taperwintaper

tapertaper

π

π

 (9.2)

The tapering time length ttaper is usually approximately one tenth of the time window length twin.
The following two windowing functions are also used popularly.
Hanning Window:

()

()

(){ } .

.0
,cos5.05.0

,1
,cos5.05.0

⎪
⎪
⎩

⎪
⎪
⎨

⎧

<
≤<−−−

−≤≤
<−

=

ttfor
ttttforttt

ttttfor
ttfortt

tw

win

wintaperwintaperwin

taperwintaper

tapertaper

π

π

 (9.3)

Hamming Window:

()

()

(){ } .

.0
,cos46.054.0

,1
,cos46.054.0

⎪
⎪
⎩

⎪
⎪
⎨

⎧

<
≤<−−−

−≤≤
<−

=

ttfor
ttttforttt

ttttfor
ttfortt

tw

win

wintaperwintaperwin

taperwintaper

tapertaper

π

π

 (9.4)

2.4.3. Zero padding
The FFT can be performed efficiency when the number of data N is 2n where n is an integer.

Otherwise, zeros must be padded up to the nearest 2n. Usually, the zeros are padded at the end of the time
series. They are not padded at the beginning of the time series, even though this is acceptable theoretically.
This is because padding them at the beginning apparently changes the arrival time and causes confusion.

 14

2.4.4. Algorithm
Ohsaki(1976) explained the Algorithm for performing the FFT as a disassembling process.

First, the coefficients of the Fourier expansion of the original time series are given by

()C
N

x ek m
i km N

m

N

= −

=
∑1 2

0

π / ,

Disassemble the time series xm into two time series in the following manner:
y x

z x
m Nm m

m m

=
=

⎧
⎨
⎩

= −
+

2

2 1

0 1 2
2

1
,
,

, , , , .L

The coefficients of the Fourier expansion of the disassembled time series are

Y
N

y e

Z
N

z e
k Nk

N
m

i km N

m

N

k
N

m
i km N

m

N

/ [/ (/)]
/

/ [/ (/)]
/

,

,
, , , , .

2 2 2

0

2 1

2 2 2

0

2 1

2

2
0 1 2

2
1

=

=

⎧

⎨
⎪⎪

⎩
⎪
⎪

= −

−

=

−

−

=

−

∑

∑

π

π
L (10.1)

The original definition becomes

()

() ()

()

C
N

x e

N
y e z e

N
y e e

N
z e

k

N
m

i km N

m

N

m
i k m N

m

N

m
i k m N

m

N

m
i k m N

m

N
i k N

m
i km N

=

= +
⎧
⎨
⎩

⎫
⎬
⎭

= +

−

=

−

=

−
− +

=

−

−

=

−
− −

∑

∑ ∑

∑

1

1

1 1

2

0

2 2

0

2 1
2 2 1

0

2 1

2 2

0

2 1
2 2

π

π π

π π π

/

()/
/

()/
/

()/
/

[/(/)] /(/()2

0

2 1

2 2 21
2

1
2

)
/

/ [/(/)] / ,

m

N

k
N i k N

k
NY e Z

=

−

−

∑

= + π

 (10.2)

for k = 0, 1, 2,...N/2 – 1.
Replace k in Eq. (10.1) with k + N/2; then

Y
N

y e
N

y e

N
y e Y

Z
N

z e

k N
N

m
i k N m N

m

N

m
i km N m

m

N

m
i km N

m

N

k
N

k N
N

m
i k

+
− +

=

−
− +

=

−

−

=

−

+
− +

= =

= =

=

∑ ∑

∑

/
/ [(/) / (/)]

/
[/ (/)]

/

[/ (/)]
/

/

/
/ [(

,

2
2 2 2 2

0

2 1
2 2 2

0

2 1

2 2

0

2 1
2

2
2 2

2 2

2

2

π π π

π

π N m N

m

N

m
i km N m

m

N

m
i km N

m

N

k
N

N
z e

N
z e Z

for k N

/) / (/)]
/

[/ (/)]
/

[/ (/)]
/

/ ,

, , , , .

2 2

0

2 1
2 2 2

0

2 1

2 2

0

2 1
2

2

2

0 1 2
2

1

=

−
− +

=

−

−

=

−

∑ ∑

∑

=

= =

⎧

⎨

⎪
⎪
⎪
⎪⎪

⎩

⎪
⎪
⎪
⎪
⎪

= −

π π

π

L

Eq. (10.2) gives

 15

C Y e Z

Y e e Z

Y e Z

k N k N k N

k N k N

k k

N N i k N N N

N i k N i N

N i k N N

+ + +

+ +

= +

= +

= −

− +

− −

−

/ / /

/ /

/ [(/) / (/)] /

/ [/ (/)] /

/ [/ (/)] / .

2 2 2

2 2

1
2

1
2

1
2

1
2

1
2

1
2

2 2 2 2

2 2 2

2 2 2

π

π π

π

This last change is due to Euler’s formula. Therefore,

2
2

0 1 2
2

1
2 2 2

2 2 2
2

C Y e Z
C Y e Z

k N
k

k N

N
k

N i k N
k

N

N
k

N i k N
k

N

= +

= −

⎧
⎨
⎪

⎩⎪
= −

−

−
+

/ [/(/)] /

/ [/(/)] /

,
.

, , , ,
/

π

π L (10.3)

This process clearly shows that the coefficients of the Fourier expansion of the original time series xm can
be easily given by the coefficients of the Fourier expansion of the two time series ym and zm obtained by
disassembling.

By applying the same process repetitively, N time series, each with only one sample, are
obtained. The coefficient of the Fourier expansion of the time series having only one sample is the sample
itself, as shown by

.
1
1

0

0

0

)1/2(1
0 xexC

m

kmi
m == ∑

=

−>< π
 (10.4)

Thus, the coefficients of the Fourier expansion of the original time series xm can be obtained by using Eq.
(10.3) repetitively. Let us check the process by using an example of a time series of 8 samples.

Example
Consider a time series of 8 samples, as shown in Table 1.

The first disassembling gives two series of 4 samples, as shown in Table 2. The second disassembling
gives four time series of 2 samples, as shown in Table 3. The third disassembling gives eight series that has
only one sample, as shown in Table 4.

Table 1 (After Ohsaki(1976))
m 0 1 2 3 4 5 6 7
xm 5 32 38 –33 –19 –10 1 –8

Table 2 (After Ohsaki(1976))
m 0 1 2 3
ym 5 38 –19 1
zm 32 –33 –10 –8

Table 4 (After Ohsaki(1976))
m 0

ym”’ 5
Zm”’ –19
ym”” 38
zm”” 1
ym”’” 32
Zm”’” –10
ym””” –33
Zm”’”” –8

Table 3 (After Ohsaki(1976))
m 0 1

ym’ 5 –19
Zm’ 38 1
ym’’ 32 –10
zm’’ –33 –8

 16

The coefficients of the Fourier expansion of these 8 series of only one sample are given in Table 5. These
are the same series as shown in Table 4.
By using relations such that

e
e i
e i
e i

i

i

i

i

−

−

−

−

=
= −
= −
= − −

0

4

2

3 4

10
0 7071 0 7071

10
0 7071 0 7071

. ,
. . ,

. ,
. . ,

[/]

[/]

[/]

π

π

π

 the coefficients of the Fourier expansion of the four time series of two samples in Table 3 are given in
Table 6.

The coefficients of the Fourier expansion of the two time series of four samples in Table 2 are given in
Table 7.

Finally, the coefficients of the Fourier expansion of the original time series in Table 1 are given in Table 8.

For the time series having a large number of samples, disassembling process will take time. The

special feature, however, can shorten the disassembling process drastically. A comparison of Table 1 and
Table 4 is shown in Table 9. The order numbers m' (binary) in Table 4 are completely bit-reversed ones of
those in Table1. This provides an efficient strategy to obtain pivoted time series like those in Table 4.

Table 7 (After Ohsaki(1976))

k 0 1 2 3

yk 6.25 6.00 – 9.25i –13.25 6.00 + 9.25i

Zk –4.75 10.50 + 6.25i 15.75 10.50 – 6.25i

Table 8 (After Ohsaki(1976))

k 0 1 2 3 4 5 6 7

Ck 0.75 8.922 –
6.128i

6.625 –
7.875i

–2.922 +
3.122i

5.5 –2.922 –
3.122i

–6.625 +
 7.875i

8.922 +
6.128i

Table 6 (After Ohsaki(1976))
k 0 1

Yk’ -7.0 12.0
Zk’ 19.5 18.5
Yk” 11.0 21.0
Zk” -20.0 -12.5

Table 5. (After Ohsaki(1976))
k 0

yk”’ 5
Zk”’ -19
yk”” 38
zk”” 1
yk”’” 32
Zk”’” -10
yk””” -33
Zk”’”” -8

 17

Express the index m of xm in binary, and then reverse their bit order to obtain the pivoted index

m’. The pivoted time series Xm is given by Xm = xm’ . Begin the process to obtain the coefficients of a
Fourier expansion by using Eq. (10.3).

Table 9 (After Ohsaki(1976))

Table 1 Table 4

xm m m (binary) m’ (binary) m’ (Xm) m

5 0 000 000 0 5 0

32 1 001 100 4 –19 1

38 2 010 010 2 38 2

–33 3 011 110 6 1 3

–19 4 100 001 1 32 4

–10 5 101 101 5 –10 5

1 6 110 011 3 -33 6

-8 7 111 111 7 -8 7

 18

2.4.5. Time Window and Periodicity
As mentioned above, the FFT can be applied only to a time series within a limited range of time.

This time window of finite length can affect the estimation of the Fourier spectra.
Consider the following time window defined in [–T/2, T/2]:

()
⎩
⎨
⎧

>
≤

=
,2/,0
,2/,1

Tt
Tt

tB

the Fourier transform of which is given by

() () ()
/ 2/ 2

/ 2/ 2

1 2 sin
2

TT
i t i t i t

TT

TB B t e dt B t e dt e
i

ω ω ω ωω
ω ω

∞
− − −

−−∞ −

⎡ ⎤ ⎛ ⎞= = = = ⎜ ⎟⎢ ⎥−⎣ ⎦ ⎝ ⎠∫ ∫ ,

as shown in Fig. 14. Note that this depends on the window length T.
Applying the time window B(t) to the original function x0(t) implies the product of these two time
functions:

() () ().0 txtBtx ⋅=

The mathematically defined Fourier transform of the time windowed function x(t) is given by

() () () (),*
2

sin2* 00 ωω
ω

ωωω xTxBx ⎟
⎠
⎞

⎜
⎝
⎛==

() () () (),*
2

sin2* 00 ωω
ω

ωωω xTxBx ⎟
⎠
⎞

⎜
⎝
⎛==

where ω is the angular frequency and * denotes convolution. Since B(ω) depends on T, x(ω)also depends
on T. The length of the time window can affect the result of the estimation of the Fourier transform for a
time windowed function.

As mentioned previously, the coefficients of the Fourier expansion for a time series of a finite
length Ck implicitly satisfy the assumption of periodicity outside the time window, whereas the discrete
Fourier transform TCk assumes zeros outside of the time window.

For a sinusoid that is time windowed by the same time length as its period multiplied by an
integer, the coefficients of the Fourier expansion Ck is not affected by the length of the time window,
whereas the discrete Fourier transform TCk changes its value depending on T.
In contrast, for an impulse function, the coefficients of the Fourier expansion

Ck = 1/NΔt = 1/T,
changes, whereas

TCk = 1,
does not depend on T.

Since the effect of the time window length is an artifact, it is better to select a measure that is
not influenced by the window length in order to estimate the Fourier spectra of a given time series. The
examples explained above suggest that the coefficients of the Fourier expansion Ck is a good measure for
time series assumed to be a digitized part of a periodic function, because the feature of the original time

 19

function coincides with the assumption accompanying Ck. Further, it is suggested that the discrete Fourier
transform TCk is a better measure of the estimation of the Fourier spectra of an impulse function.

However, actual seismic signals, are transient and neither periodic nor impulsive. Thus, there is
an ambiguity with respect to the selection of a measure for estimating the frequency components of time
series, that is, a time windowed and discretized function. It is important to recognize these characteristics of
a discrete Fourier transform and the coefficients of Fourier expansion and to select an appropriate one for
each problem.

Fig. 14 Boxcar function and its amplitude spectra.

2.4.6 Spectral Smoothing
 The Fourier spectra of real seismograms deviate considerably. Since the result of the FFT analysis

are obtained for constantly sampled frequencies, the deviation is emphasized at higher frequency ranges.
If plotted on a full logarithmic chart, the high frequency portion is almost completely painted black. This
makes it difficult to observe a general tendency. Moreover, they occasionally take very small values. This
causes instability of the spectral ratio, simply when required. Therefore, the spectral smoothing techniques
are applied widely.

 In order to plot them on a linear logarithmic chart, a simple moving average over the frequency
works well typically.

 () (),∑
+<

−>

=
uij

uij
ji fyfY

where u denotes half bandwidth.
The following are examples for the weighted moving average that are applied repeatedly until the

processed spectra become sufficiently smooth.

 Y(fi) = 0.25y(fi–1) + 0.5y(fi) + 0.25y(fi+1),
Y(fi) = 0.23y(fi–1) + 0.54y(fi) + 0.23y(fi+1).

O

B(t)

T/2 -–T/

1

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

-60.00 -40.00 -20.00 0.00 20.00 40.00 60.00

.
2

sin2
⎟
⎠
⎞

⎜
⎝
⎛ Tω

ω
T=1.0

ω

 20

The weight coefficients can be given in the form of specially selected functions w(f). For example,

 () ()222sin ufufufw ππ⋅= : Bartlett window

 () ()4

22sin75.0 ufufufw ππ⋅= : Parzen window

() (){ } ()[]4
1010 loglogsin cc ffbffbafw = : Logarithmic window

There is a trade-off relation between the capacity of smoothing techniques to a stabilizing spectra and the
resolution of the processed spectra. Thin peaks may be smoothed out and diminished by efficient
smoothing. Insufficient smoothing cannot be used to show the general features of spectra. The objectives of
smoothing are not achieved in the both extreme cases. The only way to find an appropriate smoothing
technique is the trial-and-error approach.

 21

2.5. Practice for FFT

The topics in this chapter can be understood more easily if the distributed programs are used for

practice. In the following pages, the coefficients of the Fourier expansion obtained by FFT, amplitude
spectra, and phase spectra are calculated for various test signals. Ghost View and Ghost Script can draw
G.PS on the computer.

The following six programs have been prepared for practice:

TESTSIG.EXE prepares test signals such as cosine or sine function, impulse, etc.
PTIME.EXE plots the signal.
FFT.EXE calculates Fourier coefficients by using FFT.
PCFFT.EXE plots raw coefficients of FFT.
PSPEC.EXE plots discrete Fourier transforms (Fourier spectra),
IFFT.EXE calculate the inverse Fourier transform from data given in the frequency

domain.
(1) Assume that UT is a filename for the time series u(t) and UF its FFT coefficients U(f). First make the

file UT by using TESTSIG. The output from TESTSIG is UT.
(2) Draw UT in the file G.PS by using PTIME. The input file name for PTIME is UT and the output file

name is G.PS.
(3) Calculate the coefficients of the Fourier expansion for the time series stored in the file UT by using FFT.

The input file is UT for FFT and the output file is UF.
(4) Draw the coefficients of the Fourier expansion stored in the file UF by using PCFFT. The input file is

UF for PCFFT and the output is G.PS.
(5) Draw the Fourier spectra for the data stored in the file UF by using PSPEC. The input file is UF for

PSPEC and the output is G.PS.

The data in the file UT consist of number of data N and the sampling interval Δt or the frequency interval
Δf in the header, followed by data in “one-data-a-line” format. The programs are prepared separately so that
you could use each of them as a basic tool of data processing.

 22

2.5.1. Cosine and Sine Wave

Exercise: Cosine wave

Compute the FFT of a cosine wave with Δt = 1.0 s, N = 32, period = 16.0 s, amplitude = 10.0,
phase = 0.0, and damping = 0.0.
Draw the time series, the FFT coefficients, and Fourier spectra.

Note that the original cosine wave is decomposed into two cosine waves of a half amplitude
having positive and negative frequencies as

()u t e e fti ft i ft= + =−50 50 10 0 22 2. . . cos .π π π (11.1)

Note that the calculated FFT coefficients have these values, and the Fourier spectra has the
value of 5.0 × 32.0 = 160.0

Repeat the same procedure but with N = 64 and check the amplitude of the Fourier spectra and
FFT coefficients.

Fig. 15 Time series (top), coefficients of FFT (left bottom), and discrete Fourier spectra (right
bottom) of the given time series, i.e., a cosine function.

 23

Exercise: Sine wave
Calculate the FFT of a sine wave by making phase = 90.0 (that is, the progress of a phase in

deg.) with Δt = 1.0 s, N = 32, period = 16.0 s, amplitude = 10.0, and damping = 0.0.
Draw the time series, FFT coefficients, and Fourier spectra.

Note that the phase φ for the positive and negative frequencies have opposite signs, i. e.,

()
.2sin0.10)2cos(0.10

0.50.50.50.5)2()2(22

ftft
eeeeeetu ftiftiftiiftii

πφπ

φπφππφπφ

−=+=
+=+= +−+−−

 (11.2)

The last change is due to φ = 90.0 degrees. A complex conjugate relation of the FFT coefficients for the
negative frequencies with those for the corresponding positive ones are required to ensure that the original
time series is real.

Note again that the calculated FFT coefficients have such values, the Fourier spectra has the
value of 5.0 × 32.0 = 160.0, and the phase is 90.0 degrees.

Fig. 16 Time series (top), coefficients of FFT (left bottom), discrete Fourier spectra (right
bottom) of the given time series, i. e., a sine function.

 24

Exercise: Cosine wave at the Nyquist frequency

Calculate the FFT of a cosine wave by using phase = 0.0 with Δt = 1.0 s, N = 32, amplitude =
10.0, and damping = 0.0, and with the period corresponding to the Nyquist frequency fNyquist = 1/2Δt = 0.5
Hz.
Draw the time series, FFT coefficients, and Fourier spectra.

Note that the coefficient for fNyquist = 10.0, i. e., it does not share the amplitude with the
coefficient for –fNyquist.

Fig. 17 Time series (top), coefficients of FFT (left bottom), discrete Fourier spectra (right
bottom) of the given time series, i. e., a cosine function at the Nyquist frequency.

 25

Exercise: Summation
Calculate the FFT of two cosine waves with (T = 16.0 s, A = 10.0) and (T = 2.0 s, A = 10). Other

parameters are common, i. e., Δt = 1.0 s, N = 32, amplitude = 10, phase = 0, and damping = 0.0.
Draw the time series, FFT coefficients, and Fourier spectra for each cosine wave and for the summed one.
Additivity is one of the basic characteristics of Fourier transforms.

() () () ()[]u t v t U f V f e dfift+ = + −

−∞

∞

∫ 2π . (11.3)

Fig. 18 Time series (top), coefficients of FFT (left bottom), discrete Fourier spectra (right
bottom) of the given time series, i .e., two superposed cosine functions with different
frequencies.

 26

2.5.2. Constant
Exercise: Constant

Calculate the FFT for a constant with the constant = 10.0 and Δt = 1.0 s, N = 32.
Draw the time series, FFT coefficients, and Fourier spectra.
Note that the amplitude of the Fourier spectra at zero frequency is

 TCk = NΔtCk = 32 × 1.0 × 10.0 = 320.0,
whereas the FFT coefficient at zero frequency is Ck = 10.0.
The FFT coefficient and Fourier spectra at the zero frequency correspond to the DC component of the time
series.

Repeat the same procedure but with N = 64 and check the amplitude of the Fourier spectra and
FFT coefficients.

Fig. 19 Time series (top), the coefficients of FFT (left bottom), the discrete Fourier spectra (right
bottom) of the given time series, i. e., a constant function.

 27

2.5.3. Impulse
Exercise: Calculate the FFT for an impulse at t = 0.

Calculate the FFT for an impulse of amplitude = 10.0 with Δt = 1.0 s, N = 32, amplitude = 10.0,
and location = 0.0.
Draw the time series, FFT coefficients, and Fourier spectra.
For a “continuous-infinite” case, the Fourier transform of a Dirac delta function

() ()δ δt
t
t

t dt=
+ ∞ =

≠
⎧
⎨
⎩

=
−∞

∞

∫
0

0 0
1, (11.4)

is known to be unity.

()δ πt e dti ft−

−∞

∞

∫ =2 1 .

Therefore, the mathematical Fourier transform of an impulse, i. e., the delta function at t = 0 is a constant
and has zero phase.

Note that the amplitude of the Fourier spectra, which is constant for all frequencies, coincides
with that of the impulse = 10.0, whereas the FFT coefficients have the value of Aimpulse/N = 10.0/32 =
0.3125.
Repeat the same procedure but with N = 64 and check the amplitude of the Fourier spectra and FFT
coefficients.

Fig. 20 Time series (top), coefficients of FFT (left bottom), discrete Fourier spectra (right
bottom) of the given time series, i. e., an impulse at t = 0.0.

 28

2.5.4. Time Shift
Exercise: Compute FFT of an impulse at t = 2.0, 4.0, 6.0, ...

Calculate the FFT of an impulse of amplitude = 10.0 with Δt = 1.0 s, N = 32, amplitude = 10.0,
and location = 2.0, 4.0, 6.0…
Draw the time series, FFT coefficients, and Fourier spectra.

The Fourier transform of a time-shifted signal u(t –τ) is known to be as follows:

() ()u t e dt e U fi ft i f− =−

−∞

∞
−∫ τ π π τ2 2 ,

 (11.5)

which introduces 2πfτ phase shifts to U(f).
The Fourier transform of a time-shifted signal is u(t – τ) is known to be as follows:

() ()fUedtetu fifti τππτ 22 −
∞

∞−

− =−∫ , (11.6)

which introduces 2πfτ phase shifts to U(f).
Note that there is no difference with respect to the amplitude Fourier spectra and FFT

coefficients among the shifted impulses, and that the slope of the phase spectra increases with the time shift
given to the impulse in the time domain.

Fig. 21.1 Time series (top), coefficients of FFT (left bottom), discrete Fourier spectra (right
bottom) of the given time series, i. e., an impulse at t = 2.0.

 29

 Fig. 21.2 Time series (top), Coefficients of FFT (left bottom), discrete Fourier spectra (right
bottom) of the given time series, i. e., an impulse at t = 4.0.

Fig. 21.3 Time series (top), Coefficients of FFT (left bottom), discrete Fourier spectra (right
bottom) of the given time series, i. e., an impulse at t = 6.0.

 30

2.5.5. Aliasing
Exercise: Simulate aliasing effect.

Calculate the cosine wave having a period of 0.8 s (1.25 Hz) with Δt = 1.0 s, N = 32, amplitude
= 10.0, damping = 0.0, and phase = 0.0.
The frequency of 1.25 Hz is higher than the Nyquist frequency 0.5 Hz. The time series panel below does
not appear to be a 1.25-Hz wave. A false peak due to aliasing is observed in the spectrum panels.
Aliasing occurs due to the f f f Nyquist= ± ±()0 2 ambiguity of the frequency. In this example, the peak at

1.25 Hz is folded into 1.25 – 2*0.5 Hz = 0.25 Hz.

Fig. 22 Time series (top), coefficients of FFT (left bottom), discrete Fourier spectra (right
bottom) of the given time series, i. e., a cosine function at the frequency higher than the
Nyquist frequency.

 31

2.5.6. Assumption of Periodicity
Exercise:

Calculate a cosine wave period = 7.0 s (0.14 Hz) Δt = 1.0 s, N = 32, amplitude = 10.0, damping
= 0.0, phase = 0.0, and consider why a line spectrum at f = 0.14 Hz could not be obtained.

Fig. 23 Time series (top), coefficients of FFT (left bottom), discrete Fourier spectra (right
bottom) of the given time series, i. e., a cosine function at the frequency mentioned above.

 32

3. Filtering Techniques
Recorded signals are often contaminated by AC noise or high-frequency ground noise from

nearby stations. Therefore, various filtering techniques are essential for digital data processing.

3.1. Weighted Moving Average
The simplest method to suppress high-frequency components included in a given time series xm

= x(tm) may be moving averages such as

.
3

11 +− ++
= mmm

m
xxx

y

This equation shows a three-point moving average. The output ym is defined by the one-step previous term
of the input xm–1, the present term xm, and the future term xm+1.
The five-point moving average is given by

.
5

2112 ++−− ++++
= mmmmm

m
xxxxx

y

The performance of the moving average can be estimated by applying it to an impulse of the

unit amplitude located at t = 0.0, because the moving average belongs to linear systems. Fig. 24 shows the
Fourier spectra of the output corresponding to the impulse input for the two moving averages mentioned
above. As shown here, the moving average can certainly be used to eliminate high-frequency components.
However, it is difficult to control the performance and value of parameters such as the cut-off frequency,
the slope of the cut-off, etc.

Fig. 24 Fourier spectra of the output from the three-point moving average corresponding to the
impulse input (left) and that from the five-point moving average (right). These examples are

calculated with Δt = 1.0 s and N = 64.

 33

Fig. 25 Fourier spectra of the output from the weighted moving average corresponding to the
impulse input. Left: for the weight coefficients (0.25, 0.5, and 0.25). Right: for the weight

coefficients (–0.25, 0.5, –0.25). These examples are calculated with Δt = 1.0 s and N = 64

The weighted moving average is a similar procedure but with different weight coefficients. This
gives a better performance than that given by the simple moving average.
For example, the three-point average

,25.05.025.0 11 +− ++= mmmm xxxy

can eliminate high-frequency components, as shown in Fig. 25 (left). Note that this maintains the phase lag
at zero for all frequencies.
The other example,

,25.05.025.0 11 +− −+−= mmmm xxxy

can eliminate low-frequency components as shown in Fig. 25 (right). Note that the phase lag is maintained
at zero for all frequencies.
The differentiation of a continuous function x(t),

() (),tx
dt
dty =

can be approximated by the finite difference,

.11
1

1
mm

mm
m x

t
x

tt
xx

y ⎟
⎠
⎞

⎜
⎝
⎛

Δ
+⎟

⎠
⎞

⎜
⎝
⎛

Δ
−=

Δ
−

= −
−

This also belongs to the weighted moving average.

These examples show that the weighted moving average can have a good performance. In other
words, we can arrange its characteristics by selecting the weight coefficients. By using the idea of the
impulse response, we can check the characteristics of its performance. However, we must design the
weighted moving average by selecting the weight coefficients in such a way that the characteristics of the
performance are obtained as desired.

 34

3.2. Convolution—Filtering in the Time Domain

In order to understand the methods that are used to design weight coefficients, in this chapter,

the procedure for “convolution” in the time domain is examined.

3.2.1. Convolution
Suppose that the Fourier transform of the time dependent functions f(t) and g(t) are F(ω) and

G(ω), respectively. The inverse Fourier transform of the product of F(ω) with G(ω) is given by

() () () ()

() ()

() ()

1
2

1
2

1
2

π
ω ω ω

π
ω ω τ τ

τ τ
π

ω ω

τ τ τ

ω ω ωτ

ω τ

F G e d F e d g e d

g d F e d

g f t d

i t i t i

i t

−∞

∞

−∞

∞
−

−∞

∞

−∞

∞
−

−∞

∞

−∞

∞

∫ ∫ ∫

∫ ∫

∫

=
⎛

⎝
⎜

⎞

⎠
⎟

=

= −

()

.

This integration is referred to as the convolution of two functions f(t) and g(t) in the range (,)−∞∞.
Convolution is usually expressed by an asterisk between two functions.

() () () () () ()f t g t f g t d f t g d* = − = −
−∞

∞

−∞

∞

∫ ∫τ τ τ τ τ τ

If f(t) has a non-zero value only in the range t1 < t < t2,

() () () () () ()∫∫
−

−

−=−=
1

2

2

1

*
tt

tt

t

t

dgtfdtgftgtf ττττττ

Mathematically, convolution in the time domain corresponds to the product of the Fourier

transforms in the frequency domain. The time domain operation may have advantages when one of the two
time series has a short duration. In such a case, the short time series f(t) is considered as a filter for
modifying the input signal g(t). The effect of filtering must be controlled by the spectrum of the filter f(t).
Note that the amplitude spectrum of the output is the product of the amplitude spectra of the two original
signals and the phase spectrum of the output is the sum of their phase spectra.

3.2.2. Filtering in the Time Domain by Convolution
Let us examine the calculation procedures in a computer for the convolution of two time series.

Assume that f(t) has a short duration with non-zero values only within [0, tM].

() () () () () .* ∫
−

−==
t

tt M

dgtftgtfth τττ

In a discretized form,

 35

() () ()

() () () () () ().011 nMnMMnM

n

Mnm
mmnn

tgtftgtftgtf

tgtfth

τττ

τ

Δ++Δ+Δ=

Δ=

+−−−

−=
−∑

L

This means that the filter time series is reversed and used as the weight coefficients for the weighted
moving average, as explained in the previous chapter.

Example: Time domain operation
Yilmaz(1994) show a graphical explabnation of the convolution as follows. The convolution of a filter f(t)
= (1.0, –0.5) with a signal g(t) = (1.0, 0.0, 0.5). Assume that the sampling interval is equal to 1.0 s. Further,
note that M = 1.
Reversing the filter f(t): (1, –0.5) changes it into (–0.5, 1).

Output h(t)

Add the product f(tn–m)g(tm) for m = 0 to M. The sum gives the value h(tn).
Shift the moving array one sample to the right and repeat the procedure for adding products. Try to
examine whether the same result is given if f(t) and g(t) exchange their roles. (After Yilmaz (1994)).

 36

3.3. Feature of Filter Wavelets
When a signal is composed of only a few cycles in the time domain, it is called a “wavelet.” A

wavelet is usually considered a transient signal. Undoubtedly, convolution with a wavelet can be
considered equivalent to filtering. The characteristics of this filter are directly defined by the frequency
spectrum of the filter wavelet. Every weighted moving average belongs to this category. The discussion in
the previous chapter gave some typical examples.

Again, it must be noted that the amplitude spectrum of the output is the product of the amplitude
spectra of the filter and the input signal, while the phase spectrum of the output is the sum of their phase
spectra.

3.3.1. Phase
The time series are composed of limited and discrete numbers of sinusoidal functions with a

constant interval of frequency Δf, that is, the reciprocal of the duration T. The wavelet that shows a
symmetry around t = 0 and has a positive peak amplitude is the zero phase wavelet. Fig. 26 shows the
decomposition of a wavelet into various sinusoids. Note that all the component sinusoids have zero time

shifts. The phase lag is defined by 2πftshift, where tshift is the time shift. If the time shift is zero for all the
frequencies, the wavelet is called “zero phase wavelet.” If the time shift is a constant for all frequency
components, it is equivalent to a linear phase shift, an example of which is given in Fig. 27. The tangent of

Fig.27 Constant time delay -0.2 sec given to the
sinusoidal components same as those in Fig. 26
results in a wavelet of the same shape as that in
Fig.26 (denoted by an asterisk), except that it is
shifted in time by -0.2 sec. Produced newly based
on the concept of Yilmaz(1994).

Fig. 26 Decomposition of a band limited symmetric
(zero-phase) wavelet (denoted by an asterisk) into a
discrete number of sinusoids with no phase lag, but
with the same peak amplitude. Produced newly
based on the concept of Yilmaz(1994).

 37

the line for the phase spectra is proportional to the time shift for the linear phase shift, as shown in Fig. 28.
Note that the linear phase shift keeps the waveform constant.

In contrast to the linear phase shift, a

constant phase shift changes the waveform. The
wavelet shown in Fig. 29 has the same amplitude
spectrum as that in Fig. 26. The difference is their
phase spectrum. Note that zero crosses are aligned
in Fig. 29, whereas the peaks are aligned in Fig. 26.
Fig. 30 shows the way in which the waveform is
changed by a constant phase shift. Note that a
constant 180-degree phase shift changes the sign of
the wavelet. Note the relation of the panels (a) and
(c) and panels (b) and (d). The constant phase shift
of 180 degree implies a reversal of sign.

The linear and constant phase shifts are

two basic examples of phase change. The
combined operation is defined as a + b·frequency,
where a is the constant phase shift and b is the
tangent of the linear phase shift, gives a time shift
with a waveform change. The result is a
combination of both effects, as shown in Fig. 31.

Note that the shape of the wavelet can
be changed by modifying the phase spectrum even
while keeping the amplitude spectrum constant.
Several examples for this combination are shown

Fig. 29 Constant 90-degree phase shift given to the
sinusoidal components same as those in Fig. 26
results in asymmetric wavelet but the zero crossing
at t = 0 (indicated by an asterisk). Produced newly
based on the concept of Yilmaz(1994).

Fig.28 Wavelets in the time domain are shifted by th elinear phase shift starting with a
zero-phase wavelet (a). The slope of the linear phase function is related to the time shift.
Produced newly based on the concept of Yilmaz(1994).

 38

in Figs. 32 (a), (b), and (c). An arbitrary change in
the phase spectra, however, can break the wavelet.
 The tangent of the phase shift is called
“delay.”

 ω
φ

d
ddelay −=

The linear phase shift is an example of constant
delay for all frequencies. In general, “delay” can be
dependent on the frequency.

Fig. 30 Series of waveform change caused by a constant phase shift starting with the
zero-phase wavelet (a). A 90-degree phase shift converts the zero-phase wavelet to an
antisymmetric wavelet (b),while a 180-degree phase shift reverses its polarity (c). A
270-degree phase shift reverses the polarity, while making the wavelet antisymmetric (d).
Finally, a 360-degree phase shift does not influence the wavelet (e). Produced newly based on
the concept of Yilmaz(1994).

Fig. 31 Time-shifted antisymmetric wavelet (denoted
by an asterisk) caused by a linear phase shift
combined with a constant phase shift for the
component sinusoids same as those in Fig.26.
Produced newly based on the concept of
Yilmaz(1994).

 39

Fig. 32 a non-zero-phase spectrum of any form in (b) and (c) modifies the shape of a zero-phase
wavelet (a). Produced newly based on the concept of Yilmaz(1994).

Fig. 33 The summation of zero-phase sinusoids with an identical peak amplitude shows that the
incresing frequency bandwidth results in the synthesized zero-phase wavelet increasingly
compressed. Produced newly based on the concept of Yilmaz(1994).

 40

3.3.2. Frequency Components
In the previous chapter, wavelets with varying phase spectra and fixed amplitude spectra are

observed. By changing the amplitude spectrum or selecting the frequency contents, the wavelet changes its
shape even when its phase spectrum is maintained constant. Here, zero-phase wavelets are used for
simplicity.
Fig. 33 shows a clear example of the changes in zero-phase wavelets by the selection of frequency contents.
As more frequency components are summed, the synthesized zero-phase wavelet is increasingly
compressed. If they are summed till the Nyquist frequency, a spike is formed (Fig. 34).

The broader the bandwidth, the more compressed the wavelet; in other words, a shorter wavelet

is obtained. This property also follows from the fundamental concept that the effective time span of a time
series is inversely proportional to its effective spectral bandwidth (Fig. 35).

The shape of the frequency spectrum also influences the wavelet shape. Fig. 36 shows a typical
case. A short wavelet requires a tapered amplitude spectrum, although the width of the passband for all
cases is identical.

Filtering in the frequency domain can be
performed by the inverse Fourier transform of the
product of the Fourier transforms of the filter and input
time series. This is equivalent to the filtering in the time
domain that is performed by the weighted moving
average of the input time series, the weight coefficients
of which are the reversed filter time series. This, in
general, can be written as

,221101122 LL ++++++= +−+−−− iiiiii xaxaxaxaxay

where (LL ,,,,,, 21012 aaaaa −−) is the filter time

series.
If we consider causality, i. e., the idea that the results
cannot proceed to the cause, we cannot use the terms of
the future xi+1, xi+2,… to obtain the present output yi.
Thus,

.01122 iiii xaxaxay +++= −−L

Fig. 34 The output wavelet becomes a spike when
the summation includes sinusoids at all frequencies
up to the Nyquist frequency. Small dots denote the
sampling points at 64Hz. Produced newly based on
the concept of Yilmaz(1994).

 41

Fig. 35 Incresing bandwidth in the frequency domain (bottom panels) corresponds to more
compressed wavelet in the time domain(top panels). Produced newly based on the concept of
Yilmaz(1994).

Fig. 36 More gentle slope in the frequency domain(bottom panels) corresponds to smoother
wavelet in the time domain (top panels). (a) The steep slopes of the passband cause ripples in
the wavelet and the actual amplitude spectrum. (b) A moderate and (c) gentle slope help
eliminate the ripples. Produced newly based on the concept of Yilmaz(1994).

 42

3.3.3. Causality or Non-Causal Filtering
 A phenomenon that is the result of another phenomenon (the cause) never occurs before the cause
itself does. This is called a “causal relation” or “causality” and it is strictly maintained in the real world.
However, in a computer, this relation can be broken. Such a breakage often affects the seismological
analyses. The following shows us examples.

Exercise: Filtering in the time domain and in the frequency domain: an example
The topics in this chapter can be learned much better by practicing with the distributed software.

Here, the following programs are prepared for practice.
FFILT.EXE creates a set of coefficients of Fourier expansion from given bandpass

characteristics.
FPRDCT.EXE calculates the product of two given sets of the coefficients of Fourier

expansion, i. e., filtering in the frequency domain.
FWVLET.EXE creates a filter wavelet from the given time series that may be obtained by the

inverse Fourier transform of a given set of the coefficients of Fourier
expansion.

FCONV.EXE calculates convolution, i. e., filtering in the time domain for a given filter
wavelet and input signal.

The programs TESTSIG.EXE, PTIME.EXE, FFT.EXE, PCFFT.EXE, PSPEC.EXE, and IFFT.EXE are also
used.

(0) Prepare the test input signal UT1, that is a unit impulse located at t = 8.0 s of the time series with N =

64, Δt = 1.0, and its Fourier transform UF1 by using TESTSIG.EXE and FFT.EXE (Fig. 36a).

Fig. 36a Test input signal for the exercise UT1 and its spectra. Time dependence (upper panel),
the coefficients of Fourier expansion (lower left panel), and Fourier spectra (lower right panel).

The impulse is located at t = 8.0 s of the time series with N = 64, Δt = 1.0. The linear phase shift
due to the shifted location of the impulse is shown.

 43

Filtering in the frequency domain:
(1) Design a band pass filter in the frequency domain by using FFILT. The number of data for the

corresponding time series N, its sampling interval Δt, and four frequencies f1, f2, f3, and f4 must be given
when we run FFILT. Let N = 64, Δt = 1.0, f1 = 0.1 Hz, f2 = 0.2 Hz, f3 = 0.3 Hz, and f4 = 0.4 Hz and the
output file name be UF2. Draw the coefficients of the Fourier expansion by using PCFFT and Fourier
spectra by using PSPEC (Fig. 37.1). The figure is stored in the PostScript file G.PS.
The following steps are schematically shown in Fig. 37.2.

Fig. 37.1 Filter given in the frequency domain UF2 (lower panels) and the corresponding time
series UT1 (upper panel). Since t is assumed that phase lag is zero at all frequencies, the time
series is symmetrical till the point t = 0.0 s. Remember the implicitly assumed periodicity. The
next step of t = 63.0 s is t = 0.0 s.

Fig. 37.2 Procedure for designing a filter in the frequency domain.

 44

(2) Apply the filter in the frequency domain by using FPRDCT. Use the stored data in UF2 for the filter in
the frequency domain. Give the output the file name UF3.
(3) Apply an inverse Fourier transform by using IFFT and store the results in the output file UT3. Draw this
time series and its Fourier components by using PTIME, PCFFT, and PSPEC (Fig. 38).
(4) Obtain the time series corresponding to the band pass filter in the frequency domain designed by the
procedure in (1) by using IFFT. Give the input file the name UF2 and the output file the name UT2. Draw
this time series by using PTIME (Fig. 37.1). The figure is stored in the PostScript file G.PS.

 Remember that the input impulse is located at t = 8.0 and notice that there are signals in Fig. 38
before t = 8.0. This means that the causal relation is broken because the result (output) is occurring before
the cause (input) does. As shown in Fig. 37, the phase of the filter wavelet is assumed to be zero for all
frequencies. Since there has been breakage of causal relation, this assumption may not be a valid one. It
may be necessary to arrange the phase of the filter wavelet in order to maintain the causal relation.
However, this is difficult to achieve this in the design of the filter wavelet in the frequency domain.

Fig. 38 The spectra of filtered signal UF3, which is obtained by the product of the Fourier
transform of the filter shown in Fig. 37 and that of the input time series shown in Fig. 36
(lower panels). The upper panel shows the time series obtained by their inverse Fourier
transform, UT3.

 45

Filtering in the time domain:
(5) Extract the filter wavelet from the time series stored in the file UT2 by using FWVLET. Give the output
the file name FWV1. We have to select either a causal filter or a zero-phase filter. Here, we select a
zero-phase filter with 13 coefficients.

Fig. 39.1 Procedure for designing a filter in the time domain

Fig. 39.2 Output time series from the filtering in the time domain with the truncated filter
wavelet designed for zero phase filtering, UT4 (upper panel), and its spectra, UF4 (lower
panels). Note the stability of the output time series and the negligible phase change in the pass
band in comparison with Fig. 38. The change in the amplitude spectral shape is the effect of
the truncation of the wavelet.

 46

(6) Apply the filter in the time domain obtained in (5) by using FCONV. The input filter file name is FWV,
the file name of the input time series is UT1, and the output file name is UT4. Draw the time series stored
in UT4 by using PTIME and compare it with the figures for UT3 obtained in (3). Due to the truncation of
the filter time series, the time series stored in UT4 is slightly different from that in UT3. Check the
performance of the filtering by using FFT, PCFFT, and PSPEC with UT4 (Fig. 39.2).
(7) Extract the filter wavelet from the time series stored in the file UT2 by using FWVLET. Give the output
file the name FWV2. We must select either a causal filter or a zero-phase filter. In this case, we select a
causal filter with 6 coefficients.
(8) Apply the filter in the time domain obtained in (5) by using FCONV. The input filter file name is FWV,
the file name of the input time series is UT1, and the output file name is UT5. Draw the time series stored
in UT4 by using PTIME and compare it with the figure for UT3 obtained in (3). The output in this case is
clearly different from the results obtained in the time domain in (6) and from those in (3). Note that the
causality is satisfied in the time domain. Check the performance of the filtering by using FFT, PCFFT, and
PSPEC with UT5 (Fig.40).
(9) Repeat the procedures explained above after changing the number of weight coefficients for FWV and
compare them.

This example shows the problems with designing a filter wavelet with desirable characteristics both in the
time frequency domains. In general, however, the filtering in the frequency domain works well for
zero-phase filtering.
.

Fig. 40 Output time series from the filtering in the time domain with the truncated filter
wavelet designed for zero phase filtering UT5 (upper panel) and its spectra UF5 (lower
panels). Note that the causality with Fig.36 is maintained. The change in the amplitude and
phase spectral shape is the effect of the truncation of wavelet. The truncation of a former half
of the filtering wavelet results in the phase shift by filtering and reduction in the amplitude
spectra even in the pass band.

 47

3.4. Recursive Filter
In the previous chapter, we have checked the features of the filter wavelet that can be replaced

by using the weighted moving average. The general formula of this filter is given by the following equation
after taking causality into account.

.2211001122 LL −−−− ++=+++= iiiiiii xaxaxaxaxaxay

We have checked that the differentiation can be expressed by the weighted moving average that belongs to
this category, i. e.,

.11
1

1
mm

mm
m x

t
x

tt
xx

y ⎟
⎠
⎞

⎜
⎝
⎛

Δ
+⎟

⎠
⎞

⎜
⎝
⎛

Δ
−=

Δ
−

= −
−

Let us consider the integration given by

() () .
0∫=
t

dxty ττ

The discretization gives

.
0

∑
=

⋅Δ=
m

n
nm xty

This implies the relation,

.1 mmm xtyy ⋅Δ+= −

Note that the term in the output that corresponds to the single step after ym–1 is used to construct the output
for the current ym. The filter that has had such a recursive usage of the output in the past is called a
“recursive filter” (Fig. 40). The general formula for the recursive filter after taking the causality into
account is given by

).(2211221100 LL ++−++= −−−− iiiiii ybybxaxaxayb

Fig. 41 Block diagram for the filter that can be expressed by the weighted moving
average (upper) and the recursive filter (lower).

 48

Fig.42 Complex s-plain

3.4.1. Laplace Transform
The Fourier transform of a continuous function has been defined previously. The meaning of

Fourier transform is basically an expansion of the function on the basis of the sinusoidal function exp(iωt).
The sinusoidal function with an exponential decay or amplitude exp((σ+ iω)t) can also be used as the basis
for expansion. Such an integral transform is called Laplace Transform.

The Laplace transform and its inverse transform are defined by the following (here s = σ + iω).

() ()

() () .
2
1

,
0

∫

∫
+

−

∞
−

=

=

ωγ

ωγπ

i

i

st

st

dsesF
i

tf

dtetfsF

The Laplace transform F(s) is defined in the complex s-domain (Fig. 42).

3.4.2. Filter Operation in the s-domain
The instrument characteristics of seismometers, seismographs, and every electronic circuit can

be described by an appropriate transfer function. The analog transfer function may be given by using the
variable for the Laplace transform as follows:

()T s A s A s A s A s A
B s B s B s B s B

s iL
L

L
L

M
M

M
M

=
+ + + + +
+ + + + +

= +−
−

−
−

1
1

2
2

1 0

1
1

2
2

1 0

L

L
, .σ ω (12)

The stability of this analog filter is obtained simply when all the solutions of the equation,

B s B s B s B s BM
M

M
M+ + + + + =−

−
1

1
2

2
1 0 0L ,

sn has to satisfy the following condition for the stability of the system.
()Re sn = <σ 0 .

Otherwise, the circuit becomes a noise generator.

σ

iω

0

 49

Example: Simple Moving Coil Type Seismometer (Transfer function in the s-domain)
The equation of motion for a pendulum's displacement in a seismometer relative to the ground

x(t) induced by the ground motion y(t) is given by

,2 2

2
2

002

2

dt
ydx

dt
dxh

dt
xd

−=++ ωω (13)

where ω0 denotes the natural frequency of the pendulum and h denotes the damping factor. Applying the
Fourier transform to both sides yields

− + + =ω ω ω ω ω2
0 0

2 22x ih x x ym m m m .

Thus, the response in the frequency domain is given by

() ()
− =

− −
x y

ih
m m

1
1 2 0 0

2ω ω ω ω
.

This response belongs to a high pass filter, and therefore, the seismometer has an equivalent digital filter.
Define the transfer function in the frequency domain,

()
() ()

()
() ()

.
221

1
2
00

2

2

2
00 ωωωω

ω
ωωωω

ω
++

=
−−

=−=
ihi

i
ih

yxiT mm (14)

The Laplace transform of Eq. (14) gives the transfer function in the s-domain. The substitution of iω with s
in Eq. (15) gives the result:

() ()
() .

2 2
00

2

2

ωω ++
=−=

shs
s

sY
sXsT (15)

The solutions obtained when the denominator = 0 are called “poles.” In contrast, the solutions of the
numerator = 0 are called “zeros,” because these cause the transfer function to be equal to zero. Eq. (12) can
be factorized by using these poles and zeros as follows.

() () ()()
() ()()

() ()()
() ()()

T s A
B

s s s s s s

s s s s s s
G

s s s s s s

s s s s s s
L

M

L

M

L

M

= ⋅
− − −

− − −
= ⋅

− − −

− − −

0
2
0

1
0

2 1
0

0
2
0

1
0

2 1

L

L

L

L
. (16)

The suffix 0 denotes the “zero” point. As shown, “zeros” and “poles” determine the transfer function with a
constant G0. If s coincides with one of the poles, T(s) becomes infinite. If s coincides with one of the zeros,

T(s) becomes zero. Actually, s = σ + iω moves only along the imaginary axis in the complex s-plane,
and poles must locate at σ < 0 in stable systems. Then, s cannot coincide exactly with any of the poles.
Poles located near the imaginary axis can induce resonance. If one of the zeros lies on the imaginary axis,
T(s) becomes zero sharply at the corresponding frequency. This feature is important for the design of a
notch filter. The pole-zero representation of an analog transfer function provides a method for the design of
circuits. Readers are recommended to study books on electronics, especially on active filters for more
information. Several examples for simple transfer functions will be given in the following description.

 50

Today, many seismic observation organizations release their data to the public via the Internet so
that any researcher can use them. Some of these organizations provide information on instrumental
characteristics using the pole-zero representation. Hence, it may be useful to show the method of
reconstructing the transfer function in the frequency domain from a given value of poles and zeros.

At an angular frequency ω, the variable of the Laplace transform s is located at (0, iω).

)(mss − in the denominator of Eq. (13) implies the distance between s = (0, iω) and the pole sm taking

phase into consideration as well. Namely,

))exp(arg()()(mmm ssssss −−=− .

When all poles and zeros are similarly considered, the following relations are obtained:

() () ()()
() ()()

() () () (){ }.argargargargexp 1
0
1

0

12

0
1

0
2

0

0

12

0
1

0
2

0

0

ssissississi
ssssss
ssssss

G

ssssss
ssssssGsT

ML
M

L

M

L

−−−−−−++−⋅
−−−

−−−
=

−−−
−−−

⋅=

LL
L

L

L

L

Suppose that XL…X2, X1 denote the absolute values of)(mss − and ΘL…Θ2, Θ1 denote the absolute

values of their phases. Similarly, xM…x2, x1 and θM…θ2, θ1 for poles. Then,

() { }.exp 11
12

12
0 θθ iiii

xxx
XXXGsT ML

M

L −−−Θ++Θ⋅= LL
L

L

This shows that the transfer function can be reconstructed from the given values of poles and zeros by a
direct graphical measurement on the complex s-plane without any special software. This simple feature is
one of the advantages of introducing Laplace transforms in the analysis of transfer functions.

Example: Simple Moving Coil Type Seismometer (Poles and Zeros)
Eq. (15) is factorized in the following manner.

() ()
()

()()
()() .

2 12

0
1

0
2

2
00

2

2

ssss
ssss

shs
s

sY
sXsT

−−
−−

=
++

=−=
ωω

The solutions of the equation, achieved by equating the denominator to zero are ()12
0 −±−= hhs ω .

This gives the pole position at

()2
00 1, hh −− ωω , ()2

00 1, hh −−− ωω for h < 1.0, under-damped case,

().0,0ω− doubled for h = 1.0, critically damped case,

()().0,12
0 −−− hhω , ()().0,12

0 −+− hhω for h > 1.0, over-damped case.

For all these three cases, the poles are located in the left half of the s-plane. This guarantees the stability of
the system. The doubled zeros are located at (0,0).

 51

3.4.3. Z-transform
Remember the discrete Fourier transform:

.2

,1

,

1

1

tN
kwhere

eX
tN

x

extTCX

k

N

k

tim
km

N

m

tim
mkk

k

k

Δ
=

Δ
=

Δ==

∑

∑

=

Δ

=

Δ−

πω

ω

ω

 (17)

Xk has a certain physical meaning. Let us change Eq. (17) slightly in the following way.

.~1

,~

1

1

∑

∑

=

Δ

=

Δ−

=

=

N

k

tim
km

N

m

tim
mk

k

k

eX
N

x

exX

ω

ω

This gives an abstract quantity in the transformed domain. A new variable is introduced as

 .ti kez Δ= ω (18)
Thus,

.~1

,~)(

1

1

∑

∑

=

=

−

=

==

N

k

k
km

N

m

m
mkm

zX
N

x

zxXxZ

 (19)

This new integral transform for discrete systems is called z-transform. Eq. (18) can be extended to relate

the discrete z-transform with a continuous Laplace transform with s = σ + iω.

.tsez Δ= (20)
The product with z implies a time shift of Δt toward the future, whereas that with z–1 implies one toward the

Re z

Im z

0 1

1

-1

-1

Fig. 43 Complex z-plain. The left half of the complex s-plane is mapped into a unit circle

centered at the origin by z = exp(st). The points (0, iω/2.), (0, -iω/2) on the s-plane are mapped
to (-1, 0). In other words, the positive and negative parts of the imaginary axis on the s-plane are
mapped to the upper and lower halves of the unit circle on the z-plain, respectively. The origin
of the s-plane is mapped to (1, 0) on the z-plane.

 52

past.

3.4.4. Filter Operator in the Z-domain
Suppose x(t) denotes the input time series; X(ω), its Fourier spectrum; y(t), the filtered output;

Y(ω), its spectrum; and F(ω), the spectrum of the applied filter. Then,

() () ().ωωω XFY = (21)

Suppose the filter spectra can be written, e. g., in the following form in order to facilitate ease of
discussion.

()() ,2
2

1
10

2
2

1
10

−−

−−

++
++

=
zbzbb
zazaazF ω (22)

Eq. (21) gives the relation

[] () [] ().2
2

1
10

2
2

1
10 ωω XzazaaYzbzbb −−−− ++=++

The inverse Fourier transform of both sides gives

() () () () () (),22 210210 ttxattxatxattybttybtyb Δ−+Δ−+=Δ−+Δ−+

because of the relation

() () () .
2
1

2
1)(tntydeYdeYz tntitin Δ−== ∫∫

∞

∞−

Δ−
∞

∞−

− ωω
π

ωω
π

ωω

Then, the filtered output can be calculated rapidly with a defined value of coefficients, a few preceding data
of the input time series, and a few preceding data of the output. For Eq. (22),

()

()

y a
b

x

y
b

a x a x b y

y
b

a x a x a x b y b y jj j j j j j

0
0

0
0

1
0

0 1 1 0 1 0

0
0 1 1 2 2 1 1 2 2

1

1 2

=

= + −

= + + − − ≥

⎫

⎬

⎪
⎪
⎪

⎭

⎪
⎪
⎪− − − − ,

. (23)

This shows an example for a recursive filter operating in the time domain. The filter F(ω) might give a
phase lag. In order to compensate for the phase lag, namely, in order to apply a zero-phase filter, inverse the
time axis and apply the same filter in such way that

()

()

y a
b

x

y
b

a x a x b y

y
b

a x a x a x b y b y j

N N

N N N N

N j N j N j N j N j N j

=

= + −

= + + − − ≥

⎫

⎬

⎪
⎪
⎪

⎭

⎪
⎪
⎪

−

− − − −

− − − + − + − + − +

0

0
1

2
0

0 2 1 1 1 1

0
0 1 1 2 2 1 1 2 2

1

1 3,

. (24)

Of course, we can employ more coefficients al and bm if necessary. The general form of Eq. (22) may be

 53

 () .,
0

1
1

2
2

)1(
1

0
1

1
2

2
)1(

1 ti
M

M
M

M

L
L

L
L ez

bzbzbzbzb
azazazaza

zF Δ
−−−−

−
−

−−−−
−

−

=
+++++

+++++
= ω

L

L
 (25)

The corresponding recursive filter may be

{

}.)(

1

112211

1122110
0

MjMMjMjj

LjLLjLjjjj

ybybybyb

xaxaxaxaxa
b

y

−+−−−−

−+−−−−

++++−

+++++=

L

L
 (26)

This filter given by Eq. (25) is sometimes called a transfer function by analogy with the filters of electronic
circuits, which are analog filters. Since the denominator of Eq. (25) controls the feedback part of Eqs. (23)
and (24), bm must be selected carefully in order to avoid any instability in the filtering. The transform z =

exp(sΔt) maps the left half of the complex s-plane to the unit circle centered at the origin on the complex
z-plane. Therefore, a stable and causal filtering requires that all the solutions of the equation

(1) 2 1

1 2 1 0 0M M
M Mb z b z b z b z b− − − − −

−+ + + + + =L

zn must satisfy the condition

.1<nz (27)

Additionally, if there are no zeros outside the unit circle on the complex z-plane, it is called minimum phase
condition.

Focus on the direct coincidence of the coefficients of a filter wavelet in the time domains shown
in Eq. (23) and Eq. (24) with the coefficients used in the transfer function in the Z-domain that is shown in
Eq. (22). This shows that the analysis of the transfer function in the Z-domain gives the value of the
coefficients for recursive filtering in the time domain.

The transfer function given in the frequency domain and that given in the s-domain are
analogous functions, whereas that represented by a recursive filter is applied to a discrete time series in the
computer. Z-transform behaves like an interpreter at the border between two worlds that are different each
other—one a continuous world and the other a digital one.

The relation between the transfer function in the Z-domain and that in the s-domain is given

approximately by the so called bilinear transform:

.

2
1

2
1

,
1
12

1

1

st

st

z
z
z

t
s

⋅Δ
−

⋅Δ
+

=
+
−

⋅
Δ

= −

−

 (28)

 54

This is an approximation of Eq. (18) that is equivalent to the following:

().ln1 z
t

s
Δ

=

The discrete angular frequency ωk is also transformed. For z = exp(iωkΔt), the bilinear transform gives

().2tan2
1
12 t

t
i

e
e

t
s kti

ti

k

k

Δ⋅
Δ

=
+
−

⋅
Δ

= Δ−

Δ−

ωω

ω

Since s = iω for σ = 0,

() ()2tan22tan2 1 t
t

ort
t kk Δ⋅

Δ
=Δ⋅

Δ
= − ωωωω (29)

This shows the distortion of the continuous angular frequency ω by the bilinear transform to the discrete
one ωk (Fig. 44.1). To compensate this distortion, a warped angular frequency

()2' tan 2c c t
t

ω ω= ⋅ Δ
Δ

 (30)

is introduced (Sherbaum(1996)). The critical angular frequencies cω of the continuous transfer function

are first converted to the corresponding warped angular frequencies c'ω , and then the bilinear transform

using the warped ones is applied to obtain the equivalent discrete transfer function (Fig. 44.2). Eq. (30)

shows that c'ω tends to cω for a small value of

Nyquist

c

Sampling

cc

f
f

f
ft

⋅==
Δ

π
πω

2
2

 This means that considering the warped frequency is not necessary for frequencies that are considerably
smaller than the Nyquist frequency. The natural frequency of a seismometer is usually much smaller than
the Nyquist frequency, whereas the anti-aliasing filter has a cut-off frequency that is comparable with the
Nyquist one.

Fig. 44.1 Mapping of the continuous angular frequency ω on to the discrete frequency ωk. This
is an example of Δt=0.01, N=1024. The Nyquist angular frequency is π/Δt.

 55

Fig. 44.2 Schematic drawing that shows how warped frequency works.

Comparison of Bilinear Transform with Z-Transform
at 100Hz sampling

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

0.0 10.0 20.0 30.0 40.0 50.0

Frequency

Re(z):z-transform Im(z):z-transform

Re(z):Bilinear Transform Im(z):Bilinear Transform

Fig. 44a Example of a comparison of bi-linear transform with z-transform for Δt = 0.01 s.
The difference is negligible at frequencies less than 10 Hz.

 56

Example: Simple Moving Coil Type Seismometer (z-transform and equivalent recursive filter)
Eq. (15) is factorized in the following manner:

() ()
()

()()
()() .

2 12

0
1

0
2

2
00

2

2

ssss
ssss

shs
s

sY
sXsT

−−
−−

=
++

=−=
ωω

This reduces to the following with frequency warping as given by Eq. (30).

() .
''2 2
00

2

2

ωω ++
=

shs
ssT (31)

Applying the bilinear transformation to Eq. (31) gives a simulated transfer function in the z-domain,

()

()
() ()() ()

,

1
2

tan11
2

tan21

1

2
tan

1
1

2
tan2

1
1

1
1

2
2

1
10

2
2

1
10

210211021

21

02
1

1
0

2

1

1

2

1

1

−−

−−

−−−−

−

−

−

−

−

−

−

++
++

=

+⎟
⎠
⎞

⎜
⎝
⎛ Δ

++−⎟
⎠
⎞

⎜
⎝
⎛ Δ

+−

−
=

⎟
⎠
⎞

⎜
⎝
⎛ Δ

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+
−

⎟
⎠
⎞

⎜
⎝
⎛ Δ

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+
−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+
−

=

zbzbb
zazaa

z
t

zz
t

hz

z

t
z
zt

h
z
z

z
z

zT

ωω

ωω

 (32)

where

() ()
()

() ().2tan2tan21

,2tan22

,2tan2tan21

,0.1,0.2,0.1

0
2

02

0
2

1

0
2

00

210

tthb

tb

tthb

aaa

Δ+Δ−=

Δ+−=

Δ+Δ+=

=−==

ωω

ω

ωω

These coefficients of the recursive filter give an approximately equivalent discrete transfer function.

 57

Exercise: Filter Equivalent to a Simple Moving Coil Type Seismometer—1.
The program DSEISM.EXE calculates the coefficients of the recursive filter equivalent to the

relative motion of the pendulum mass of a seismometer and applies the recursive filter to an input time
series.
(1) Prepare an input time series by using TESTSIG.EXE. An impulse of a unit amplitude at t = 0.0 s will

give you the response characteristics of the filter. For example, use Δt = 0.05 s and N = 128.
(2) Run DSEISM.EXE with a natural period T0 = 0.5 s, damping factor h = 0.71, Δt = 0.05, and gain G0

=1.0.
(3) Draw the filtered time series by using PTIME.EXE and its Fourier spectra by using FFT.EXE and

PSPEC.EXE. An example is shown in Fig. 45.1.
(4) Repeat the above procedure with different values of the natural period and damping factor.

Fig. 45.1 Filtered time series and its Fourier spectra obtained by DSEISM.EXE. These are
equivalent to the impulse response of the relative motion of a pendulum mass of a

seismometer with the natural period T0 = 0.5 s, the damping factor h = 0.71, Δt = 0.05, and
gain G0 = 1.0. The phase at zero frequency should converge to 180 degrees. However, to avoid
division by zero, it is forced to be zero.

 58

Example: Filter equivalent to a Simple Moving Coil Type Seismometer— 2
In the previous example, the recursive filter that gives the relative displacement of a pendulum

–xm for ground displacement ym is given. Usually, the data obtained by a digital recorder are given
numerically and a constant is given for conversion into volts. The potential difference, which is the output
from seismometer, is given as follows:

() ,
0

0
m

s

s
m xi

RR
RGe ω

+
=

where (iω) shows the effect of differentiation due to a moving coil type transducer; R0, the coil resistance;
Rs, the shunt resistance; and G0, the product of the sensitivity of the seismometer with the conversion
constant of a digital recorder. Therefore, the system response is

()
() ()

.
21 2

000

0

ωωωω
ω

−−
⋅

+
=

ih
i

RR
RG

y
e

s

s

m

m

Fig. 45.2 shows its frequency dependency.

Fig. 45.2 Response of the recursive
filters calculated by the formula written
above in this page. Dashed line: Filter
equivalent to the relative motion of
pendulum mass of a simple moving coil
type seismometer, against ground
displacement. Solid line: Filter
equivalent to the voltage change between
two output terminals of a simple moving
coil type seismometer, against ground
displacement. The parameters used are
T0=0.5, h=0.71.

Moving Coil Type Seismometer

0.01

0.1

1

10

100

1000

0.1 1 10 100

Frequency

A
m

pl
it
u
de

Relative Motion of Pendulum Mass Output Voltage

 59

This has an equivalent digital filter. The corresponding transfer function in the s-domain is

() .,
2 0

0
2
00

2

3

s

s

RR
RGG

shs
sGsT

+
=

++
⋅=

ωω (33.1)

The solutions of the equation, i. e., the denominator is equal to zero, are

()12
0 −±−= hhs ω .

This gives the pole position at

()2
00 1, hh −− ωω , ()2

00 1, hh −−− ωω for h < 1.0, under-damped case,

()0 , 0ω− doubled for h = 1.0, critically damped case,

()()2
0 1 ,0h hω− − − , ()()2

0 1 ,0h hω− + − for h > 1.0, over-damped case.

However, the numerator gives a tripled zero at (0, 0).
By using the warping frequency, the transfer function is given approximately as follows:

() ,3
3

2
2

1
10

3
3

2
2

1
10

−−−

−−−

+++
+++

=
zbzbzbb
zazazaa

zT (33.2)

where

,.,3,3, 3210 GaGaGaGa −==−==

() () (){ }
() () (){ }
() () (){ }
() () (){ }.2tan2tan212

,2tan32tan212

,2tan32tan212

,2tan2tan212

0
2

03

0
2

02

0
2

01

0
2

00

tthtb

tthtb

tthtb

tthtb

Δ+Δ−⋅Δ=

Δ+Δ−−⋅Δ=

Δ+Δ+−⋅Δ=

Δ+Δ+⋅Δ=

ωω

ωω

ωω

ωω

 60

Example: Reconstruction of Transfer Function from Given Poles and Zeros
Suppose that the following data are given for an observation
system. In fact, these data are for a STS—2 feedback type
seismometer.

Normalization factor: A0 = 5.42787E+07
Normalization frequency: 0.02 (Hz)

Complex zeros:
 i real part imaginary part Index
 0 0.000000E+00 0.000000E+00 X0
 1 0.000000E+00 0.000000E+00 X1

Complex poles:
 i real part imaginary part Index
 0 –1.247510E+02 –4.171480E+02 x0
 1 –1.247510E+02 4.171480E+02 x1
 2 –4.873870E–02 –1.552120E–02 x2
 3 –4.873870E–02 1.552120E–02 x3
 4 –2.513300E+02 0.000000E+00 x4

Sensitivity: G0 = 6.291456E+08 (digit/(M/s))

Frequency of sensitivity: 0.02 (Hz)

The normalized amplitude spectra of the transfer function are given as follows:

()
()() ()()∏∏

==

−+−
=

−

−⋅−
= 4

0

22

2

4

0

10

ImRe0

~

m
mm

m
m xxxs

XsXs
T

ω

ωω

The normalizing factor A0 is the reciprocal of this value at f = 0.02 (Hz). () 0.1~
0 =ωTA at f = 0.02 Hz.

The reconstructed transfer function is given as follows:

()
()() ()()∏

=

−+
== 4

0

22

2
00

00

ImRe

~)(

m
mm xx

AGsTAGT
ω

ωω

For phase spectra,

()
()∑∑

=

−

= ⎭
⎬
⎫

⎩
⎨
⎧

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−
−

−=
4

0

1
1

0 Re0
Im

tan
2

))((
m m

m

l x
x

TArg
ωπω

The first term corresponds to two zeros at the origin. These spectra can be calculated even with a handy
calculator.

Re s

Im s

X0, X1

x1

x0

x3

x2

x4

Fig. 45.3 Configuration of poles and zeros,
for the example.

 61

Fig. 45.4 Amplitude (top) and phase (bottom) response of an STS-2 feed back type seismometer.
These are calculated by the formula using poles and zeros data given in the previous page. The
calculations were performed easily in Microsoft Excel.

Phase Response

-300

-250

-200

-150

-100

-50

0

50

100

0.01 0.1 1 10 100 1000

Frequency(Hz)

P
h
as

e
(D

e
gr

e
e
)

Amplitude Response

1.00E+05

1.00E+06

1.00E+07

1.00E+08

1.00E+09

1.00E+10

0.01 0.1 1 10 100 1000

Frequency(Hz)

A
m

pl
it
u
de

 (
C

o
u
n
ts

/
(M

/
S

e
c
))

 62

3.4.5. Analog Filters and their Transfer Functions
Several electronic analog filters are commonly used in seismometry. Their transfer functions are

introduced here. Naturally, each circuit has its equivalent digital filter.

(1) RC filter: One of the simplest electronic circuits is an RC filter that is composed of a resistor and a
capacitor, as shown in Fig. 46.

High Pass RC Filter

If the resistor is connected parallel to the output (Fig. 46 top), it is a high pass filter. Suppose x(t)
and y(t) denotes the input and output voltage imbalance, respectively. The equation for a high pass filter is
as follows:

),()(

),()(

),()()(

tytRI

tV
dt
dCtI

txtVty

c

c

=

=

=+

 (34.1)

where R and C denotes the resistance and the capacitance integrated in the circuit (Fig. 46 top left); I(t), the
current that passes through R and C; and Vc, the voltage across the capacitor. This formula gives

).()(1)(tx
dt
dty

CR
ty

dt
d

=+ (34.2)

Fig. 46 (Top) RC high pass filter. Its circuit, transfer function, and response characteristics.
(Bottom) RC low pass filter.

 63

The transfer function is given by the Laplace transform of Eq. (34.2).

() .1, 0
0

RCwhere
s

ssT =
+

= ω
ω (34.3)

The amplitude spectra are drawn schematically in Fig. 46 top right.

Low Pass RC Filter
If the capacitor is connected parallel to the output, it works as a low pass filter (Fig. 46 bottom).

The low pass filter shown in Fig. 46 bottom left corresponds to the following equation.

),()(

),()()(

ty
dt
dCtI

txtytRI

=

=+

 (35.1)

This can be combined into

).()()(txtyty
dt
dRC =+ (35.2)

The transfer function is given by the Laplace transform of (35.2).

Fig. 47 Schematic circuit of an active filter composed of OpAmps. Reproduced based
on Yanagisawa and Kanematsu (1980)

 64

() .1, 0
0

RCwhere
s

sT c =
+

= ω
ω

ω
 (35.3)

The amplitude spectra are drawn schematically in Fig. 46 bottom right.

(2) Active filter.
Today, many electronic circuits with known characteristics are widely used for filtering. Some

of those characteristics have their proper names. The requirements for the filters may be flat amplitude
characteristics in the pass band, sharp cutoff, and flat delay characteristics in the pass band. The last implies
linear phase characteristics because delay is defined as phase differentiated by the angular frequency.

A Butterworth filter has its amplitude characteristics as

()
()

,
1

1
2n

c

sT
ωω+

=

where ωc is the cutoff angular frequency. n denotes the order of the filter and the slope of amplitude
characteristics in the stop frequency band. In other words, an n-order filter has a decay of 20 n db/oct. The
transfer function itself is given for a low pass filter

()
() ()()

() () () ()()
,,

,,

2
00

2

2
0

2
00

2

2
0

noddfor
sQss

sT

nevenfor
sQs

sT

ccac

a

cc

Ω+Ω+

Ω
Π

Ω+
Ω

=

Ω+Ω+

Ω
Π=

ωωω

ωω

and for a high pass filter

()
() ()()

() () () ()()
,,

,,

2
00

2

2
0

2
00

2

2
0

noddfor
sQss

sT

nevenfor
sQs

sT

ccac

a

cc

Ω+Ω+

Ω
Π

Ω+
Ω

=

Ω+Ω+

Ω
Π=

ωωω

ωω

where ωc is the cut-off angular frequency; other coefficients are given in the following table.

Table 10 Coefficients for Butterworth filter

n Q Ω0 Ωa C1 C2 C3

2 0.707107 1.000000 --- 1.4142 0.7071 ---
3 1.000000 1.000000 1.000000 1.3926 3.5468 0.2025
4 0.541196 1.000000 --- 1.0824 0.9239 ---

1.306536 1.000000 --- 2.6131 0.3827 ---
5 0.618034 1.000000 1.000000 1.3541 1.7529 0.4213

1.618034 1.000000 --- 3.2361 0.3090 ---

 65

The value of Cn (n = 1, 2, 3) in Table 10 corresponds to the actual value of capacitor Ca (a = 1, 2, 3) in Fig.

47 (right) but normalized one, i.e., Ca = Cn/ωcR, where R is the resistance selected in advance. For high
pass filter (Fig. 47 left), Rn (n = 1, 2, 3) are calculated by 1/Cn (n = 1, 2, 3) in Table 10. The value of the

actual resistor Ra (a = 1, 2, 3) in Fig. 47 (left) is given by Ra = Rn/ωcC, where C is the value of the
capacitance selected in advance.

Butterworth filter has plane amplitude characteristics in the pass frequency band and is used for shaping of
the spectra. The delay characteristics of this filter, however, are not flat even in the pass band. These have a
peak of delay around the cut off frequency. This means that the shape of the signal around the cut off
frequency in the time domain is considerably distorted by filtering operation.

Chevyshev filter : If we allow the ripple in the pass band, we can perform a sharp cut off. Chevyshev filter
belongs to this category. The transfer function is given for low pass filter

()
() ()()

() () () ()()
,,

,,
10

1

2
00

2

2
0

2
00

2

2
0

10/

noddfor
sQss

sT

nevenfor
sQs

sT

ccac

a

cc
Rp

Ω+Ω+

Ω
Π

Ω+
Ω

=

Ω+Ω+

Ω
Π=

ωωω

ωω

and for a high pass filter

()
() ()()

() () () ()()
,,

,,
10

1

2
00

2

2
0

2
00

2

2
0

10/

noddfor
sQss

sT

nevenfor
sQs

sT

ccac

a

cc
Rp

Ω+Ω+

Ω
Π

Ω+
Ω

=

Ω+Ω+

Ω
Π=

ωωω

ωω

where Rp is the ripple amplitude in a pass band measured in (db).

Fig. 48 Amplitude and delay of (a) Butterworth filter and (b) Chevyshev filter in the
frequency domain. Both are plotted for the case of a low pass filter

 66

The coefficients are given in the following table.

Table 11 Coefficients for Chevyshev filter with ripple of 0.25 db in the pass band

 n Q Ω0 Ωa C1 C2 C3

 2 0.809254 1.453972 --- 1.1132 0.4249 ---
 3 1.508026 1.156992 0.767223 1.6110 6.8272 0.0885
 4 0.657249 0.674422 --- 1.9491 1.1280 ---
 2.536110 1.077939 --- 4.7055 0.1829 ---
 5 1.035932 0.732405 0.436951 2.6625 5.0919 0.3147
 3.875683 1.046630 --- 7.4060 0.1233 ---
The delay characteristics of this filter are not flat in the pass band. In such a case, the filtering operation
causes considerable distortion of waveform in the time domain.

Bessel filter: It can produce flat delay characteristics in the pass band. However, the cutoff is not sharp. The
amplitude characteristics are also flat in the pass band. The transfer function is given by the same formulas

as those of a Butterworth filter. The coefficients are given in the following table.

Table 12 Coefficients for Bessel filter

 n Q Ω0 Ωa C1 C2 C3

 2 0.577350 1.732051 --- 0.6667 0.5000 ---
 3 0.691047 2.541547 2.322165 0.5647 0.8136 0.1451
 4 0.521935 3.023265 --- 0.3453 0.3169 ---
 0.805538 3.389366 --- 0.4753 0.1831 ---
 5 0.563536 3.777894 3.646739 0.3601 0.4171 0.1280
 0.916479 4.261031 --- 0.4302 0.1280 ---

Fig. 48 (continued) (c) Amplitude and delay of the
Bessel filter in the frequency domain plotted for the
case of a low pass filter.

 67

Example: Recursive filter equivalent to analog filter circuit
Low Pass Filter: The transfer function of the second-order analog low pass Butterworth filter circuit is

()
() ()() 2

00
2

2
0

2
Ω+Ω+

Ω
=

cc
L sQs

sT
ωω

.

The warped cutoff angular frequency and bi-linear transform are applied. Then,

() ⎟
⎠
⎞

⎜
⎝
⎛ Δ

=
+

−
= −

−

2
tan,

1
1' 1

1 t
z

zs c
c

ω
α

α
ω .

Therefore,

() ,2
2

1
10

2
2

1
10

2 −−

−−

++
++

=
zbzbb
zazaa

zT L
() ()

(){ } () () .1/11,112

,1/11,1,2,1
2

002
2

01

2
000210

ααα

αα

Ω+Ω−=Ω−=

Ω+Ω+====

Qbb

Qbaaa

The third-order filters can be written as

() () () () () ac

a
LLLL s

sTsTsTsT
Ω+

Ω
=⋅=

ω1213 ,

The warped cutoff angular frequency and bi-linear transform give

() () ().11,11,1,1, 10101
10

1
10

1 aaL ddcc
zdd
zcc

zT Ω−=Ω+===
+
+

= −

−

αα

Third-order filtering can be achieved by applying ()zT L1 and ()zT L2 sequentially.
It is also possible to apply it immediately by using the following.

() () () () ()
() () .3

12
2

1102
1

100100

3
12

2
1102

1
100100

213 −−−

−−−

+++++
+++++

=⋅=
zdbzdbdbzdbdbdb
zcazcacazcacaca

sTsTzT LLL

High Pass Filter: The transfer function of an analog second-order high pass Butterworth filter is

()
() ()() 2

00
2

2
0

2
Ω+Ω+

Ω
=

sQs
sT

cc
H ωω

.

The equivalent recursive filter is

 () ,2
2

1
10

2
2

1
10

2 −−

−−

++
++

=
zbzbb
zazaa

zT H
() ()

(){ } () () ./1,12

,/1,1,2,1
2

002
2

01

2
000210

Ω+Ω−=−Ω=

Ω+Ω+==−==

ααα

αα

Qbb

Qbaaa

The third-order filters can be written as

() () () () () ac

a
HHHH s

sTsTsTsT
Ω+

Ω
=⋅=

ω1213 ,

The warped cutoff angular frequency and bi-linear transform give

() .1,1,1,1, 10101
10

1
10

1 aaH ddcc
zdd
zcc

zT Ω+−=Ω+=−==
+
+

= −

−

αα

These formulas are valid also for Chebyshev and Bessel filters because their transfer functions are

composed of () () ()sTsTsT LLL 321 ,, or () () ()sTsTsT HHH 321 ,, .

 68

3.4.6. Exercise for Digital Filtering
The transfer function of a given recursive filter is easily obtained by using Eqs. (20) and (25).

However, it is not easy to design the filter’s coefficients; to achieve this, its amplitude and phase
characteristics must be arranged in the desired manner. Saito (1978) has published a subroutine package
written in Fortran, which gives the coefficients of a recursive filter whose frequency characteristics
coincide with one of the four filters popularly used in electronics, i.e., Butterworth, Chebyshev-I (constant
ripple in pass band), Chebyshev-II (constant ripple in stop band), and Elliptic filters. Each of these four can
be arranged as high pass, low pass, band pass, and band stop filters, respectively. These programs have
been provided as a free software.

However, it is requested that users of the software acknowledge this by stating that “the
subroutines for digital filtering published by Saito (1978) are used for processing” with the reference

“ Saito, M. (1978):An automatic Design Algorithm for Band Selective Recursive Digital Filters,
BUTURI-TANSA, Vol. 31, No. 4, pp112-135 (in Japanese).” The distributed programs have been
compiled and linked and provided as the library for g77 on Cygwin. The filtering operation can be
performed by just calling the subroutine BANDP1 in the main routine as follows:

CALL BANDP1 (X,N,DT,FL,FH,FS,AP,AS, ntype, nchara,n causal)
where X : Input time series / Filtered time series,
 N : Number of data included in X,
 DT : Sampling interval,
 FL : Lower limit frequency of the pass-band,
 FH : Upper limit frequency of the pass-band,
 FS : Limit frequency of the stop-band,
 AP : 1/(1 + AP

2) denotes the ripple in the pass-band,
 AS : 1/(1 + AS

2) denoted the ripple in the stop-band.

Ap and As are schematically indicated in Fig. 49.

NTYPE : Flag that indicates the type of filter
1 Butterworth filter
2 Chevyshev-I
3 Chevyshev-II
4 Elliptic

NCHARA: Flag that indicates the frequency characteristics of filter
1 Low cut (high pass)
2 High cut (low pass)
3 Band pass
4 Band stop

NCAUSAL: Flag that indicates the causality of filter
1 Causal
2 Zero phase

 69

Zero-phase filtering always breaks the causality. For example, a small ringing caused by the filtering,
appears before the initial break of the P-wave and makes it difficult to judge the arrival time. Causal
filtering can be performed by these identical subroutines. The flag NCAUSAL controls the subroutine GNF
for both causal and non-causal filtering.

Exercise:

(1) Construct a time series that has an impulse of unit amplitude at t = 1.28 s with Δt = 0.01, N = 256 and
store the data in the file UT by using TESTSIG.
(2) Draw the time series UT and check it by using GSTOOLS.
(3) Apply FFT to the time series UT by using FFT.
(4) Draw the Fourier spectra from UF by using PSPEC.
(5) Apply a digital filter by using TRFILT. The output file name is UT1; A Butterworth type low cut causal

filter with FS = 15.0 Hz, FL = 30.0 Hz, AP = 10.0, As = 0.1 is selected for the following example.
a:\> TRFILT UT UT1
 ??? Filter Type ???
 Butterworth type ==> 1
 Chebyshev-I type ==> 2
 Chebyshev-II type ==> 3
 Elliptic type ==> 4
1
 ??? CHARACTERISTICS OF FILTER ???
 Low Cut (High Pass) Filter ==> 1
 High Cut (Low Pass) Filter ==> 2
 Band Pass Filter ==> 3
 Band Stop Filter ==> 4
1
 FL
 /------------
 /
 /
 /
------/
 FS
 ??? FS,FL,AP,AS ???
 AP,AS: Parameter defining the ripple
 in pass band and stop band.
 Use AP = 0.1, AS = 10.0, if you do
 not like to think.
15. 30. 0.1 10.0
 ??? Causal or Zero-Phase ???
 Causal FIlter ==> 1
 Zero-Phase Filter ==> 2
1

 70

Fig. 50 Examples of the performance of the recursive filter designed by TRFILT.EXE. Left: the
input signal that is an impulse of unit amplitude located at t = 1.28 s. Center: the output from
the causal Butterworth low pass filter. Right: the output from the zero phase Butterworth low

pass filter. The parameters used are Δt = 0.01, N = 256, FS = 15.0 Hz, FL = 30.0 Hz, Ap = 0.1,
As = 10.0.

(6) Draw the filtered time series UT1 by using PTIME.
(7) Apply FFT to the filtered time series UT1 and store the result in the file UF1.
(8) Draw the Fourier spectra stored in UF1 by using PSPEC and compare it with the drawn UF.

(9) Check the performance for filters of other types by repeating the above procedure with different values
of control parameters.

 71

3.5. Deconvolution or Inverse Filtering
Every observed seismic waveform data is an output from some filters. For example, the

seismometer itself is a high pass filter. Amplifiers, sometimes, have frequency characteristics that are not
uniform for all frequencies. Moreover, we use other high cut filter to suppress AC noise that has energy at
50 or 60 Hz since these distort seismic signals. Moreover, an anti-aliasing filter is used in digital data
acquisition systems. Since seismometry is conducted not only for obtaining travel time data but also for
obtaining waveform data, i. e., ground motion, we must compensate this distortion in order to obtain true
ground motion. Remember that recorded signals are obtained by the convolution of the instrumental
characteristics to the ground motion in the time domain and are given by their product in the frequency
domain. The instrumental characteristics are identical to the response of instruments to an impulsive signal
(Fig. 51 top).

() () ()
() () ().

,*
ωωω GFR

tgtftr
=

=
 (36)

where r(t), f(t), and g(t) denote the recorded signals, the instrumental response, and the ground motion in

the time domain, respectively; R(ω), F(ω), and G(ω), respectively, are the same parameters in the
frequency domain.

Deconvolution in seismology is usually the process for eliminating the effect of the instrumental
characteristics from the observed data and to recover the true ground motion. Mathematically, this is the
reverse process of convolution. Deconvolution in the time domain corresponds to the quotient in the
frequency domain. In comparison with the complexity of deconvolution in the time domain, the frequency
domain operation is composed of only three steps. These are for applying the FFT to the instrument
response and recorded signal, to divide the recorded signal spectra by the instrumental response spectra,
and to apply the inverse FFT to the quotient (Fig. 51 middle).

() (){ } ().1 ωωω RFG ⋅= −
 (37)

However, we must consider the following. The information once lost in the observation or
processing can never be recovered by any technique, even by extremely sophisticated and efficient ones.
This is because we cannot avoid noises that are recorded simultaneously with the signal or those that
invade into the record during the processing. Once the signals weaken and become smaller than the noise
level, any recovery process only amplifies such noises. Such amplified noises can be dominant in the
recovered ground motion. The signals weaken a little either only during the recording or the processing can
be strengthened or recovered by the deconvolution technique.

Typically, true ground motion has band limited feature at the far field and low pass feature at
the near field, whereas the ground noise is present at every frequency. Let us handle only far field ground

motion in order to have a simple demonstration. , G(ω) is band limited. The instrumental response F(ω) is
also band limited, because a seismometer is a low cut filter and used with a high cut anti-alias filter. The

recovering operator in the frequency domain {F(ω)}–1 has a large amplitude at a frequency outside this
limited frequency band. The recorded signal R(ω) is almost band limited but it has little energy outside the
frequency band of G(ω), i.e., the contribution of the noise. By applying the inverse filter, i.e., the
recovering operator {F(ω)}–1, this small contribution of the noise will be considerably amplified and

 72

contaminates the recovered ground motion transformed into the time domain by the inverse FFT (Fig. 51
bottom).

This shows that we have to select a frequency range such that the signal is sufficiently larger
than the noise in order to prevent instability due to the application of the inverse filter. We cannot recover
the ground motion outside this frequency band.

However, the recommended method is to handle the data only within the pass band of the
instrumental response. Usually, this is given by the natural frequency of the seismometer and the cutoff
frequency of the anti-alias filter. It is possible but not easy to use the information outside of this range.
Even within this frequency range, the above mentioned instability problem can take place due to the

smaller frequency band of G(ω). Thus, it is also recommended that the shape of R(ω) be observed and the
useful frequency band be selected before beginning the data processing.

Fig. 51 Schematic illustration of Eq. (36) (top), theoretical inverse filtering process given by Eq.
(37) (middle) and actual inverse filtering process with noise (bottom). Reproduced based on
Sherbaum (1996).

 73

Example: Inverse Filter for a Simple Moving Coil Type Seismometer
The transfer function that gives the inverse response to the previous examples is given as follows:

() .,2

0

0
3

2
00

2
1

s

s

RR
RGG

s
shsGsT

+
=

++
⋅= − ωω

 (36)

Fig. 52 shows the amplitude response of this transfer function.

The solutions of the equation, i.e., the numerator is equal to zero, are ()12
0 −±−= hhs ω . This gives the

zero position at

()2
00 1, hh −− ωω , ()2

00 1, hh −−− ωω , for h < 1.0, the under-damped case,

().0,0ω− doubled for h = 1.0, critically damped case,

()().0,12
0 −−− hhω , ()().0,12

0 −+− hhω for h > 1.0, over-damped case.

The denominator, however, gives a tripled pole at (0, 0).
By using the warped frequency, the transfer function is given approximately as follows.

() ,3
3

2
2

1
10

3
3

2
2

1
10

−−−

−−−

+++
+++

=
zbzbzbb
zazazaasT

where

() () (){ }
() () (){ }
() () (){ }
() () (){ }

.,3,3,
2tan2tan212

,2tan32tan212

,2tan32tan212

,2tan2tan212

3210

0
2

03

0
2

02

0
2

01

0
2

00

GbGbGbGb
tthta

tthta

tthta

tthta

−==−==
Δ+Δ−⋅Δ=

Δ+Δ−−⋅Δ=

Δ+Δ+−⋅Δ=

Δ+Δ+⋅Δ=

ωω

ωω

ωω

ωω

Since a simple moving coil type seismometer is a low cut
filter, its inverse filter makes the component grow in a
frequency range that is lower than the natural frequency of
the seismometer. This causes an instability in the output from
the filter, because the signal to noise ratio is small at this
frequency range.

Fig. 52 Amplitude response of the inverse filter for the
voltage change between two output terminals of a
simple moving coil type seismometer that is calculated
by Eq. (36). The parameters used are T0 = 0.5, h = 0.71.
Theoretically, this filter can convert the output voltage
variation with the ground displacement. However, this
amplifies the low frequency components considerably
as shown clearly in this figure.

Inverse Filter for Output Voltage

0.001

0.01

0.1

1

10

100

1000

0.1 1 10 100

Frequency

A
m

pl
it
u
de

 74

Exercise: Design of a recursive filter equivalent to a seismometer (simulated seismogram).
The program ISEISM.EXE calculates the coefficients of the abovementioned inverse filter and applies the
recursive filter to an input time series. Fig. 53.1 shows the following procedure.
(1) Prepare an input time series by using TESTSIG.EXE. For example, an impulse of the unit amplitude

located at t = 0.0 s, with Δt = 0.05 s, N = 128 (Output: UT0). Then, apply a band pass filter by using
TRFILT.EXE with this impulse. For example, for the Butterworth type, FL = 0.3Hz, FH = 8.0 Hz, FS = 9.5
Hz, AP = 0.1, AS = 10.0 (Input: UT0, Output: UT1). This band pass impulse is used for artificial ground
motion.
Calculate the Fourier transform (Input: UT1, Output: UF1)

(2) Run VSEISM.EXE with the natural period T0 = 0.25 s, damping factor h = 0.71, Δt = 0.05, and gain G0
= 1.0 (Input: UT1, Output: UT2). This output is the simulated seismogram for this exercise. Calculate the
Fourier transform by using FFT.EXE (Input: UT2, Output: UF2).

(4) Run ISEISM.EXE with the natural period T0 = 0.25 sec, the damping factor h = 0.71, Δt = 0.05, and
gain G0 = 1.0 (Input: UT2, Output: UT3). Calculate the Fourier transform by using FFT.EXE (Input: UT3,
Output: UF3).
(5) Draw the time series UT1 and UT3 by using PTIME.EXE and its Fourier spectra UF1 and UF3 by using
FFT.EXE and PSPEC.EXE and compare them. Consider the reason why the band pass filter is applied.

Fig. 53.1 Waveforms and its Fourier transform of each step of the example explained above.
Upper-Left: Impulse. This is the beginning of the exercise, Upper-Right: Band pass filtered
impulse, Bottom Left: Recursive filter equivalent to a seismometer is applied to the waveform
shown in Upper-Right, Bottom-Right: Inverse filter is applied to the waveform shown in
Bottom-Left panel. Compare Upper-Right and Bottom-Right panels to recognize the effect of
inverse filter. Note that the band pass filtering at the second step is necessary to prevent the
instability of output due to the big amplification at a high frequency by VSEISM.EXE and at a
low frequency by ISEISM.EXE.

 75

Exercise: Inverse Filter for a Simple Moving Coil Type Seismometer—II (Real Seismogram)
Ch1.dat is a seismogram (NS-component) observed by the L4C seismometer, the parameters of which are

Δt = 0.05, N = 8192, T0 = 1.0 s, h =0.64.
(1) Draw wave forms of ch1.dat using PTIME.EXE.

(2) Run ISEISM.EXE with T0 = 1.0 s, h = 0.64, Δt = 0.02 and gain G0 = 2.7 (V/cm/s) (Input: ch1.dat,
Output: UT0).
(3) Apply a band pass filter by using TRFILT.EXE to this impulse. For example, the Butterworth type, FL =
0.1 Hz, FH = 18.0 Hz, FS=20.0 Hz, AP = 0.1, AS = 10.0 (Input: CH1.dat, Output: UT).

(4) Run ISEISM.EXE with T0 = 1.0 s, h = 0.64, Δt = 0.02 and gain G0 = 2.7 (V/cm/s) (Input: UT, Output:
UT1).
(5) Apply a band pass filter by using TRFILT.EXE with the Butterworth type, FL = 0.1 Hz, FH = 18.0 Hz,
FS = 20.0 Hz, AP = 0.1, AS = 10.0 (Input: UT1, Output: UT2).

Fig. 53.2 Procedure and output of the example for a real seismogram.

 76

Example: Filter for Conversion of Seismogram obtained by a Simple Moving Coil Type Seismometer
to that of Longer Period Seismometer.

A simple way to avoid the abovementioned problem is to convert the system response with a
longer-period seismometer.

Suppose that the damping constant and natural angular frequency of the seismometer used for

the observations are h0, ω0, then its response is

()

() ()
.

21 2
000

0 ωωωω
ω

−−
⋅=

ih
iGy

e
m

m

Let us convert this with the response from a seismometer, in which the damping constant and natural

angular frequency are h1, ω1 .
()

() ()
.

21 2
111

1 ωωωω
ω

−−
⋅=

ih
iGy

e
m

m

The inverse function in the frequency domain is

() ()
() ()

.,
21
21

102
111

2
0001 GGG

ih
ihG =

−−
−−

⋅−

ωωωω
ωωωω

The transfer function in the s-domain is given as follows:

() .
2
2

2
111

2

2
000

2
1

ωω
ωω

++
++

⋅= −

shs
shsGsT (37)

Then, using the warped frequency gives

()
() ()() ()

() ()() ()

,

1
2

tan11
2

tan21

1
2

tan11
2

tan21

2
2

1
10

2
2

1
10

2112111
1

21

2102110
0

21

1

−−

−−

−−−−

−−−−

−

++
++

=

+⎟
⎠
⎞

⎜
⎝
⎛ Δ

++−⎟
⎠
⎞

⎜
⎝
⎛ Δ

+−

+⎟
⎠
⎞

⎜
⎝
⎛ Δ

++−⎟
⎠
⎞

⎜
⎝
⎛ Δ

+−
⋅=

zbzbb
zazaa

ztzzthz

ztzzthz
GsT

ωω

ωω

where

() ()
()
() ()

() (){ }
(){ }

() ()().2tan2tan21

,2tan22

,2tan2tan21

,2tan2tan21

,2tan22

,2tan2tan21

1
2

112

1
2

1

1
2

110

0
2

002

0
2

1

0
2

000

tthGb

tGb

tthGb

ttha

ta

ttha

Δ+Δ+=

Δ+−=

Δ+Δ+=

Δ+Δ−=

Δ+−=

Δ+Δ+=

ωω

ω

ωω

ωω

ω

ωω

 77

Fig. 54 Amplitude spectra of the correction filter explained above.

0.001

0.01

0.1

1

10

100

0.01 0.1 1 10 100

Frequency

A
m

pl
it
u
de

Original Seismometer Simulated Seismometer Correction Filter

 78

Exercise: Filter for Conversion of Seismogram obtained by a Simple Moving Coil Type Seismometer
to that of Longer Period Seismometer （An Impulse）.
(1) The program CSEISM.EXE calculates the coefficients of the recursive filter that can convert the

characteristics of the simple moving coil type seismometer used originally for (1) observing those of
the simulated seismometer with a longer period.

(2) Prepare an input time series by using TESTSIG.EXE. For example, an impulse of unit amplitude located

at t = 0.0 s, with Δt =0.05 s, N = 128 (Output: UT0)
(3) Calculate Fourier transform by using FFT.EXE (Input: UT0, Output: UF0).

(4) Run DSEISM.EXE with the natural period T0 = 0.25 s, the damping factor h0 = 0.71, Δt = 0.05 and the
gain G0 = 1.0 (Input: UT0, Output: UT1).
Calculate Fourier transform by using FFT.EXE (Input: UT1, Output: UF1).

(5) Run CSEISM.EXE with T0 = 0.25 s, h0 = 0.71, T1 = 1.0 s, h1 = 0.71, Δt = 0.05, and gain G0 = 1.0
(Input: UT1, Output: UT2).
Calculate Fourier transform by using FFT.EXE (Input: UT2, Output: UF2).

Fig. 55.1 Waveforms and spectra of the example mentioned above. Left: Impulse used as the input.
Center: Simulated output for a seismometer T0 = 0.25 s, h0 = 0.71 by DSEISM.EXE. Right:
Converted output from T0 = 0.25, h0 = 0.71 s to T0 = 1.0, h0 = 0.71 s by CSEISMO.EXE.

 79

Exercise: Filter for Conversion of Seismogram obtained by a Simple Moving Coil Type Seismometer
to that of Longer Period Seismometer （Real Seismogram）

Ch1.dat is a seismogram (NS-component) observed by L4C seismometer, the parameters of which are Δt =
0.05, N = 8192, T0 = 1.0 s, h = 0.64.
(1) Draw wave forms of ch1.dat using PTIME.EXE.
(2) Run CSEISM.EXE with
 Original Seismometer
 T0,h,dt,g0: 1.0, 0.64, 0.02, and 2.7 (V/cm/s)
 Simulated Seismometer
 T0,h,dt,g0: 5.0, 0.71, 0.02, and 50.0 (V/cm/s)
(Input: ch1.dat, Output: output.dat).

Calculate Fourier transform by using FFT.EXE (Input: output.dat, Output:output.spc).

Fig. 55.2 Input signal (left): Ch1.dat and output signal (right) of CSEISMO.EXE

����� Output.dat Input.dat

 80

3.6. Integration of accelerogram or Base Line Correction

3.6.1 Origin of Low-Frequency Errors
Chiu (1997) explains the origins of low-frequency errors in the following manner. We are interested mainly
in low-frequency noises because the effects of high-frequency noises are considerably reduced by double
integration since their frequency band is lower than Nyquist frequency.

(1) Deviations of the instrument response from flat amplitude response and from linear phase shift. These
are large in a high-frequency range. Careful calibration by the manufacturer is essential.
(2) Limited resolution of analog-to-digital Converter. This causes the approximations and the drift.
(3) Insufficient sampling rate that can be prevented by considering the Nyquist frequency. Although the
frequency band of interest to engineering seismologists is lower than 10 Hz, sampling with at least 100
Hz is recommended in order to obtain the value of the peak acceleration correctly.
(4) Electronic Noise: besides the AC noise at 50 or 60 Hz, low-frequency electric noise caused by
fluctuation of temperature is present.
(5) Ambient noises that include a long-period microtremor and slow deformation of observatory building, e.
g. , due to sunshine affects the integrated displacement seismogram significantly.

Their effects appear superposed over each other and the seismic signals in the seismograms and in the
output of digital data processing. It is almost impossible to separate the signal from these noises in the time
domain.

These cause the base line drift of accelerograms and absurd waveforms of velocity and displacement
seismograms obtained by numerical integration. An example is shown below.

 Fig. 56.1 shows the original accelerograms obtained at K-NET maintained by NIED, Japan; its
station is KGS005 in the northwest part of Kagoshima pref. and the seismic event (MJMA = 3.6) took place
21:26 on March 27, 1997. This is one of the aftershocks of Kagoshima-Ken Hokusei-bu Eq. (M = 6.3).
These include the noises mentioned above, although there is no visible noise in the shown scale.

The acceleration amplitude spectra of the seismic event (time window; [12.0 s, 24.0 s]) shown in
the top panels of Fig. 56.2 has a wide peak that corresponds to the seismic signals and a portion of noise
that is more clearly shown in the low frequency band. The latter is emphasized in the displacement
amplitude spectra shown in the bottom panels. Fig. 56.3 shows the amplitude spectra of the noise (time
window; [0.0 s, 10.0 s]) recorded before the P-wave arrivals. A comparison of Fig. 56.3 with Fig. 56.2
shows the effects of the low-frequency noises in the frequency domain.

 81

Fig. 56.1 Original Accelerograms. Plotted by pltacc.exe.

Fig. 56.2 Amplitude spectra of accelerograms shown in Fig. 56.1 for the time window [12.0 s,
24.0 s] that include the seismic event. The increasing peak at the frequency band lower than
0.4Hz is emphasized in the displacement amplitude spectra obtained by the division of

acceleration spectra by (2πf)2. Plotted by splot.exe.

 82

Fig. 56.3 Amplitude spectra of accelerograms shown in Fig. 56.1 for the time window [0.0 s,
10.0 s] that is the noise part. The increasing peak at the frequency band lower than 0.4 Hz is
emphasized in the displacement amplitude spectra obtained by the division of acceleration

spectra by (2πf)2 . Plotted by splot.exe.

The integration of the time series can be performed by recursive filtering as given by the following.

.1 mmm xtyy ⋅Δ+= −

The velocity seismograms obtained by a direct integration of the accelerograms shown in Fig.

56.1 are shown in Fig. 56.4. These almost linearly increasing velocity seismograms show the effect of the
constant offset included in the original accelerograms. The slightly observable curvature is due to the linear
trend included in them.

The correction for the constant offset and linear trend in accelerograms is performed by the least

square fitting as shown by Eq. (8). Then, the numerical integration is performed. The result is shown in Fig.
56.5. This is considerably improved in comparison with Fig. 56.4. The slight base line drift of the long
period is supposed to be due to the influence of the low-frequency noise remaining in the corrected
accelerograms.

 83

Fig. 56.4 Velocity seismograms obtained by a direct integration of the accelerograms shown in
Fig. 56.1. The apparent linear trends are due to the influence of the constant drift in the
accelerograms. Calculated by acc2vel.exe with comments for the offset-trend correction and
band pass filtering, and then plotted by pltvel.exe.

Fig. 56.5 The accelerograms shown in Fig. 56.1 are corrected by the least square fitting method
and then integrated numerically. The slight drift in the base line is due to the influence of the
low-frequency noise remaining in the corrected accelerograms. Calculated by acc2vel.exe with
comments due to band pass filtering, and then plotted by pltvel.exe.

 84

 The remaining low-frequency noises can be removed by applying the high pass or band pass filter
aimed to cut the low frequency component.

The example is shown in Fig. 56.6. The used values for the parameters of the band pass filter are as
follows:.

fl, fh, fs/0.7, 25.0, 30.0/ ntype,nchara,ncausal/1,3,2/

fl = 0.7 Hz corresponds to the limit frequency in which the seismic signals become dominant in comparison
with noises (Fig. 56.2 top panels). fh = 25.0 Hz and fs = 30.0 Hz are selected in order to ensure the
suppression of high-frequency noises. Ntype = 1 means Butterworth filter and nchara = 3 means band pass
feature. ncause= 2 that means that a zero-phase filter is selected in order to maintain the waveform of
seismic signals.

Fig. 56.6 The accelerograms shown in Fig. 56.1 are corrected by the least square fitting method,
band pass filtered, and then integrated numerically. They were calculated by acc2vel.exe and
plotted by pltvel.exe.

.

 85

 The conversion of the accelerogram to the displacement seismogram is tougher than that in the
case of a velocity seismogram because of the double integrations. Fig. 56.7 shows the result of a direct
integration of the velocity seismograms shown in Fig. 56.4, i. e., those of the double direct integration of
the accelerograms shown in Fig. 56.1. The parabolic feature is due to the integration of the almost linear
velocity seismograms (Fig. 56.4). Note the absurdly big values of the maximum value.

.

Fig. 56.7 Displacement seismogram obtained by a direct integration of the velocity seismograms
shown in Fig. 56.4. Calculated by acc2dis.exe with comments on the offset-drift correction and
band pass filtering for accelerograms and velocity seismograms; subsequently plotted by
pltdis.exe.

 86

Fig. 56.8 shows the displacement seismogram obtained by the least square correction and the integration of
the velocity seismograms shown in Fig. 56.5. These show parabolic waveforms that are integrated
low-frequency noises as well.

Fig. 56.9 Displacement seismogram obtained by a direct integration of the velocity seismograms shown in
Fig. 56.6.

Fig. 56.10 Displacement seismogram obtained by the least square correction of the velocity seismograms
shown in Fig. 56.6. This give a better performance than the others, but not sufficient. A slight trend is
obvious in the NS component.

Fig. 56.8 Displacement seismogram obtained by the least square correction and integration of
the velocity seismograms shown in Fig. 56.5. Calculated by acc2dis.exe with comments from
the band pass filtering for accelerograms and velocity seismograms; subsequently plotted by
pltdis.exe.

 87

Fig. 56.9 Displacement seismogram obtained by a direct integration of the velocity
seismograms shown in Fig. 56.6. Calculated by acc2dis.exe with comments from the
offset-drift correction and band pass filtering for velocity seismograms; subsequently plotted
by pltdis.exe.

Fig. 56.10 Displacement seismogram obtained by the least square correction of the velocity
seismograms shown in Fig. 56.6. Calculated by acc2dis.exe with comments from band pass
filtering for velocity seismograms; subsequently plotted by pltdis.exe.

 88

 The attempts described above imply the necessity of an offset-drift correction and band pass
filtering for accelerograms and velocity seismograms. Fig. 57.1 and Fig. 57.2 show stable results, i. e.,
displacement seismograms without a base line drift.

The difference between Fig. 57.1 and Fig. 57.2 is the value of the parameter fl. In Fig. 57.1, fl =
0.1 Hz, and in Fig. 57.2 fl = 0.7 Hz. A ong-period ripple is observed before P-arrival in Fig. 57.1 due to the
low-frequency noises that can be suppressed by selecting fl = 0.7 Hz

The base line correction of the velocity and displacement seismograms integrated from observed
an accelerogram is a very basic task for strong motion observation. The techniques of digital data
processing described in this lecture note are necessary in totality.

The recommended way of integration is as follows.

(1) Calculate and plot the Fourier spectra of the observed accelerogram for both noise part and seismic

event part.
(2) Determine the value of fl that is the low frequency limit of the band such that the seismic signal is

dominant in comparison with the noise level.
(3) Select the values of fh and fs, if the band pass filter is used. If a high pass filter is used, they are not

necessary.
(4) Apply the offset-trend correction by the least square method and filtering to the observed

accelerograms.
(5) Integrate the processed accelerograms; then the velocity seismograms are then obtained.
(6) Apply the offset-trend correction by the least square method and filtering to the obtained velocity

seismograms.
(7) Integrate the processed velocity seismograms; then the displacement seismograms are obtained.
(8) If the obtained displacement seismograms have a long-period deviation before P-arrival time, return to

(2) and change the value of fl.
The result can be affected by the types of filter applied. Try to check the performance of various filters on
your own.

 89

Fig. 57.1 Displacement seismogram obtained by the least square correction and band pass
filtering of the velocity seismograms shown in Fig. 56.6. Long-period ripple observed before
P-arrival is due to the low-frequency noises.

Fig. 57.2 Displacement seismogram obtained by the least square correction and band pass
filtering of the velocity seismograms shown in Fig. 56.6. Long-period ripple observed before
P-arrival in Fig. 57.1 is suppressed sufficiently.

 90

Fortran Programs

CFFT.FOR
c**
 SUBROUTINE CFFT(X,N,IND)
c...
c Complex Fast Fourier Transform
c Coded by Y. OHSAKI in "Introduction to spectral analysis for
c seismic waves"
c Typed by D.Suetsugu, IISEE
c Modified by H.Inoue, IISEE
c Usage....... CALL FFT(N,X,IND)
c where
c X(N) In/Out Equi-spaced N complex data/Transformed values
c N In Number of data, MUST be a power of 2.
c IND In -1=Fourier transform, 1=Inverse Fourier transform
c
c Note..... You must divide the output X() by N to get Fourier
c transform when IND=-1.
c...
 complex x(n),temp,theta
c
 j=1
 do 140 i=1,n
 if(i.ge.j) goto 110
 temp=x(j)
 x(j)=x(i)
 x(i)=temp
 110 m=n/2
 120 if(j.le.m) goto 130
 j=j-m
 m=m/2
 if(m.ge.2) goto 120
 130 j=j+m
 140 continue
c
 kmax=1
 do 150 kkk=1,9999
 if(kmax.ge.n) return
 istep=kmax*2
 do 170 k=1,kmax
 theta=cmplx(0.0,3.141593*float(ind*(k-1))/float(kmax))
 do 160 i=k,n,istep
 j=i+kmax
 temp=x(j)*cexp(theta)
 x(j)=x(i)-temp
 x(i)=x(i)+temp
 160 continue
 170 continue
 kmax=istep
 150 continue
 end

TESTSIG.FOR
c**
c Make a test signal u(t)
c**
 program main
 parameter (nmax=8192,pi=3.1415926536)
 real t(nmax),u(nmax)
 character yn*1,ofile*80
c
 if(nargs().le.1) then
 write(*,*)
 write(*,*) 'Usage: TESTSIG outfile'
 stop ' '
 end if
 call getarg(1,ofile,istatus)
c .. Input parameters
 write(*,*)
 write(*,*) 'Parameters for a test signal.'
 write(*,'(a$)') ' Sampling interval dT (sec) >>'
 read(*,*) dt
 write(*,'(a$)') ' Number of data points N >>'
 read(*,*) ndata
 write(*,'(1x,a,f10.3,a)')'Total time is',dt*ndata,' sec.'
 write(*,'(1x,72a)') ('-',i=1,72)
 do i=1,ndata
 t(i)=(i-1)*dt
 u(i)=0.0
 end do
c ... Superposition loop
 do isum=1,999
 write(*,'(a$)') ' Cos/Sin=1, Const=2, Impulse=3,'//
 & ' Step=4, Triangle=5, Square=6 >>'
 read(*,*) ichoice
 if(ichoice.eq.1) then
 write(*,'(a$)') ' Period of the cosine wave (sec)>>'

 read(*,*) period
 write(*,'(a$)') ' Amplitude >>'
 read(*,*) amp
 write(*,'(a$)') ' Phase (0-360 in degree) >>'
 read(*,*) phase
 write(*,'(a$)') ' Damping factor >>'
 read(*,*) damp
 do i=1,ndata
 arg=phase/180.*pi+2*pi/period*t(i)
 u(i)=u(i)+amp*cos(arg)*exp(-damp*t(i))
 end do
 else if(ichoice.eq.2) then
 write(*,'(a$)') ' The constant value >>'
 read(*,*) const
 do i=1,ndata
 u(i)=u(i)+const
 end do
 else if(ichoice.eq.3) then
 write(*,'(a$)') ' Location of the impulse (sec) >>'
 read(*,*) timpulse
 write(*,'(a$)') ' Amplitude of the impulse >>'
 read(*,*) aimpulse
 do i=1,ndata
 if(t(i).ge.timpulse) then
 u(i)=u(i)+aimpulse
 exit
 end if
 end do
 else if(ichoice.eq.4) then
 write(*,'(a$)') ' Location of the step(sec) >>'
 read(*,*) tstep
 write(*,'(a$)') ' Amplitude of the step >>'
 read(*,*) astep
 do i=1,ndata
 if(t(i).ge.tstep) then
 u(i)=u(i)+astep
 end if
 end do
 else if(ichoice.eq.5) then
 write(*,'(a$)')'Period of the triangular wave(sec)>>'
 read(*,*) period
 write(*,'(a$)') ' Amplitude >>'
 read(*,*) amp
 write(*,'(a$)') ' Phase (0-360 in degree) >>'
 read(*,*) phase
 do i=1,ndata
 half=period/2.
 tt=t(i)+phase/360.*period
 tmod=mod(tt,half)
 if(mod(int(tt/half),2).eq.0) then
 u(i)=u(i)+amp-amp*2*tmod/half
 else
 u(i)=u(i)-amp+amp*2*tmod/half
 end if
 end do
 else if(ichoice.eq.6) then
 write(*,'(a$)')'Period of the square wave(sec) >>'
 read(*,*) period
 write(*,'(a$)') ' Amplitude >>'
 read(*,*) amp
 write(*,'(a$)') ' Phase (0-360 in degree) >>'
 read(*,*) phase
 do i=1,ndata
 half=period/2
 tt=t(i)+phase/360*period+period/4.0
 if(mod(int(tt/half),2).eq.0) then
 u(i)=u(i)+amp
 else
 u(i)=u(i)-amp
 end if
 end do
 end if
 write(*,'(a$)') ' Add more? (y/n) >>'
 read(*,'(a)') yn
 if(yn.ne.'y'.and.yn.ne.'Y') exit
 end do
 write(*,'(1x,72a)') ('-',i=1,72)
c Output Time Series
 open(10,file=ofile)
 write(10,*) ndata,' =N'
 write(10,*) dt,' =dT (sec)'
 do i=1,ndata
 write(10,*) u(i)
 end do
 close(10)
 write(*,*) 'Done'
c
 end

 91

PTIME.FOR
c**
c Plot time series in a file
c**
 program main
 parameter (nmax=8192)
 real t(nmax),u(nmax)
 character ifile*80
c Input Time Series
 if(nargs().le.1) then
 write(*,*)
 write(*,*) 'Usage: PTIME infile'
 stop ' '
 end if
 call getarg(1,ifile,istatus)
 open(10,file=ifile,status='old')
 read(10,*) ndata
 read(10,*) dt
 do i=1,ndata
 read(10,*) u(i)
 t(i)=dt*(i-1)
 end do
 close(10)
c Plot Time Series
 umax=u(1)
 umin=u(1)
 do i=2,ndata
 if(u(i).gt.umax) umax=u(i)
 if(u(i).lt.umin) umin=u(i)
 end do
 ymax=max(abs(umax),abs(umin))*1.5
c
 call opengraphics
 call setwindow(1,0.,-ymax,dt*ndata,ymax)
 call setviewpt(1,0.3,0.3,1.1,0.7)
 call drawtitle('Time Series')
cc call setline('width=2')
 call settext('size=0.8')
 call drawaxis('labelx=Time(s),labely=Amplitude')
 call drawline(0.,0.,dt*ndata,0.)
 call setmark('type=solid-square,size=0.5')
 call drawlines(ndata,t,u)
 call drawmarks(ndata,t,u)
 call closegraphics
 end

FFT.FOR
 include 'cfft.for'
c**
c Calculate Fourier Coefficients by FFT
c**
 parameter(nmax=8192)
 real u(nmax)
 complex cf(nmax)
 character ifile*80,ofile*80
c
 if(nargs().le.2) then
 write(*,*)
 write(*,*) 'Usage: FFT infile outfile'
 stop ' '
 end if
 call getarg(1,ifile,istatus)
 call getarg(2,ofile,istatus)
c.. Read time series from file
 open(10,file=ifile,status='old')
 read(10,*) ndata
 read(10,*) dt
 do i=1,ndata
 read(10,*) u(i)
 end do
 close(10)
c.. Check if ndata=2**n
 npow=nint(log(float(ndata))/log(2.0))
 nn=2**npow
 if(ndata.ne.nn) then
 write(*,*) 'N=',ndata,', Error: N must be a power of 2.'
stop
 end if
c... FFT
 do i=1,nn
 cf(i)=cmplx(u(i),0.0)
 end do
 call cfft(cf,nn,-1)
 do i=1,nn
 cf(i)=cf(i)/nn
 end do
c.................................... Write Fourier Coeff. to file
 df=1.0/(dt*nn)
 open(20,file=ofile)
 write(20,*) nn,' =N'

 write(20,*) df,' =df'
 do i=1,nn
 write(20,*) cf(i)
 end do
 close(20)
 write(*,*) 'Done'
c...
 end

PCFFT.FOR
c**
c Plot FFT Coefficients
c**
 character*20 ifile,ofile
 parameter(nmax=8192,pi=3.1415926535,d2r=pi/180.)
 complex cf(nmax)
 real amp(nmax/2),phase(nmax/2),freq(nmax/2)
c..Input from file
 if(nargs().le.1) then
 write(*,*)
 write(*,*) 'Usage: PFFT infile'
 stop ' '
 end if
 call getarg(1,ifile,istatus)
 open(10,file=ifile,status='old')
 read(10,*) nn
 read(10,*) df
 do i=1,nn
 read(10,*) cf(i)
 end do
 close(10)
 fmax=nn/2*df
c.. Plot spectrum
 i=0
 do k=nn/2+1,nn-1
 i=i+1
 freq(i)=(k-nn)*df
 amp(i)=cabs(cf(k+1))
 if(amp(i).ne.0.0) then
 phase(i)=atan2(imag(cf(k+1)),real(cf(k+1)))/d2r
 end if
 end do
 do k=0,nn/2
 i=i+1
 freq(i)=df*k
 amp(i)=cabs(cf(k+1))
 if(amp(i).ne.0.0) then
 phase(i)=atan2(imag(cf(k+1)),real(cf(k+1)))/d2r
 end if
 end do
c
 ampmax=amp(1)
 do i=2,nn
 if(amp(i).gt.ampmax) ampmax=amp(i)
 end do
 do i=1,nn
 if(amp(i)/ampmax.lt.1.e-5) then
 phase(i)=0.0
 end if
 end do
c
c.. Graphics
 call opengraphics
 call setwindow(1,-fmax,0.0,fmax,ampmax*1.2)
 call setviewpt(1,0.3,0.45,1.1,0.8)
 call drawtitle('FFT Coefficients')
 call settext('size=0.8')
 call drawaxis('labely=Amplitude')
 call setwindow(2,-fmax,-180.,fmax,180.)
 call setviewpt(2,0.3,0.2,1.1,0.40)
 call drawaxis('labelx=Frequency(Hz),labely=Phase,'//
 & 'dy=90,ddy=90')
c.................................... Plot amplitude and phase spectrum
 call setmark('type=solid-square,size=0.7')
 call selectwindow(1)
 call drawlines(nn,freq,amp)
 call drawmarks(nn,freq,amp)
 call selectwindow(2)
 call drawlines(nn,freq,phase)
 call drawmarks(nn,freq,phase)
 call closegraphics
c...
 end

PSPEC.FOR
c***
c Plot Fourier Spectrum
c**
 character*20 ifile,ofile

 92

 parameter(nmax=8192,pi=3.1415926535,d2r=pi/180.)
 complex cf(nmax)
 real amp(nmax/2),phase(nmax/2),freq(nmax/2)

c.. Input from file
 if(nargs().le.1) then
 write(*,*)
 write(*,*) 'Usage: PSPEC infile'
 stop ' '
 end if
 call getarg(1,ifile,istatus)
 open(10,file=ifile,status='old')
 read(10,*) nn
 read(10,*) df
 do i=1,nn
 read(10,*) cf(i)
 end do
 close(10)
c.. Plot spectrum
 do i=1,nn/2+1
 freq(i)=df*(i-1)
 amp(i)=cabs(cf(i))/df
 end do
 fmax=nn/2*df
c
 ampmax=amp(1)
 do i=2,nn/2+1
 if(amp(i).gt.ampmax) ampmax=amp(i)
 end do
 do i=1,nn
 if(amp(i)/ampmax.gt.1.e-5) then
 phase(i)=atan2(imag(cf(i)),real(cf(i)))/d2r
 else
 phase(i)=0.0
 end if
 end do
c
c.. Graphics
 call opengraphics
 call setwindow(1,0.0,0.0,fmax,ampmax*1.2)
 call setviewpt(1,0.3,0.45,1.1,0.8)
 call drawtitle('Fourier Spectrum')
 call settext('size=0.8')
cc call setline('width=2.0')
 call drawaxis('labely=Amplitude')

 call setwindow(2,0.0,-180.,fmax,180.)
 call setviewpt(2,0.3,0.2,1.1,0.40)
 call drawaxis('labelx=Frequency(Hz),labely=Phase,'//
 & 'dy=90,ddy=90')
c.................................... Plot amplitude and phase spectrum
 call setmark('type=solid-square,size=0.5')
 call selectwindow(1)
 call drawlines(nn/2+1,freq,amp)
 call drawmarks(nn/2+1,freq,amp)
 call selectwindow(2)
 call drawlines(nn/2+1,freq,phase)
 call drawmarks(nn/2+1,freq,phase)
 call closegraphics

c...
 end

IFFT.FOR
 include 'cfft.for'
c**
c Inverse FFT
c**
 parameter(nmax=8192)
 complex cf(nmax)
 character ifile*80,ofile*80
c
 if(nargs().le.2) then
 write(*,*)
 write(*,*) 'Usage: IFFT infile outfile'
 stop ' '
 end if
 call getarg(1,ifile,istatus)
 call getarg(2,ofile,istatus)
c... Read Fourier Coeff.
 open(10,file=ifile,status='old')
 read(10,*) nn
 read(10,*) df
 do i=1,nn
 read(10,*) cf(i)
 end do
 close(10)
c... Inv FFT
 call cfft(cf,nn,1)
c.. Write time series

 open(20,file=ofile)
 write(20,*) nn, ' =N'
 write(20,*) (1.0/df)/nn, ' =dt'
 do i=1,nn
 write(20,*) real(cf(i))
 end do
 close(20)
 write(*,*) 'Done'
c
 end

FFILT.FOR
c**
c Designing filter in the frequency domain
c**
 parameter(nmax=8192)
 complex cf(nmax)
 character ofile*80
c
 write(6,*)'??? OUTPUT FILE NAME ???'
 read(5,'(a)') ofile
c.. Input parameters
 write(6,*)
 write(6,*) 'Parameters for a filter wavelet.'
 write(6,'(a)') ' Sampling interval dT (sec) >>'
 read(5,*) dt
 write(6,'(a)') ' Number of data points N >>'
 read(5,*) ndata
 write(6,'(1x,a,f10.3,a)')'Total time is',dt*ndata,' sec.'
 write(6,'(1x,72a)') ('-',i=1,72)
c.. Check if ndata=2**n
 npow=nint(log(float(ndata))/log(2.0))
 nn=2**npow
 if(ndata.ne.nn) then
 write(6,*) 'N=',ndata,', Error: N must be a power of 2.'
 stop
 end if
 td=dt*ndata
 df=1./td
 fnyq=0.5/dt
 goto 78
 77 continue
 write(6,*)'Try again!'
 78 continue
c........................Read filter parameter (f1,f2,f3,f4)
 write(6,*)' ------------\ '
 write(6,*)' / \ '
 write(6,*)' / \ '
 write(6,*)' / \ '
 write(6,*)' / \ '
 write(6,*)' / \ '
 write(6,*)'---- ----------'
 write(6,*)' f1 < f2 < f3 < f4 <',fnyq,'Hz'
 read(5,*) f1,f2,f3,f4
c........................ Calculate Fourier Coefficients of filter
 if(f4.ge.fnyq) then
 write(6,*)' f4 must be less than the Nyquist frequency.'
 goto 77
 endif
 if(f1.ge.f2) then
 write(6,*)' f1 must be less than f2.'
 goto 77
 endif
 if(f2.ge.f3) then
 write(6,*)' f2 must be less than f3.'
 goto 77
 endif
 if(f3.ge.f4) then
 write(6,*)' f3 must be less than f4.'
 goto 77
 endif
 n1=int(f1/df)+1
 n2=int(f2/df+0.5)
 n3=int(f3/df+0.5)
 n4=int(f4/df)
 do i=1,n1
 cf(i)=cmplx(0.0,0.0)
 end do
 do i=n1+1,n2
 cf(i)=cmplx(real(i-n1)*df/(f2-f1)/td,0.0)
 enddo
 do i=n2+1,n3
 cf(i)=cmplx(1./td,0.0)
 enddo
 do i=n3+1,n4
 cf(i)=cmplx((1.0-real(i-n3)*df/(f4-f3))/td,0.0)
 enddo
 do i=n4+1,nn/2
 cf(i)=cmplx(0.0,0.0)
 enddo

 93

 do i=nn/2+1,nn
 cf(i)=conjg(cf(nn-i+1))
 enddo
c.................................... Write Fourier Coeff. to file
 open(20,file=ofile)
 write(20,*) nn,' =N'
 write(20,*) df,' =df'
 do i=1,nn
 write(20,*) cf(i)
 end do
 close(20)
 write(6,*) 'It is assumed that the phase spectra are zero.'
 write(6,*) 'Done'
c...
 end

FPRDCT.FOR
c**
c Product of filter spectra and input time series spectra
c**
 character*20 ifile,ofile
 parameter(nmax=8192)
 complex cf1(nmax),cf2(nmax)
c..Input from file
 10 write(6,*)'??? INPUT FILE NAME (FIlter Spectra) ???'
 read(5,'(a)') ifile
 open(10,file=ifile,status='old')
 read(10,*) nn
 read(10,*) df
 do i=1,nn
 read(10,*) cf1(i)
 end do
 close(10)
 write(6,*)'??? INPUT FILE NAME (Input Signal Spectra) ???'
 read(5,'(a)') ifile
 open(10,file=ifile,status='old')
 read(10,*) nn1
 read(10,*) df1
 do i=1,nn
 read(10,*) cf2(i)
 end do
 close(10)
 if(nn1.ne.nn.or.df1.ne.df) then
 write(6,*)'Data number or frequency interval unmatched.'
 goto 10
 endif
 fmax=nn/2*df
 td=1./df
c.. Product
 do i=1,nn/2
 cf1(i)=cf1(i)*cf2(i)*td
 enddo
 do i=nn/2+1,nn
 cf1(i)=conjg(cf1(nn-i+1))
 enddo
c.................................... Write Fourier Coeff. to file
 write(6,*)'??? OUTPUT FILE NAME ???'
 read(5,'(a)') ofile
 open(20,file=ofile)
 write(20,*) nn,' =N'
 write(20,*) df,' =df'
 do i=1,nn
 write(20,*) cf1(i)
 end do
 close(20)
 write(6,*)'Done'
 end

FWVLET.FOR
c**
c Make filter wavelet of a filter from the inverse
c Fourier Transform of given amplitude spectra
c**
 program main
 parameter (nmax=8192)
 real u(nmax),wt(nmax)
 character ifile*80,ofile*80
c Input Time Series
 write(6,*)'??? INPUT FILE NAME'
 read(5,'(a)') ifile
 write(6,*)'??? OUTPUT FILE NAME'
 read(5,'(a)') ofile
 open(10,file=ifile,status='old')
 read(10,*) ndata
 read(10,*) dt
 do i=1,ndata
 read(10,*) u(i)
 end do
 close(10)

c make filter wavelet
 11 write(6,*)'Causal (1) or Zero phase (2) ???'
 read(5,*) iflg
 if(iflg.eq.1) then
 write(6,*)
 *'How many points will you use for the weighted moving
average?'
 read(5,*) np
 do i=1,np
 wt(i)=u(i)
 enddo
 else if(iflg.eq.2) then
 write(6,*)
 *'How many points will you use for the weighted moving
average?',
 *'The number must be odd. '
 read(5,*) np
 nph=(np-1)/2
 do i=1,nph
 wt(i)=u(ndata-nph+i)
 enddo
 do i=nph+1,np
 wt(i)=u(i-nph)
 enddo
 else
 goto 11
 endif
 do i=1,np
 write(6,*) i,wt(i)
 enddo
 open(10,file=ofile,status='unknown')
 write(10,*) np,iflg
 write(10,*) dt,' =dT (sec)'
 do i=1,np
 write(10,*) wt(i)
 end do
 close(10)
 end

FCONV.FOR
c**
c Filtering by convolution in the time domain
c**
 program main
 parameter (nmax=8192)
 real wt(nmax),v(nmax),u(nmax)
 character*80 ifile,ofile
c Input Time Series
 write(6,*)'??? INPUT FILE NAME (Filter Wavelet)???'
 read(5,'(a)') ifile
 open(10,file=ifile,status='old')
 read(10,*) np,iflg
 read(10,*) dt
 do i=1,np
 read(10,*) wt(i)
 end do
 close(10)
 write(6,*)'??? INPUT FILE NAME (Input Signal)???'
 read(5,'(a)') ifile
 open(10,file=ifile,status='old')
 read(10,*) ndata
 read(10,*) dt1
 if(dt1.ne.dt) then
 write(6,*)'Time interval unmatched!'
 stop
 endif
 do i=1,ndata
 read(10,*) u(i)
 end do
 close(10)
c.. Convolution
c Reverse filter time series
c ---> Coefficient of weighted moving average
 if(iflg.eq.1) then
 write(6,*)'Causal Filtering'
 do n=1,np
 v(n)=0.0
 do m=1,n
 v(n)=v(n)+wt(n-m)*u(m)*dt
 enddo
 enddo
 do n=np+1,ndata

 v(n)=0.0
 do m=n-np,n
 v(n)=v(n)+wt(n-m)*u(m)*dt
 enddo
 enddo
 else if(iflg.eq.2) then
 nph=(np-1)/2
 write(6,*)'Zero phase filtering'

 94

 do n=1,nph
 v(n)=0.0
 do m=1,n+nph
 v(n)=v(n)+wt(n-m+nph+1)*u(m)*dt
 enddo
 enddo
 do n=nph+1,ndata
 v(n)=0.0
 do m=n-nph,n+nph
 v(n)=v(n)+wt(n-m+nph+1)*u(m)*dt
 enddo
 enddo
 endif
c Output Time Series
 write(6,*)'??? OUTPUT FILE NAME ???'
 read(5,'(a)') ofile
 open(10,file=ofile,status='unknown')
 write(10,*) ndata,' =N'
 write(10,*) dt,' =dT (sec)'
 do i=1,ndata
 write(10,*) v(i)
 end do
 close(10)
 write(6,*) 'Done'
 stop
 end
BANDP1
 subroutine bandp1(x,n,dt,fl,fh,fs,ap,as,ntype,nchara,ncausal)
 real*4 x(n),y(65536),f(128)
c write(6,*)' Filter coefficients calculation started'
 flu=fl*dt
 fhu=fh*dt
 fsu=fs*dt
c..Calculation of filter coefficients
 if(ntype.eq.1) then
c Butterworth Filter
 if(nchara.eq.1) then
c Low-Cut (High-Pass) Filter
 call buthip(f,mf,gn,nchb,flu,fsu,ap,as)
 else if(nchara.eq.2) then
c High-Cut (Low-Pass) Filter
c write(6,*)' high cut'
 call butlop(f,mf,gn,nchb,fhu,fsu,ap,as)
 else if(nchara.eq.3) then
c Band-Pass Filter
 call butpas(f,mf,gn,nchb,flu,fhu,fsu,ap,as)
 else
c Band-Stop Filter
 call butstp(f,mf,gn,nchb,flu,fhu,fsu,ap,as)
 endif
 else if(ntype.eq.2) then
c Chevyshev-I FIlter
 if(nchara.eq.1) then
c Low-Cut (High-Pass) Filter
 call chbhip(f,mf,gn,nchb,eps,fhu,fsu,ap,as)
 else if(nchara.eq.2) then
c High-Cut (Low-Pass) Filter
 call chblop(f,mf,gn,nchb,eps,flu,fsu,ap,as)
 else if(nchara.eq.3) then
c Band-Pass Filter
 call chbpas(f,mf,gn,nchb,eps,flu,fhu,fsu,ap,as)
 else
c Band-Stop Filter
 call chbstp(f,mf,gn,nchb,eps,flu,fhu,fsu,ap,as)
 endif
 else if(ntype.eq.3) then
c Chevyshev-II FIlter
 if(nchara.eq.1) then
c Low-Cut (High-Pass) Filter
 call tchhip(f,mf,gn,nchb,eps,fhu,fsu,ap,as)
 else if(nchara.eq.2) then
c High-Cut (Low-Pass) Filter
 call tchlop(f,mf,gn,nchb,eps,flu,fsu,ap,as)
 else if(nchara.eq.3) then
c Band-Pass Filter
 call tchpas(f,mf,gn,nchb,eps,flu,fhu,fsu,ap,as)
 else

c Band-Stop Filter
 call tchstp(f,mf,gn,nchb,eps,flu,fhu,fsu,ap,as)
 endif
 else
c Elliptic Filter
 if(nchara.eq.1) then
c Low-Cut (High-Pass) Filter
 call equhip(f,mf,gn,nchb,eps,ek,er,fhu,fsu,ap,as)
 else if(nchara.eq.2) then
c High-Cut (Low-Pass) Filter
 call equlop(f,mf,gn,nchb,eps,ek,er,flu,fsu,ap,as)
 else if(nchara.eq.3) then
c Band-Pass Filter
 call equpas(f,mf,gn,nchb,eps,ek,er,flu,fhu,fsu,ap,as)
 else
c Band-Stop Filter
 call equstp(f,mf,gn,nchb,eps,ek,er,flu,fhu,fsu,ap,as)
 endif
 endif
c
c write(6,*)' Filter coefficients are calculated.'
c write(6,'(2x,a3,i3,2x,a3,f10.6)')'mf=',mf,'gn=',gn
c write(6,'(2x,i2,f10.6)') (i,f(i),i=1,mf)
c..Filtering subroutine
 call gnf(x,y,n,f,mf,gn,ncausal)
 return
 end

TRFILT.FOR
c**
c Filtering in the time domain (Recursive filter)
c**
 include 'rfilter.for'
C
 program main
 parameter (nmax=8192)
 real t(nmax),u(nmax)
 character ifile*80,ofile*80
c....................................... Input Time Series
 write(6,*)'??? INPUT FILE NAME ???'
 read(5,'(a)') ifile
 write(6,*)'??? OUTPUT FILE NAME ???'
 read(5,'(a)') ofile
 open(10,file=ifile,status='old')
 read(10,*) ndata
 read(10,*) dt
 do i=1,ndata
 read(10,*) u(i)
 t(i)=dt*real(i-1)
 end do
 close(10)
C... Filtering
 10 write(6,*) ' ??? Filter Type ???'
 write(6,*) ' Butterworth type ==> 1'
 write(6,*) ' Chebyshev-I type ==> 2'
 write(6,*) ' Chebyshev-II type ==> 3'
 write(6,*) ' Elliptic type ==> 4'
 read(5,*) ntype
 if(ntype.GT.4.OR.ntype.LT.1) GOTO 10
 20 write(6,*) ' ??? CHARACTERISTICS OF FILTER ???'
 write(6,*) ' Low-Cut (High-Pass) Filter ==> 1'
 write(6,*) ' High-cut (Low-Pass) Filter ==> 2'
 write(6,*) ' Band-Pass Filter ==> 3'
 write(6,*) ' Band-Stop Filter ==> 4'
 read(5,*) nchara
 if(nchara.GT.4.OR.nchara.LT.1) GOTO 20
 if(nchara.eq.1) then
c Low-Cut (High-Pass) Filter
 write(6,*) ' FL '
 write(6,*) ' /------------'
 write(6,*) ' / '
 write(6,*) ' / '
 write(6,*) ' / '
 write(6,*) '------/ '
 write(6,*) ' FS '
 write(6,*) ' ??? FS,FL,AP,AS ???'
 write(6,*) ' AP,AS: Parameter defining the ripple '
 write(6,*) ' in pass band and stop band. '
 write(6,*) ' Use AP=0.1, AS=10.0, if you do'
 write(6,*) ' not like to think. '
 read(5,*) fs,fl,ap,as
 else if(nchara.eq.2) then
c High-Cut (Low-Pass) Filter

 95

 write(6,*) ' FH '
 write(6,*) '------\ '
 write(6,*) ' \ '
 write(6,*) ' \ '
 write(6,*) ' \ '
 write(6,*) ' \------------'
 write(6,*) ' FS '
 write(6,*) ' ??? FH,FS,AP,AS ???'
 write(6,*) ' AP,AS: Parameter defining the ripple '
 write(6,*) ' in pass band and stop band. '
 write(6,*) ' Use AP=0.1, AS=10.0, if you do'
 write(6,*) ' not like to think. '
 read(5,*) fh,fs,ap,as
 else if(nchara.eq.3) then
c Band Pass Filter
 write(6,*) ' FL FH '
 write(6,*) ' /--------\ '
 write(6,*) ' / \ '
 write(6,*) ' / \ '
 write(6,*) ' / \ '
 write(6,*) '------/ \------'
 write(6,*) ' FS '
 write(6,*) ' ??? FL,FH,FS,AP,AS ???'
 write(6,*) ' AP,AS: Parameter defining the ripple '
 write(6,*) ' in pass band and stop band. '
 write(6,*) ' Use AP=0.1, AS=10.0, if you do'
 write(6,*) ' not like to think. '
 read(5,*) fl,fh,fs,ap,as
 else if(nchara.eq.4) then
c Band Stop Filter
 write(6,*) ' FL FH '
 write(6,*) '------\ /------------'
 write(6,*) ' \ / '
 write(6,*) ' \ / '
 write(6,*) ' \ / '
 write(6,*) ' \------/ '
 write(6,*) ' FS '
 write(6,*) ' ??? FL,FS,FH,AP,AS ???'
 write(6,*) ' AP,AS: Parameter defining the ripple '
 write(6,*) ' in pass band and stop band. '
 write(6,*) ' Use AP=0.1, AS=10.0, if you do'
 write(6,*) ' not like to think. '
 read(5,*) fl,fs,fh,ap,as
 endif
c write(6,*) fl,fh,fs,ap,as
 write(6,*) ' ??? Causal or Zero-Phase ???'
 write(6,*) ' Causal FIlter ==> 1'
 write(6,*) ' Zero-Phase Filter ==> 2'
 read(5,*) ncausal
 call bandp1(u,ndata,dt,fl,fh,fs,ap,as,ntype,nchara,ncausal)
c..Output Time Series
 open(10,file=ofile)
 write(10,*) ndata,' =N'
 write(10,*) dt,' =dT (sec)'
 do i=1,ndata
 write(10,*) u(i)
 end do
 close(10)
 write(*,*) 'Done'
 stop
 end

RFILTER.FOR
c**
c slave routine for trfilt.for
c**
 include 'buthip.f'
 include 'butlop.f'
 include 'butpas.f'
 include 'butstp.f'
 include 'chbhip.f'
 include 'chblop.f'
 include 'chbpas.f'
 include 'chbstp.f'
 include 'tchhip.f'
 include 'tchlop.f'
 include 'tchpas.f'
 include 'tchstp.f'
 include 'equhip.f'
 include 'equlop.f'
 include 'equpas.f'
 include 'equstp.f'
 include 'equpol.f'
 include 'celin1.f'
 include 'snthet.f'
 include 'tandem.f'

 include 'recfil.f'
C--.
 subroutine bandp(x,n,dt,fl,fh,fs,ap,as,ntype,nchara,ncausal)
 real*4 x(n),y(8192),f(128)
c write(6,*)' Filter coefficients calculation started'
 flu=fl*dt
 fhu=fh*dt
 fsu=fs*dt
c..Calculation of filter coefficients
 if(ntype.eq.1) then
c Butterworth Filter
 if(nchara.eq.1) then
c Low-Cut (High-Pass) Filter
 call buthip(f,mf,gn,nchb,flu,fsu,ap,as)
 else if(nchara.eq.2) then
c High-Cut (Low-Pass) Filter
 write(6,*)' high cut'
 call butlop(f,mf,gn,nchb,fhu,fsu,ap,as)
 else if(nchara.eq.3) then
c Band-Pass Filter
 call butpas(f,mf,gn,nchb,flu,fhu,fsu,ap,as)
 else
c Band-Stop Filter
 call butstp(f,mf,gn,nchb,flu,fhu,fsu,ap,as)
 endif
 else if(ntype.eq.2) then
c Chevyshev-I FIlter
 if(nchara.eq.1) then
c Low-Cut (High-Pass) Filter
 call chbhip(f,mf,gn,nchb,eps,fhu,fsu,ap,as)
 else if(nchara.eq.2) then
c High-Cut (Low-Pass) Filter
 call chblop(f,mf,gn,nchb,eps,flu,fsu,ap,as)
 else if(nchara.eq.3) then
c Band-Pass Filter
 call chbpas(f,mf,gn,nchb,eps,flu,fhu,fsu,ap,as)
 else
c Band-Stop Filter
 call chbstp(f,mf,gn,nchb,eps,flu,fhu,fsu,ap,as)
 endif
 else if(ntype.eq.3) then
c Chevyshev-II FIlter
 if(nchara.eq.1) then
c Low-Cut (High-Pass) Filter
 call tchhip(f,mf,gn,nchb,eps,fhu,fsu,ap,as)
 else if(nchara.eq.2) then
c High-Cut (Low-Pass) Filter
 call tchlop(f,mf,gn,nchb,eps,flu,fsu,ap,as)
 else if(nchara.eq.3) then
c Band-Pass Filter
 call tchpas(f,mf,gn,nchb,eps,flu,fhu,fsu,ap,as)
 else
c Band-Stop Filter
 call tchstp(f,mf,gn,nchb,eps,flu,fhu,fsu,ap,as)
 endif
 else
c Elliptic Filter
 if(nchara.eq.1) then
c Low-Cut (High-Pass) Filter
 call equhip(f,mf,gn,nchb,eps,ek,er,fhu,fsu,ap,as)
 else if(nchara.eq.2) then
c High-Cut (Low-Pass) Filter
 call equlop(f,mf,gn,nchb,eps,ek,er,flu,fsu,ap,as)
 else if(nchara.eq.3) then
c Band-Pass Filter
 call equpas(f,mf,gn,nchb,eps,ek,er,flu,fhu,fsu,ap,as)
 else
c Band-Stop Filter
 call equstp(f,mf,gn,nchb,eps,ek,er,flu,fhu,fsu,ap,as)
 endif
 endif
c
 write(6,*)' Filter coefficients are calculated.'
 write(6,'(2x,a3,i3,2x,a3,f10.6)')'mf=',mf,'gn=',gn
 write(6,'(2x,i2,f10.6)') (i,f(i),i=1,mf)
c..Filtering subroutine
 call gnf(x,y,n,f,mf,gn,ncausal)
 return

 96

 end
C---.
 subroutine gnf(x,y,nn,f,mf,gn,ncausal)
 real*4 x(nn),y(8192),f(4)
 if(ncausal.eq.2) then
 call tandem(x,y,nn,f,mf,-1)
 write(6,*)' TANDEM-1'
 do 813 i=1,nn
 813 x(i)=y(i)*gn
 endif
 call tandem(x,y,nn,f,mf, 1)
 write(6,*)' TANDEM 1'
 do 815 i=1,nn
 815 x(i)=y(i)*gn
 return
 end

DSEISM.FOR
 program dseism
c***
c digital filter equivarent to displacement seismometer
c***
 parameter (nmax=8192)
 real v(nmax),u(nmax)
 character*80 ifile,ofile
 data pai/3.1415926535/
 write(6,*)' Natural Period:T0, Damping Facter:h'
 write(6,*)' Sampling interval:dt, Gain:G0'
 read(5,*) t0,h,dt,g0
 omg0=2.*pai/t0
 write(6,*) omg0
 omg0=(2./dt)*tan(omg0*dt/2.)
 qq=tan(omg0*dt/2.)
 qq2=qq*qq
 a0= 1.0
 a1=-2.0
 a2= 1.0
 b0= 1.0+2.*h*qq+qq2
 b1=-2.0+2.*qq2
 b2= 1.0-2.*h*qq+qq2
 write(6,*)' Numerator =',a0,a1,a2
 write(6,*)' Denominator=',b0,b1,b2
c..input
 write(6,*)'??? INPUT FILE NAME (Input Signal)???'
 read(5,'(a)') ifile
 open(10,file=ifile,status='old')
 read(10,*) ndata
 read(10,*) dt1
 if(dt1.ne.dt) then
 write(6,*)'Time interval unmatched!'
 stop
 endif
 do i=1,ndata
 read(10,*) u(i)
 end do
 close(10)
c..Recursive Filtering
 write(6,*)'Causal Filtering'
 v(1)= a0*u(1)/b0
 v(2)=(a0*u(2)+a1*u(1)-b1*v(1))/b0
 do i=3,ndata
 v(i)=(a0*u(i)+a1*u(i-1)+a2*u(i-2)
 * -b1*v(i-1)-b2*v(i-2))/b0
 enddo
c Output Time Series
 write(6,*)'??? OUTPUT FILE NAME ???'
 read(5,'(a)') ofile
 open(10,file=ofile,status='unknown')
 write(10,*) ndata,' =N'
 write(10,*) dt,' =dT (sec)'
 do i=1,ndata
 write(10,*) v(i)
 end do
 close(10)
 write(6,*) 'Done'
 stop
 end

FWARP.FOR
c**
c Calculate and Plot warped angular frequency
c**
 program main
 parameter (nmax=8192)
 real x(nmax),y(nmax)
 data pai/3.1415926535/
c Input

 write(6,*)'??? Dt, Ndata'
 read(5,*) dt, ndata
 td=ndata*dt
 domg=2.*pai/td
 omgnyq=pai/dt
 do i=1,ndata
 x(i)=real(i-1)*domg
 y(i)=(2./dt)*tan(x(i)*dt/2.)
 end do
c Plot Time Series
 umax=y(1)
 umin=y(1)
 do i=2,ndata
 if(y(i).gt.umax) umax=y(i)
 if(y(i).lt.umin) umin=y(i)
 end do
cc ymax=max(abs(umax),abs(umin))*1.5
 ymax=pai/dt
c
 call opengraphics
 call setwindow(1,0.,0.,omgnyq*2,ymax)
 call setviewpt(1,0.3,0.3,1.0,0.5)
 call drawtitle('Warped Angular Frequency')
 call setline('width=2')
 call settext('size=0.8')
 call drawaxis('labelx=omg,labely=omg(k)')
 call drawline(omgnyq,0.,omgnyq,ymax)
c call setmark('type=solid-square,size=0.5')
 call drawlines(ndata,x,y)
c call drawmarks(ndata,x,y)
 call drawtext(omgnyq*2*1.01,ymax,'pai/dt')
 call settext('alignment=center-bottom')
 call drawtext(omgnyq,0.0,'pai/dt')
 call closegraphics
 end
DSEISMO.FOR
 program dseism
c digital filter equivarent to displacement seismometer
 parameter (nmax=8192)
 real v(nmax),u(nmax)
 character*80 ifile,ofile
 data pai/3.1415926535/
 write(6,*)' Natural Period:T0, Damping Facter:h'
 write(6,*)' Sampling interval:dt, Gain:G0'
 read(5,*) t0,h,dt,g0
 omg0=2.*pai/t0
 write(6,*) omg0
 qq=tan(omg0*dt/2.)
 qq2=qq*qq
 a0= 1.0
 a1=-2.0
 a2= 1.0
 b0= 1.0+2.*h*qq+qq2
 b1=-2.0+2.*qq2
 b2= 1.0-2.*h*qq+qq2
 write(6,*)' Numerator =',a0,a1,a2
 write(6,*)' Denominator=',b0,b1,b2
c..input
 write(6,*)'??? INPUT FILE NAME (Input Signal)???'
 read(5,'(a)') ifile
 open(10,file=ifile,status='old')
 read(10,*) ndata
 read(10,*) dt1
 if(dt1.ne.dt) then
 write(6,*)'Time interval unmatched!'
 stop
 endif
 do i=1,ndata
 read(10,*) u(i)
 end do
 close(10)
c..Recursive Filtering
 write(6,*)'Causal Filtering'
 v(1)= a0*u(1)/b0
 v(2)=(a0*u(2)+a1*u(1)-b1*v(1))/b0
 do i=3,ndata
 v(i)=(a0*u(i)+a1*u(i-1)+a2*u(i-2)
 * -b1*v(i-1)-b2*v(i-2))/b0
 enddo
c Output Time Series
 write(6,*)'??? OUTPUT FILE NAME ???'
 read(5,'(a)') ofile

 97

 open(10,file=ofile,status='unknown')
 write(10,*) ndata,' =N'
 write(10,*) dt,' =dT (sec)'
 do i=1,ndata
 write(10,*) v(i)
 end do
 close(10)
 write(6,*) 'Done'
 stop
 end
VSEISMO.FOR
 program vseism
c digital filter equivarent to displacement seismometer
 parameter (nmax=8192)
 real v(nmax),u(nmax)
 character*80 ifile,ofile
 data pai/3.1415926535/
 write(6,*)' Natural Period:T0, Damping Facter:h'
 write(6,*)' Sampling interval:dt, Gain:G0'
 read(5,*) t0,h,dt,g0
 omg0=2.*pai/t0
 write(6,*) omg0
 qq=tan(omg0*dt/2.)
 qq2=qq*qq
 a0= 1.0*g0
 a1=-3.0*g0
 a2= 3.0*g0
 a3=-1.0*g0
 b0=(1.0+2.*h*qq+ qq2)*dt/2.
 b1=(-1.0+2.*h*qq+3.*qq2)*dt/2.
 b2=(-1.0-2.*h*qq+3.*qq2)*dt/2.
 b3=(1.0-2.*h*qq+ qq2)*dt/2.
 write(6,*)' Numerator =',a0,a1,a2,a3
 write(6,*)' Denominator=',b0,b1,b2,b3
c..input
 write(6,*)'??? INPUT FILE NAME (Input Signal)???'
 read(5,'(a)') ifile
 open(10,file=ifile,status='old')
 read(10,*) ndata
 read(10,*) dt1
 if(dt1.ne.dt) then
 write(6,*)'Time interval unmatched!'
 stop
 endif
 do i=1,ndata
 read(10,*) u(i)
 end do
 close(10)
c..Recursive Filtering
 write(6,*)'Causal Filtering'
 v(1)= a0*u(1)/b0
 v(2)=(a0*u(2)+a1*u(1)-b1*v(1))/b0
 v(3)=(a0*u(3)+a1*u(2)+a2*u(1)-b1*v(2)-b2*v(1))/b0
 do i=4,ndata
 v(i)=(a0*u(i)+a1*u(i-1)+a2*u(i-2)+a3*u(i-3)
 * -b1*v(i-1)-b2*v(i-2)-b3*v(i-3))/b0
 enddo
c Output Time Series
 100 write(6,*)'??? OUTPUT FILE NAME ???'
 read(5,'(a)') ofile
 open(10,file=ofile,status='unknown')
 write(10,*) ndata,' =N'
 write(10,*) dt,' =dT (sec)'
 do i=1,ndata
 write(10,*) v(i)
 end do
 close(10)
 write(6,*) 'Done'
 stop
 end
ISEISMO.FOR
 program iseism
c digital inverse filter to obtain ground displacement from velocity
seismograms
 parameter (nmax=8192)
 real v(nmax),u(nmax)
 character*80 ifile,ofile
 data pai/3.1415926535/

 write(6,*)' Natural Period:T0, Damping Facter:h'
 write(6,*)' Sampling interval:dt, Gain:G0'
 read(5,*) t0,h,dt,g0
 omg0=2.*pai/t0
 write(6,*) omg0
 qq=tan(omg0*dt/2.)
 qq2=qq*qq
 b0= 1.0*g0
 b1=-3.0*g0
 b2= 3.0*g0
 b3=-1.0*g0
 a0=(1.0+2.*h*qq+ qq2)*dt/2.
 a1=(-1.0+2.*h*qq+3.*qq2)*dt/2.
 a2=(-1.0-2.*h*qq+3.*qq2)*dt/2.
 a3=(1.0-2.*h*qq+ qq2)*dt/2.
 write(6,*)' Numerator =',a0,a1,a2,a3
 write(6,*)' Denominator=',b0,b1,b2,b3
c..input
 write(6,*)'??? INPUT FILE NAME (Input Signal)???'
 read(5,'(a)') ifile
 open(10,file=ifile,status='old')
 read(10,*) ndata
 read(10,*) dt1
 if(dt1.ne.dt) then
 write(6,*)'Time interval unmatched!'
 stop
 endif
 do i=1,ndata
 read(10,*) u(i)
 end do
 close(10)
c..Recursive Filtering
 write(6,*)'Causal Filtering'
 v(1)= a0*u(1)/b0
 v(2)=(a0*u(2)+a1*u(1)-b1*v(1))/b0
 v(3)=(a0*u(3)+a1*u(2)+a2*u(1)-b1*v(2)-b2*v(1))/b0
 do i=4,ndata
 v(i)=(a0*u(i)+a1*u(i-1)+a2*u(i-2)+a3*u(i-3)
 * -b1*v(i-1)-b2*v(i-2)-b3*v(i-3))/b0
 enddo
c Output Time Series
 100 write(6,*)'??? OUTPUT FILE NAME ???'
 read(5,'(a)') ofile
 open(10,file=ofile,status='unknown')
 write(10,*) ndata,' =N'
 write(10,*) dt,' =dT (sec)'
 do i=1,ndata
 write(10,*) v(i)
 end do
 close(10)
 write(6,*) 'Done'
 stop

 end

CSEISMO.FOR
 program cseism
c digital filter to convert the longer natural period seismometer
 parameter (nmax=8192)
 real v(nmax),u(nmax)
 character*80 ifile,ofile
 data pai/3.1415926535/
 write(6,*)' Original Seismometer'
 write(6,*)' Natural Period:T0, Damping Facter:h0'
 write(6,*)' Sampling interval:dt, Gain:G0'
 read(5,*) t0,h0,dt0,g0
 omg0=2.*pai/t0
 write(6,*) omg0
 qq=tan(omg0*dt0/2.)
 qq2=qq*qq
 a0= 1.0+2.*h0*qq+qq2
 a1=-2.0+2.*qq2
 a2= 1.0-2.*h0*qq+qq2
 write(6,*)' Simulated Seismometer'
 write(6,*)' Natural Period:T1, Damping Facter:h1'
 write(6,*)' Sampling interval:dt, Gain:G1'
 read(5,*) t1,h1,dt1,g1
 omg1=2.*pai/t1
 write(6,*) omg1

 98

 qq=tan(omg1*dt1/2.)
 qq2=qq*qq
 b0=(1.0+2.*h1*qq+qq2)*g0/g1
 b1=(-2.0 +2.*qq2)*g0/g1
 b2=(1.0-2.*h1*qq+qq2)*g0/g1
 write(6,*)' Numerator =',a0,a1,a2
 write(6,*)' Denominator=',b0,b1,b2
c..input
 write(6,*)'??? INPUT FILE NAME (Input Signal)???'
 read(5,'(a)') ifile
 open(10,file=ifile,status='old')
 read(10,*) ndata
 read(10,*) dt
 if(dt1.ne.dt.or.dt0.ne.dt) then
 write(6,*)'Time interval unmatched!'
 stop
 endif
 do i=1,ndata
 read(10,*) u(i)
 end do
 close(10)
c..Recursive Filtering
 write(6,*)'Causal Filtering'
 v(1)= a0*u(1)/b0
 v(2)=(a0*u(2)+a1*u(1)-b1*v(1))/b0
 do i=3,ndata
 v(i)=(a0*u(i)+a1*u(i-1)+a2*u(i-2)
 * -b1*v(i-1)-b2*v(i-2))/b0
 enddo
c Output Time Series
 write(6,*)'??? OUTPUT FILE NAME ???'
 read(5,'(a)') ofile
 open(10,file=ofile,status='unknown')
 write(10,*) ndata,' =N'
 write(10,*) dt,' =dT (sec)'
 do i=1,ndata
 write(10,*) v(i)
 end do
 close(10)
 write(6,*) 'Done'
 stop

 end

PLTACC.FOR
 include 'pltwv2.for'
 include 'timesft.for'
 include 'timecrt.for'
 program pltacc
c k-net data viewer (raw acceleration data)
 parameter(nmax=50000,nch=3)
 integer ix(nmax)
 real*4 x(nch,nmax),xx(nmax),amaxacc(nch)
 character cid*6,filen*47,dummy*18,cdir*3,cmemo(nch)*80,
 * cstcode*6,cdrv*9,ccomp(3)*2
 data aym,x0,yl,DTL/16.0,2.0,2.0,1.0/ fac/1./
 data ccomp/'NS','EW','UD'/ tst,ted/0.01,500./
 open(10,file='stlist.txt',status='old')
 read(10,*) cdrv,nsite
 do 2000 isite=1,nsite
 read(10,*) cid,tst
c write(6,'(A)') cdrv//cid//'.**'
 filen=cdrv//cid//'.ns'
 open(1,file=filen,status="old")
 write(6,'(a)') filen
 read(1,'(a18,i4,1x,i2,1x,i2,1x,i2,1x,i2)')
 * dummy,irgyear,irgmonth,irgday,irghour,irgmin
 read(1,'(a18,f5.1)')dummy,orglat
 read(1,'(a18,f5.1)')dummy,orglong
 read(1,'(a18,i4)') dummy,idepth
 orgdepth=real(idepth)
 read(1,'(a18,f4.1)')dummy,amag
 read(1,'(a18,a6)')dummy,cstcode
 read(1,'(a18,f8.4)')dummy,stlat
 read(1,'(a18,f8.4)')dummy,stlong
 read(1,'(a18,i4)') dummy,idepth
 stheight=real(idepth)
 read(1,'(a18,i4,1x,i2,1x,i2,1x,i2,1x,i2,1x,i2)')

 * dummy,ircyear,ircmonth,ircday,irchour,ircmin,ircsec
 call timecrt(ircyear,ircmonth,ircday,irchour,ircmin,ircsec)
 read(1,'(a18,i3)')dummy,iratio
 sratio=real(iratio)
 dt=1.0/sratio
 read(1,'(a18,i3)')dummy,idur
 ndata=idur*100
 duration=real(idur)
 read(1,'(a18,A3)')dummy,cdir
 read(1,'(a18,10x,i7)')dummy,iscale
 scale=2000./real(iscale)
 read(1,'(a18,i4)')dummy,imaxacc
 amaxacc(1)=real(imaxacc)
 read(1,'(a18)')dummy
 read(1,'(a80)')cmemo(1)
 read(1,'(8(i8,1x))')(ix(i),i=1,ndata)
 do 10 i=1,ndata
 10 x(1,i)=real(ix(i))*scale
 close(1)
 filen=cdrv//cid//'.ew'
 open(1,file=filen,status="old")
 write(6,'(a)') filen
 do 20 kk=1,14
 20 read(1,'(a18)')dummy
 read(1,'(a18,i4)')dummy,imaxacc
 amaxacc(2)=real(imaxacc)
 read(1,'(a18)')dummy
 read(1,'(a80)')cmemo(2)
 read(1,'(8(i8,1x))')(ix(i),i=1,ndata)
 do 30 i=1,ndata
 30 x(2,i)=real(ix(i))*scale
 close(1)
 filen=cdrv//cid//'.ud'
 open(1,file=filen,status="old")
 write(6,'(a)') filen
 do 40 kk=1,14
 40 read(1,'(a18)')dummy
 read(1,'(a18,i4)')dummy,imaxacc
 amaxacc(3)=real(imaxacc)
 read(1,'(a18)')dummy
 read(1,'(a80)')cmemo(3)
 read(1,'(8(i8,1x))')(ix(i),i=1,ndata)
 do 50 i=1,ndata
 50 x(3,i)=real(ix(i))*scale
 close(1)
 ntst=int(tst)
 nst=int(tst/dt+0.5)
 ned=int(ted/dt+0.5)
 call timesft(ntst,ircyear,ircmonth,ircday,
 * irchour,ircmin,ircsec)
 filen=cdrv//cid//'ac.ps'
 open(25,file=filen,status='unknown')
 write(6,'(a)') filen
 CALL PLOTS(25)
 call yoko(25)
 call symbol(1.5,5.0,0.8,cid,90.0,6)
 call number(1.5,11.00,0.25,real(ircyear),90.0,0)
 call number(1.5,12.25,0.25,real(ircmonth),90.0,0)
 call number(1.5,13.00,0.25,real(ircday),90.0,0)
 call number(1.5,13.75,0.25,real(irchour),90.0,0)
 call number(1.5,14.50,0.25,real(ircmin),90.0,0)
 call number(1.5,15.25,0.25,real(ircsec),90.0,0)
 CALL FACTOR(FAC)
 amaxx=max1(amaxacc(1),amaxacc(2),amaxacc(3))
 if(amaxx.lt.2000.) xxmax=2000.
 if(amaxx.lt.1000.) xxmax=1000.
 if(amaxx.lt. 500.) xxmax= 500.
 if(amaxx.lt. 200.) xxmax= 200.
 if(amaxx.lt. 100.) xxmax= 100.
 if(amaxx.lt. 50.) xxmax= 50.
 if(amaxx.lt. 20.) xxmax= 20.
 if(amaxx.lt. 10.) xxmax= 10.
 if(amaxx.lt. 5.) xxmax= 5.
 if(amaxx.lt. 2.) xxmax= 2.
 if(amaxx.lt. 1.) xxmax= 1.
 call plot(x0,0.,-3)
 CALL NEWPEN(1)
 ay=aym

 99

 ndatamax=min1(real(ned),real(ndata),24.*dtl/dt)+nst-1
 if(ndatamax.lt.ndata) call symbol(26.,0.5,0.3,'C',0.0,1)
 do 1000 kk=1,3
 call symbol(2.5,ay+yl+0.3,0.4,ccomp(kk),0.0,2)
 call symbol(4.0,ay+yl+0.3,0.3,'Max=',0.0,4)
 call number(5.5,ay+yl+0.3,0.3,amaxacc(kk),0.0,1)
 do 500 i=1,ndata
 500 xx(i)=x(kk,i+nst-1)
 sum=xx(1)
 do 600 i=2,ndata
 600 sum=sum+xx(i)
 ave=sum/real(ndata)
 do 610 i=1,ndata
 610 xx(i)=xx(i)-ave
 CALL PLOT(2., AY,-3)
 call pltwv2(xx,ndatamax-nst+1,dt,dtl,xxmax,yl,1)
 CALL PLOT(-2.,-AY,-3)
 ay=ay-3.*yl
 1000 continue
 call plote(25)
 close(25)
 2000 continue
 close(10)
 stop
 end
PLTWV2.FOR
 subroutine pltwv2(d,n,dt,dtl,YMAX,yl,ind)
 REAL*4 d(n)
 data htitle,hcha,htick/0.4,0.2,0.2/
 tlong=real(int(real(n)*dt/dtl)+1)
 ntlong=int(tlong)
 dsize=dt/dtl
 IF(YMAX.LT.1.0E-30) YMAX=1.0E-30
 call plot(0.,-yl,3)
 call plot(tlong,-yl,2)
 call plot(0., yl,3)
 call plot(tlong, yl,2)
 call symbol(0.5*tlong-htitle*1.5,
 *
-(yl+htick*2.+htitle+0.1),htitle,'sec',0.0,3)
 do 10 i=0,ntlong
 call plot(real(i),-yl,3)
 10 call plot(real(i),-yl-htick,2)
 do 11 i=0,ntlong
 call plot(real(i),yl,3)
 11 call plot(real(i),yl+htick,2)
 do 12 i=0,ntlong,2
 12 call number(real(i)-hcha*2.,-(yl+htick+hcha+0.1),hcha,
 * real(i)*dtl,0.0,1)
 DYL=YMAX/YL
 call plot(0.,-yl,3)
 call plot(0., yl,2)
 if(ind.eq.1)
 *call symbol(-(htick*2.+hcha*3.5),-htitle*1.5,
 * htitle,'gal',90.0,3)
 if(ind.eq.2)
 *call symbol(-(htick*2.+hcha*3.5),-htitle*1.5,
 *
htitle,'kine',90.0,4)
 if(ind.eq.3)
 *call symbol(-(htick*2.+hcha*3.5),-htitle*1.5,
 *
htitle,'micron',90.0,6)
 do 110 i=-int(yl+0.5),int(yl+0.5)
 call plot(-htick,real(i),3)
 call plot(0.,real(i),2)
 110 continue
 if(ymax.ge. 1.) then
 ncfra=4
 if(ymax.ge. 10.) then
 ncfra=5
 if(ymax.ge.100.) then
 ncfra=6
 if(ymax.ge.1000.) ncfra=7.
 endif
 endif
 endif
 xx=-(htick+hcha*real(ncfra)+0.1)

 yy=yl+hcha*0.5
 call number(xx,-yy,hcha,-ymax,0.0,1)
 call number(-hcha*3.25,-hcha*0.5,hcha,0.0,0.0,1)
 call number(xx, yy,hcha,ymax,0.0,1)
 call plot(tlong, yl,3)
 call plot(tlong,-yl,2)
 call plot(0.,d(1)/DYL,3)
 do 130 i=2,n
 Y=D(I)/DYL
 call plot((i-1)*dsize,Y,2)
 130 continue
 return
 end
TIMECRT.FOR
 subroutine timecrt(ircyear,ircmonth,ircday,
 * irchour,ircmin,ircsec)
 if(ircsec.ge.15) then
 ircsec=ircsec-15
 else
 if(ircmin.ge.1) then
 ircmin=ircmin-1
 ircsec=ircsec+45
 else
 if(irchour.ge.1) then
 irchour=irchour-1
 ircmin =59
 ircsec=ircsec+45
 else
 ircday =ircday-1
 irchour=23
 ircmin =59
 ircsec=ircsec+45
 endif
 endif
 endif
 return
 end
TIMESFT.FOR
 subroutine timesft(ntst,ircyear,ircmonth,ircday,
 * irchour,ircmin,ircsec)
 if(ircsec+ntst.lt.60) then
 ircsec=ircsec+ntst
 else
 if(ircmin.lt.59) then
 ircmin=ircmin+1
 ircsec=ircsec-60+ntst
 else
 if(irchour.lt.23) then
 irchour=irchour+1
 ircmin =0
 ircsec=ircsec-60+ntst
 else
 ircday =ircday+1
 irchour=0
 ircmin =0
 ircsec=ircsec-60+ntst
 endif
 endif
 endif
 return
 end
SPLOT.FOR
 include 'cfft.for'
 include 'timecrt.for'
 include 'timesft.for'
 parameter(nmax=50000,nch=3)
 complex c(nmax*2)
 integer ix(nmax)
 real*4
x(nch,nmax),xx(nmax),amaxacc(nch),fr(nmax),yy(nmax),
 * amaxdsp(nch),y(nch,nmax)
 character
cid*6,filen*47,dummy*18,cdir*3,cmemo(nch)*80,cstcode*6,
 * cdrv*9,ccomp(3)*2
 data yl/2.0/ fac/0.7/
 data ccomp/'NS','EW','UD'/ tst,ted/ 0.01,70./ asmthf/0.02/
 data pai,c0/3.141592,(0.0,0.0)/ ircdelay/0.0/

 100

 data NBX,NBY,ABX,ABY/3,3,2.5,2.5/ HCH,HTP/0.4,0.1/
FMIN/0.1/
 open(10,file='stlist.txt',status='old')
 read(10,*) cdrv,nsite
 do 2000 isite=1,nsite
 read(10,*) cid,tst,ted
 write(6,'(a)')cdrv//cid//'.**'
 filen=cdrv//cid//'.ns'
 open(1,file=filen,status="old")
 read(1,'(a18,i4,1x,i2,1x,i2,1x,i2,1x,i2)')
 * dummy,irgyear,irgmonth,irgday,irghour,irgmin
 read(1,'(a18,f5.1)')dummy,orglat
 read(1,'(a18,f5.1)')dummy,orglong
 read(1,'(a18,i4)') dummy,idepth
 orgdepth=real(idepth)
 read(1,'(a18,f4.1)')dummy,amag
 read(1,'(a18,a6)')dummy,cstcode
 read(1,'(a18,f8.4)')dummy,stlat
 read(1,'(a18,f8.4)')dummy,stlong
 read(1,'(a18,i4)') dummy,idepth
 stheight=real(idepth)
 read(1,'(a18,i4,1x,i2,1x,i2,1x,i2,1x,i2,1x,i2)')
 * dummy,ircyear,ircmonth,ircday,irchour,ircmin,ircsec
 call timecrt(ircyear,ircmonth,ircday,irchour,ircmin,ircsec)
 read(1,'(a18,i3)')dummy,iratio
 sratio=real(iratio)
 dt=1.0/sratio
 read(1,'(a18,i3)')dummy,idur
 ndata=idur*100
 duration=real(idur)
 read(1,'(a18,A3)')dummy,cdir
 read(1,'(a18,10x,i7)')dummy,iscale
 scale=2000./real(iscale)
 read(1,'(a18,i4)')dummy,imaxacc
 amaxacc(1)=real(imaxacc)
 read(1,'(a18)')dummy
 read(1,'(a80)')cmemo(1)
 read(1,'(8(i8,1x))')(ix(i),i=1,ndata)
 do 10 i=1,ndata
 10 x(1,i)=real(ix(i))*scale
 close(1)
 filen=cdrv//cid//'.ew'
 open(1,file=filen,status="old")
 do 20 kk=1,14
 20 read(1,'(a18)')dummy
 read(1,'(a18,i4)')dummy,imaxacc
 amaxacc(2)=real(imaxacc)
 read(1,'(a18)')dummy
 read(1,'(a80)')cmemo(2)
 read(1,'(8(i8,1x))')(ix(i),i=1,ndata)
 do 30 i=1,ndata
 30 x(2,i)=real(ix(i))*scale
 close(1)
 filen=cdrv//cid//'.ud'
 open(1,file=filen,status="old")
 do 40 kk=1,14
 40 read(1,'(a18)')dummy
 read(1,'(a18,i4)')dummy,imaxacc
 amaxacc(3)=real(imaxacc)
 read(1,'(a18)')dummy
 read(1,'(a80)')cmemo(3)
 read(1,'(8(i8,1x))')(ix(i),i=1,ndata)
 do 50 i=1,ndata
 50 x(3,i)=real(ix(i))*scale
 close(1)
 ncomp=nch
 ntst=int(tst)
 nst=int(tst/dt+0.5)
 ned=int(ted/dt+0.5)
c write(6,*)nst,ned
c ned=ndata
 call timesft(ntst,ircyear,ircmonth,ircday,
 * irchour,ircmin,ircsec)
 nn=ned-nst+1
 n2e=int(alog10(real(nn))/0.30103+0.5)
 mm=2**n2e
 mm2=mm*2
 mwin=int(0.1*real(mm))

 datal=dt*real(mm)
c write(6,*)datal
 do 106 i=1,mm
 106 fr(i)=real(i-1)/datal
C FMAX=FMIN*(10**REAL(NBX))
 FMAX=45.
 NMX=INT(FMAX*DATAL)+1
 NMN=INT(FMIN*DATAL)+1
 do 525 mcomp=1,ncomp
 do 207 i=1,nn
 207 xx(i)=x(mcomp,i+nst-1)
c linear trend fitting
 b1=xx(1)
 do 392 i=2,nn
 392 b1=b1+real(i)*xx(i)
 b2=xx(1)
 do 394 i=1,nn
 394 b2=b2+xx(i)
 a0=real(nn*(nn+1)*(2*nn+1))/6.*dt
 b0=real(nn*(nn+1))/2.
 c0=b0*dt
 d0=real(nn)
 f0=a0*d0-b0*c0
 aa=(d0*b1-b0*b2)/f0
 bb=(-c0*b1+a0*b2)/f0
 do 396 i=1,nn
 396 xx(i)=xx(i)-aa*real(i)*dt-bb
 do 409 i=1,mwin
 409 xx(i)=xx(i)*SIN(PAI/2.*REAL(I-1)/REAL(MWIN))
 do 412 i=nn-mwin,nn
 412 xx(i)=xx(i)*SIN(PAI/2.*REAL(nn-i)/REAL(MWIN))
 do 413 i=nn+1,mm
 413 xx(i)=0.0
 do 414 i=1,mm
 414 c(i)=cmplx(xx(i))
 write(6,*) mm
 CALL cfft(c,mm,-1)
 do 518 i=2,mm
 518 xx(i)=cabs(c(i))*dt/(2.*PAI*FR(I))**2
 do 519 i=2,mm
 519 yy(i)=cabs(c(i))*dt
 amaxdsp(mcomp)=abs(xx(nmn))
 do 521 i=nmn,nmx
 521 if(abs(xx(i)).GT.amaxdsp(mcomp))
amaxdsp(mcomp)=abs(xx(i))
 do 522 i=2,mm
 522 x(mcomp,i)=xx(i)
 amaxacc(mcomp)=abs(yy(nmn))
 do 523 i=nmn,nmx
 523 if(abs(yy(i)).GT.amaxacc(mcomp))
amaxacc(mcomp)=abs(yy(i))
 do 524 i=2,mm
 524 y(mcomp,i)=yy(i)
 525 continue
 filen=cdrv//cid//'sp.ps'
 write(6,*) filen
 open(25,file=filen,status='unknown')
 CALL PLOTS(25)
 call yoko(25)
 smaxx=amax1(amaxacc(1),amaxacc(2),amaxacc(3))
 if(smaxx.lt.1000.) sxmax=1000.
 if(smaxx.lt. 100.) sxmax= 100.
 if(smaxx.lt. 10.) sxmax= 10.
 if(smaxx.lt. 1.) sxmax= 1.
 if(smaxx.lt. 0.1) sxmax= 0.1
 if(smaxx.lt. 0.01) sxmax= 0.01
 if(smaxx.lt. 0.001) sxmax= 0.001
 if(smaxx.lt. 0.0001) sxmax= 0.0001
 if(smaxx.lt. 0.00001) sxmax= 0.00001
 if(smaxx.lt. 0.000001) sxmax= 0.000001
 sminacc=sxmax*10**real(-nby-1)
 smaxx=amax1(amaxdsp(1),amaxdsp(2),amaxdsp(3))
 if(smaxx.lt. 100.) sxmax= 100.
 if(smaxx.lt. 10.) sxmax= 10.
 if(smaxx.lt. 1.) sxmax= 1.
 if(smaxx.lt. 0.1) sxmax= 0.1
 if(smaxx.lt. 0.01) sxmax= 0.01
 if(smaxx.lt. 0.001) sxmax= 0.001

 101

 if(smaxx.lt. 0.0001) sxmax= 0.0001
 if(smaxx.lt. 0.00001) sxmax= 0.00001
 if(smaxx.lt. 0.000001) sxmax= 0.000001
 smindsp=sxmax*10**real(-nby-1)
 call plot(2.0,1.65,-3)
 call symbol(0.0,0.5,1.2,cid,0.0,6)
 call symbol(10.0,0.0,0.3,'Event:',0.0,6)
 call number(11.8,0.0,0.3, orglat,0.0,3)
 call number(15.4,0.0,0.3,orglong,0.0,3)
 call number(19.0,0.0,0.3,orgdepth,0.0,0)
 call symbol(10.0,0.5,0.3,'Site :',0.0,6)
 call number(11.8,0.5,0.3, stlat,0.0,3)
 call number(15.4,0.5,0.3,stlong,0.0,3)
 call number(19.0,0.5,0.3,stheight/1000.,0.0,3)
 call symbol(10.0,1.0,0.4,'Start Time ',0.0,11)
 call plot(14.4,0.0,-3)
 call number(0.0,1.0,0.4,real(ircyear) ,0.0,0)
 call number(2.0,1.0,0.4,real(ircmonth),0.0,0)
 call number(3.2,1.0,0.4,real(ircday) ,0.0,0)
 call number(4.8,1.0,0.4,real(irchour) ,0.0,0)
 call number(6.0,1.0,0.4,real(ircmin) ,0.0,0)
 call number(7.2,1.0,0.4,real(ircsec)+real(ircdelay),0.0,0)
 call plot(-14.4,0.5,-3)
 CALL FACTOR(FAC)
 CALL NEWPEN(1)
 call plot(2.,5.5,-3)
 xl=abx*real(nbx)+4.0
 yl=aby*real(nby)+2.0
 do 800 kk=1,3
 call symbol(abx+0.5,yl,0.4,ccomp(kk),0.0,2)
 do 790 i=1,mm
 790 xx(i)=x(kk,i)
 CALL
ESMTHF(XX(nmn),XX(nmn),FR(nmn),NMX,asmthf)
 CALL
PLTLOG(NBX,NBY,ABX,ABY,HCH,HTP,FMIN,SMINDSP,1)
 CALL NEWPEN(1)
 CALL
PTLINE(FR,XX,ABX,ABY,FMIN,SMINDSP,NMAX,NMN,NMX)
 CALL NEWPEN(1)
 CALL PLOT(xl,0.,-3)
 800 continue
 call plot(-xl*3.,12.5,-3)
 do 1000 kk=1,3
 call symbol(abx+0.5,yl,0.4,ccomp(kk),0.0,2)
 do 900 i=1,mm
 900 yy(i)=y(kk,i)
 CALL ESMTHF(yy(nmn),yy(nmn),FR(nmn),NMX,asmthf)
 CALL
PLTLOG(NBX,NBY,ABX,ABY,HCH,HTP,FMIN,SMINACC,3)
 CALL NEWPEN(1)
 CALL
PTLINE(FR,yy,ABX,ABY,FMIN,SMINACC,NMAX,NMN,NMX)
 CALL NEWPEN(1)
 CALL PLOT(xl,0.,-3)
 1000 continue
 Call plot(0.,-12.,-3)
 call plote(25)
 2000 continue
 stop
 end
C+++
 SUBROUTINE
PLTLOG(N,M,DX,DY,HEIT,TIP,XMIN,YMIN,IDX)
C
C N,M : BLOCK NUMBER OF X-AXIS & Y-AXIS
C DX,DY : BLOCK LENGTH OF X-AXIS & Y-AXIS
(CM)
C TIP : LENGTH OF SCALE TIP IN AXISES
(CM)
C HEIT : HEIGHT OF CHARACTER
(CM)
C XMIN,YMIN : (XMIN,YMIN) REFERENCE POINT
DATA
C
 CHARACTER
XUNIT*7,YUNIT*13,XNAME*10,YNAME*20
 CHARACTER YAX(5)*8,YNA(5)*20

 DATA YAX/' CM SEC ','CM/S SEC','GAL SEC ',' ','
'/
 DATA YNA/'DISPLACEMENT SPECTRA',' VELOCITY
SPECTRA ',
 * 'ACCELERATION SPECTRA','SPECTRUM
RATIO (M/A)',
 * 'SPECTRUM RATIO (S/M)'/
 XUNIT=' (Hz) '
 YUNIT=' '//YAX(IDX)//' '
 XNAME='FREQUENCY '
 YNAME=YNA(IDX)
 CALL NEWPEN(3)
 DO 100 I=0,N
 XL=XMIN*10**I
 IX=NINT(ALOG10(XL)+0.1)
 IF(IX.GE.2.OR.IX.LE.-1) GO TO 400
 IF(IX.EQ.1) THEN
 CALL SYMBOL(I*DX-HEIT,-0.3-HEIT,HEIT,'10',0.0,2)
 ELSE
 CALL
NUMBER(I*DX-2*HEIT,-HEIT-0.3,HEIT,10.**IX+0.05,0.0,1)
 ENDIF
 GO TO 100
 400 CALL SYMBOL(I*DX-HEIT,-0.3-HEIT,HEIT,'10',0.0,2)
 CALL
NUMBER(I*DX+HEIT,-0.3 ,HEIT*0.5,REAL(IX),0.0,0)
 100 CONTINUE
 DO 101 I=0,M
 YL=YMIN*10**I
 IY=NINT(ALOG10(YL)+0.1)
 IF(IY.GE.2.OR.IY.LE.-1) GO TO 401
 IF(IY.EQ.1) THEN
 CALL SYMBOL(-0.3-3*HEIT,I*DY,HEIT,'10',0.0,2)
 ELSE
 CALL
NUMBER(-0.3-4*HEIT,I*DY,HEIT,10.**IY+0.05,0.0,0)
 ENDIF
 GO TO 101
 401 CALL SYMBOL(-0.3-3*HEIT,I*DY,HEIT,'10',0.0,2)
 CALL
NUMBER(-0.3-HEIT,I*DY+HEIT,HEIT*0.5,REAL(IY),0.0,0)
 101 CONTINUE
 CALL
SYMBOL(N*DX/2-2.5*HEIT,-1.-2.7*HEIT,HEIT*1.,XUNIT,0., 7)
 CALL
SYMBOL(N*DX/2-3.8*HEIT,-1.-1.5*HEIT,HEIT*1.,XNAME,0.,10)
 CALL
SYMBOL(-4*HEIT,N*DX/2-6*HEIT,HEIT*1.,YUNIT,90.,13)
 CALL
SYMBOL(N*DX/2-7.5*HEIT,M*DY+1.5*HEIT,HEIT*1.,YNAME,0.,
20)
 CALL NEWPEN(2)
 DO 1 I=0,N
 CALL PLOT(I*DX, 0.0,3)
 CALL PLOT(I*DX,M*DY,2)
 IF(I.EQ.N) GO TO 1
 DO 11 J=2,9
 CALL PLOT(I*DX+ALOG10(REAL(J))*DX,0.0,3)
 11 CALL PLOT(I*DX+ALOG10(REAL(J))*DX,TIP,2)
 CALL PLOT(I*DX+ALOG10(5.)*DX,0.0,3)
 CALL PLOT(I*DX+ALOG10(5.)*DX,TIP*1.5,2)
 1 CONTINUE
 DO 2 I=0,M
 CALL PLOT(0.0,I*DY,3)
 CALL PLOT(N*DX,I*DY,2)
 IF(I.EQ.M) GO TO 2
 DO 12 J=2,9
 CALL PLOT(0.0,I*DY+ALOG10(REAL(J))*DY,3)
 12 CALL PLOT(TIP,I*DY+ALOG10(REAL(J))*DY,2)
 CALL PLOT(0.0,I*DY+ALOG10(5.)*DY,3)
 CALL PLOT(TIP*1.5,I*DY+ALOG10(5.)*DY,2)
 2 CONTINUE
 CALL NEWPEN(1)
 RETURN
 END
C+++
 SUBROUTINE
PTLINE(F,D,DX,DY,XMIN,YMIN,NN,NMIN,NMAX)

 102

 REAL*4 X(4096),Y(4096),D(NN),F(NN)
 DO 80 I=NMIN,NMAX
 IF(F(I).LT.1.E-10.OR.D(I).LT.1.E-10) GO TO 80
 X(I)=DX*ALOG10(F(I)/XMIN)
 Y(I)=DY*ALOG10(D(I)/YMIN)
 80 CONTINUE
 CALL PLOT(X(NMIN),Y(NMIN),3)
 DO 300 I=NMIN+1,NMAX
 IF(Y(I-1).GE.0.0.AND.Y(I).GT.0.0) THEN
 CALL PLOT(X(I),Y(I),2)
 ELSE
 CALL PLOT(X(I),Y(I),3)
 ENDIF
 300 CONTINUE
 301 RETURN
 END
C+++
 SUBROUTINE ESMTHF(AI,AO,F,NF,SMTHF)
C * ALISAR ESPECTRO
 REAL*4 AI(NF),AO(NF),F(NF),MADD
 IF(SMTHF.LE.0.0) GO TO 100
 AO(1)=AI(1)
 DO 35 I=2,NF
 F1=(1.0-0.5*SMTHF)*F(I)
 F2=(1.0+0.5*SMTHF)*F(I)
 IF(F2.LE.F(NF)) GO TO 31
 MNF=I-1
 GO TO 36
 31 SUM=0.0
 MADD=0.0
 DO 32 K=1,NF
 IF(F(K).LT.F1) GO TO 32
 IF(F(K).GT.F2) GO TO 33
 SUM=SUM+AI(K)
 MADD=MADD+1
 32 CONTINUE
 33 CONTINUE
 AO(I)=SUM/MADD
 35 CONTINUE
 36 CONTINUE
 NF=MNF
 RETURN
 100 CONTINUE
 DO 101 I=1,NF
 101 AO(I)=AI(I)
 RETURN
 END
ACC2VEL.FOR
 program acc2vel
c k-net data integrater (convert to velocity data)
 parameter(nmax=65536,nch=3)
 integer ix(nmax),imaxacc(nch),imaxvel(nch)
 real*4 x(nch,nmax),xx(nmax),amaxacc(nch),amaxvel(nch)
 complex cx(nmax)
 character cid*6,filen(nch)*20,dummy(16)*18,cdir(nch)*3,
 *
cmemo(nch)*80,cstcode*6,cdrv*9,ccomp(nch)*2,filenm*18
 data nst/1/ ntype,nchara,ncausal/1,3,2/
ccomp/'NS','EW','UD'/
 data ap,as/0.1,10.0/
 ned=nmax
 open(10,file='stlist.txt',status='old')
 read(10,*) cdrv,nsite
 do 5000 isite=1,nsite
 read(10,*) cid,tst,ted,fl,fh,fs
 write(6,'(a)')cdrv//cid//'.**'
 filen(1)=cdrv//cid//'.ns'
 open(1,file=filen(1),status="old")
 read(1,'(a18,i4,1x,i2,1x,i2,1x,i2,1x,i2)')
 * dummy(1),irgyear,irgmonth,irgday,irghour,irgmin
 read(1,'(a18,f5.1)')dummy(2),orglat
 read(1,'(a18,f5.1)')dummy(3),orglong
 read(1,'(a18,i4)') dummy(4),idepth
 orgdepth=real(idepth)
 read(1,'(a18,f4.1)')dummy(5),amag
 read(1,'(a18,a6)')dummy(6),cstcode
 read(1,'(a18,f8.4)')dummy(7),stlat
 read(1,'(a18,f8.4)')dummy(8),stlong

 read(1,'(a18,i4)') dummy(9),istdepth
 stheight=real(istdepth)
 read(1,'(a18,i4,1x,i2,1x,i2,1x,i2,1x,i2,1x,i2)')
 * dummy(10),ircyear,ircmonth,ircday,irchour,ircmin,ircsec
 read(1,'(a18,i3)')dummy(11),iratio
 sratio=real(iratio)
 dt=1.0/sratio
 read(1,'(a18,i3)')dummy(12),idur
 ndata=idur*100-8
 nst=int(tst/dt+0.5)*0.0
c ned=min(int(ted/dt+0.5),ndata)
 ned=ndata
 duration=real(idur)
 read(1,'(a18,A3)')dummy(13),cdir(1)
 read(1,'(a18,10x,i7)')dummy(14),iscale
 scale=2000./real(iscale)
 read(1,'(a18,i4)')dummy(15),imaxacc(1)
 amaxacc(1)=real(imaxacc(1))
 read(1,'(a18,i4,1x,i2,1x,i2,1x,i2,1x,i2,1x,i2)')
 * dummy(16),icryear,icrmonth,icrday,icrhour,icrmin,icrsec
 read(1,'(a80)')cmemo(1)
 read(1,'(8(i8,1x))')(ix(i),i=1,ndata)
 do 5 i=1,nmax
 5 cx(i)=(0.0,0.0)
 do 10 i=1,ndata
 10 x(1,i)=real(ix(i))*scale
 close(1)
 filen(2)=cdrv//cid//'.ew'
 open(1,file=filen(2),status="old")
 do 20 kk=1,14
 20 read(1,'(a18)')dummy(kk)
 cdir(2)='EW'
 read(1,'(a18,i4)')dummy(15),imaxacc(2)
 amaxacc(2)=real(imaxacc(2))
 read(1,'(a18)')dummy(16)
 read(1,'(a80)')cmemo(2)
 read(1,'(8(i8,1x))')(ix(i),i=1,ndata)
 do 30 i=1,ndata
 30 x(2,i)=real(ix(i))*scale
 close(1)
 filen(3)=cdrv//cid//'.ud'
 open(1,file=filen(3),status="old")
 do 40 kk=1,14
 40 read(1,'(a18)')dummy(kk)
 cdir(3)='UD'
 read(1,'(a18,i4)')dummy(15),imaxacc(3)
 amaxacc(3)=real(imaxacc(3))
 read(1,'(a18)')dummy(16)
 read(1,'(a80)')cmemo(3)
 read(1,'(8(i8,1x))')(ix(i),i=1,ndata)
 do 50 i=1,ndata
 50 x(3,i)=real(ix(i))*scale
 close(1)
 nn=ned-nst+1
 idur=int(real(nn)*dt)
 td =real(idur)
 nn=td/dt
 ntst=int(tst)
 do 500 kk=1,3
 do 180 i=1,nn
 180 xx(i)=x(kk,i+nst-1)
c linear trend fitting
 b1=xx(1)
 do 192 i=2,nn
 192 b1=b1+real(i)*xx(i)
 b2=xx(1)
 do 194 i=1,nn
 194 b2=b2+xx(i)
 a=real(nn*(nn+1)*(2*nn+1))/6.*dt
 b=real(nn*(nn+1))/2.
 c=b*dt
 d=real(nn)
 f=a*d-b*c
 aa=(d*b1-b*b2)/f
 bb=(-c*b1+a*b2)/f
 do 196 i=1,nn
 196 xx(i)=xx(i)-aa*real(i)*dt-bb
c band pass filtering

 103

 call bandp1(xx,nn,dt,fl,fh,fs,ap,as,ntype,nchara,ncausal)
c integration
 200 xx(1)=xx(1)*dt
 do 300 i=2,nn
 300 xx(i)=xx(i-1)+xx(i)*dt
 amaxvel(kk)=abs(xx(1))
 do 400 i=2,nn
 400 if(amaxvel(kk).lt.abs(xx(i))) amaxvel(kk)=abs(xx(i))
 imaxvel(kk)=int(amaxvel(kk)*1000.+0.5)
 do 410 i=1,nn
 410 x(kk,i)=xx(i)
 500 continue
 do 600 kk=1,nch
 filenm=filen(kk)(1:15)//'VL.'
 filen(kk)=filenm//ccomp(kk)
 600 write(6,'(1x,a23)') filen(kk)
c 25 micro kine per digit
 scale=2.5e-5
 iscale=int(200/scale+0.5)
c
 do 1000 kk=1,nch
 do 1010 i=1,nn
 1010 ix(i)=int(x(kk,i)/scale)
 open(1,file=filen(kk),status='unknown')
 write(1,'(a18,i4,1x,i2,1x,i2,1x,i2,1x,i2)')
 * dummy(1),
 *
irgyear,irgmonth,irgday,irghour,irgmin
 write(1,'(a18,f5.1)')dummy(2),orglat
 write(1,'(a18,f5.1)')dummy(3),orglong
 write(1,'(a18,i4)') dummy(4),idepth
 write(1,'(a18,f4.1)')dummy(5),amag
 write(1,'(a18,a6)') dummy(6),cstcode
 write(1,'(a18,f8.4)')dummy(7),stlat
 write(1,'(a18,f8.4)')dummy(8),stlong
 write(1,'(a18,i4)') dummy(9),istdepth
 write(1,'(a18,i4,1x,i2,1x,i2,1x,i2,1x,i2,1x,i2)')
 * dummy(10),
 *
ircyear,ircmonth,ircday,irchour,ircmin,ircsec
 write(1,'(a18,i3)') dummy(11),iratio
 write(1,'(a18,i3)') dummy(12),idur
 write(1,'(a18,A3)') dummy(13),cdir(kk)
 write(1,'(a18,a10,i7)')dummy(14),'200(kine)/',iscale
 write(1,'(a18,i8)') 'Max. Vel.(mkine) ',imaxvel(kk)
 write(1,'(a18,i4,1x,i2,1x,i2,1x,i2,1x,i2,1x,i2)')
 * dummy(16),
 *
icryear,icrmonth,icrday,icrhour,icrmin,icrsec
 write(1,'(a80)') cmemo(kk)
 write(1,'(8(i8,1x))')(ix(i),i=1,nn)
 close(1)
 1000 continue
 5000 continue
 close(10)
 stop
 end
PLTVEL.FOR
 include 'pltwv2.for'
 include 'timesft.for'
 include 'timecrt.for'
 program pltvel
c k-net data viewer (integrated velocity data)
 parameter(nmax=50000,nch=3)
 integer ix(nmax)
 real*4 x(nch,nmax),xx(nmax),amaxvel(nch)
 character
cid*6,filen*47,dummy*18,cdir*3,cmemo(nch)*80,cstcode*6,
 * cdrv*9,ccomp(nch)*2
 data aym,x0,yl,DTL/16.0,2.0,2.0,1.0/ fac/1./
 data ccomp/'NS','EW','UD'/ tst,ted/0.01,500./
 open(10,file='stlist.txt',status='old')
 read(10,*)cdrv,nsite
 do 5000 isite=1,nsite
 read(10,*) cid,tst
 filen=cdrv//cid//'vl.ns'
 write(6,'(a)')cdrv//cid//'vl.**'
 open(1,file=filen,status="old")

 read(1,'(a18,i4,1x,i2,1x,i2,1x,i2,1x,i2)')
 * dummy,irgyear,irgmonth,irgday,irghour,irgmin
 read(1,'(a18,f5.1)')dummy,orglat
 read(1,'(a18,f5.1)')dummy,orglong
 read(1,'(a18,i4)') dummy,idepth
 orgdepth=real(idepth)
 read(1,'(a18,f4.1)')dummy,amag
 read(1,'(a18,a6)')dummy,cstcode
 read(1,'(a18,f8.4)')dummy,stlat
 read(1,'(a18,f8.4)')dummy,stlong
 read(1,'(a18,i4)') dummy,idepth
 stheight=real(idepth)
 read(1,'(a18,i4,1x,i2,1x,i2,1x,i2,1x,i2,1x,i2)')
 * dummy,ircyear,ircmonth,ircday,irchour,ircmin,ircsec
 call timecrt(ircyear,ircmonth,ircday,irchour,ircmin,ircsec)
 read(1,'(a18,i3)')dummy,iratio
 sratio=real(iratio)
 dt=1.0/sratio
 read(1,'(a18,i3)')dummy,idur
 ndata=idur*100
 duration=real(idur)
 read(1,'(a18,A3)')dummy,cdir
 read(1,'(a18,10x,i7)')dummy,iscale
 scale=200./real(iscale)
 read(1,'(a18,i8)')dummy,imaxvel
 amaxvel(1)=real(imaxvel)
 read(1,'(a18)')dummy
 read(1,'(a80)')cmemo(1)
 read(1,'(8(i8,1x))')(ix(i),i=1,ndata)
 do 10 i=1,ndata
 10 x(1,i)=real(ix(i))*scale
 close(1)
 ntst=int(tst)
 nst=int(tst/dt+0.5)
 ned=int(ted/dt+0.5)
 call timesft(ntst,ircyear,ircmonth,ircday,
 * irchour,ircmin,ircsec)
 filen=cdrv//cid//'vl.ew'
 open(1,file=filen,status="old")
 do 20 kk=1,14
 20 read(1,'(a18)')dummy
 read(1,'(a18,i8)')dummy,imaxvel
 amaxvel(2)=real(imaxvel)
 read(1,'(a18)')dummy
 read(1,'(a80)')cmemo(2)
 read(1,'(8(i8,1x))')(ix(i),i=1,ndata)
 do 30 i=1,ndata
 30 x(2,i)=real(ix(i))*scale
 close(1)
 filen=cdrv//cid//'vl.ud'
 open(1,file=filen,status="old")
 do 40 kk=1,14
 40 read(1,'(a18)')dummy
 read(1,'(a18,i8)')dummy,imaxvel
 amaxvel(3)=real(imaxvel)
 read(1,'(a18)')dummy
 read(1,'(a80)')cmemo(3)
 read(1,'(8(i8,1x))')(ix(i),i=1,ndata)
 do 50 i=1,ndata
 50 x(3,i)=real(ix(i))*scale
 close(1)
 filen=cdrv//cid//'vl.ps'
 write(6,'(A)')filen
 open(25,file=filen,status='unknown')
 CALL PLOTS(25)
 call yoko(25)
 call symbol(1.5,5.0,0.8,cid,90.0,6)
 call number(1.5,11.0,0.25,real(ircyear),90.0,0)
 call number(1.5,12.25,0.25,real(ircmonth),90.0,0)
 call number(1.5,13.00,0.25,real(ircday),90.0,0)
 call number(1.5,13.75,0.25,real(irchour),90.0,0)
 call number(1.5,14.50,0.25,real(ircmin),90.0,0)
 call number(1.5,15.25,0.25,real(ircsec),90.0,0)
 CALL FACTOR(FAC)
 ndatamax=min1(real(ndata-nst+1),24.*dtl/dt)+nst-1
 do 60 kk=1,nch
 amaxvel(kk)=x(kk,nst)
 do 60 i=2,ndatamax-nst+1

 104

 if(amaxvel(kk).lt.abs(x(kk,nst+i-1))) then
 amaxvel(kk) =abs(x(kk,nst+i-1))
 endif
 60 continue
 amaxx=amax1(amaxvel(1),amaxvel(2),amaxvel(3))
 if(amaxx.lt. 500.) xxmax= 500.
 if(amaxx.lt. 200.) xxmax= 200.
 if(amaxx.lt. 100.) xxmax= 100.
 if(amaxx.lt. 50.) xxmax= 50.
 if(amaxx.lt. 20.) xxmax= 20.
 if(amaxx.lt. 10.) xxmax= 10.
 if(amaxx.lt. 5.) xxmax= 5.
 if(amaxx.lt. 2.) xxmax= 2.
 if(amaxx.lt. 1.) xxmax= 1.
 if(amaxx.lt.0.5) xxmax= 0.5
 if(amaxx.lt.0.2) xxmax= 0.2
 if(amaxx.lt.0.1) xxmax= 0.1
 if(amaxx.lt.0.05) xxmax= 0.05
 if(amaxx.lt.0.02) xxmax= 0.02
 if(amaxx.lt.0.01) xxmax= 0.01
 call plot(x0,0.,-3)
 CALL NEWPEN(1)
 ay=aym
 if(ndatamax.lt.ndata) call symbol(26.,0.5,0.3,'C',0.0,1)
 do 1000 kk=1,3
 call symbol(2.5,ay+yl+0.3,0.4,ccomp(kk),0.0,2)
 call symbol(4.0,ay+yl+0.3,0.3,'Max=',0.0,4)
 call number(5.5,ay+yl+0.3,0.3,amaxvel(kk),0.0,3)
 do 100 i=1,ndata
 100 xx(i)=x(kk,i+nst-1)
 CALL PLOT(2., AY,-3)
 call pltwv2(xx,ndatamax-nst+1,dt,dtl,xxmax,yl,2)
 CALL PLOT(-2.,-AY,-3)
 ay=ay-3.*yl
 1000 continue
 call plote(25)
 close(25)
 5000 continue
 close(10)
 stop
 end
ACC2DIS.FOR
 program acc2dis
c k-net data integrater (convert to displacement data)
 parameter(nmax=65536,nch=3)
 integer ix(nmax),imaxacc(nch),imaxdsp(nch)
 real*4 x(nch,nmax),xx(nmax),amaxacc(nch),amaxdsp(nch)
 character
cid*6,filen(nch)*20,filein*15,dummy(16)*18,cdir(nch)*3,
 *
cmemo(nch)*80,cstcode*6,cdrv*9,ccomp(nch)*2,filenm*18
 data nst/1/ ntype,nchara,ncausal/1,3,2/
ccomp/'NS','EW','UD'/
 data ap,as/0.1,10.0/
 ned=nmax
 open(10,file='stlist.txt',status='old')
 read(10,*) cdrv,nsite
 do 5000 isite=1,nsite
 read(10,*) cid,tst,ted,fl,fh,fs
 filein=cdrv//cid
 filen(1)=filein//'.ns'
 write(6,'(a)')filein//'.**'
 open(1,file=filen(1),status="old")
 read(1,'(a18,i4,1x,i2,1x,i2,1x,i2,1x,i2)')
 * dummy(1),irgyear,irgmonth,irgday,irghour,irgmin
 read(1,'(a18,f5.1)')dummy(2),orglat
 read(1,'(a18,f5.1)')dummy(3),orglong
 read(1,'(a18,i4)') dummy(4),idepth
 orgdepth=real(idepth)
 read(1,'(a18,f4.1)')dummy(5),amag
 read(1,'(a18,a6)')dummy(6),cstcode
 read(1,'(a18,f8.4)')dummy(7),stlat
 read(1,'(a18,f8.4)')dummy(8),stlong
 read(1,'(a18,i4)') dummy(9),idepth
 stheight=real(idepth)
 read(1,'(a18,i4,1x,i2,1x,i2,1x,i2,1x,i2,1x,i2)')
 * dummy(10),ircyear,ircmonth,ircday,irchour,ircmin,ircsec
 read(1,'(a18,i3)')dummy(11),iratio

 sratio=real(iratio)
 dt=1.0/sratio
 read(1,'(a18,i3)')dummy(12),idur
 ndata=idur*100-8
 nst=int(tst/dt+0.5)*0.0
c ned=min(int(ted/dt+0.5),ndata)
 ned=ndata
 duration=real(idur)
 read(1,'(a18,A3)')dummy(13),cdir(1)
 read(1,'(a18,10x,i7)')dummy(14),iscale
 scale=2000./real(iscale)
 read(1,'(a18,i4)')dummy(15),imaxacc(1)
 amaxacc(1)=real(imaxacc(1))
 read(1,'(a18,i4,1x,i2,1x,i2,1x,i2,1x,i2,1x,i2)')
 * dummy(16),icryear,icrmonth,icrday,icrhour,icrmin,icrsec
 read(1,'(a80)')cmemo(1)
 read(1,'(8(i8,1x))')(ix(i),i=1,ndata)
 do 10 i=1,ndata
 10 x(1,i)=real(ix(i))*scale
 close(1)
 filen(2)=filein//'.ew'
 open(1,file=filen(2),status="old")
 do 20 kk=1,14
 20 read(1,'(a18)')dummy(kk)
 cdir(2)='EW'
 read(1,'(a18,i4)')dummy(15),imaxacc(2)
 amaxacc(2)=real(imaxacc(2))
 read(1,'(a18)')dummy(16)
 read(1,'(a80)')cmemo(2)
 read(1,'(8(i8,1x))')(ix(i),i=1,ndata)
 do 30 i=1,ndata
 30 x(2,i)=real(ix(i))*scale
 close(1)
 filen(3)=filein//'.ud'
 open(1,file=filen(3),status="old")
 do 40 kk=1,14
 40 read(1,'(a18)')dummy(kk)
 cdir(3)='UD'
 read(1,'(a18,i4)')dummy(15),imaxacc(3)
 amaxacc(3)=real(imaxacc(3))
 read(1,'(a18)')dummy(16)
 read(1,'(a80)')cmemo(3)
 read(1,'(8(i8,1x))')(ix(i),i=1,ndata)
 do 50 i=1,ndata
 50 x(3,i)=real(ix(i))*scale
 close(1)
 nn=ned-nst+1
 idur=int(real(nn)*dt)
 td =real(idur)
 nn=td/dt
 ntst=int(tst)
 do 500 kk=1,3
 do 180 i=1,nn
 180 xx(i)=x(kk,i+nst-1)
c linear trend fitting
 b1=xx(1)
 do 192 i=2,nn
 192 b1=b1+real(i)*xx(i)
 b2=xx(1)
 do 194 i=1,nn
 194 b2=b2+xx(i)
 a=real(nn*(nn+1)*(2*nn+1))/6.*dt
 b=real(nn*(nn+1))/2.
 c=b*dt
 d=real(nn)
 f=a*d-b*c
 aa=(d*b1-b*b2)/f
 bb=(-c*b1+a*b2)/f
 do 186 i=1,nn
 186 xx(i)=xx(i)-aa*real(i)*dt-bb
c band pass filtering
 call bandp1(xx,nn,dt,fl,fh,fs,ap,as,ntype,nchara,ncausal)
c integration
 888 xx(1)=xx(1)*dt
 do 200 i=2,nn
 200 xx(i)=xx(i-1)+xx(i)*dt
c linear trend fitting
 b1=xx(1)

 105

 do 292 i=2,nn
 292 b1=b1+real(i)*xx(i)
 b2=xx(1)
 do 294 i=1,nn
 294 b2=b2+xx(i)
 a=real(nn*(nn+1)*(2*nn+1))/6.*dt
 b=real(nn*(nn+1))/2.
 c=b*dt
 d=real(nn)
 f=a*d-b*c
 aa=(d*b1-b*b2)/f
 bb=(-c*b1+a*b2)/f
 do 286 i=1,nn
 286 xx(i)=xx(i)-aa*real(i)*dt-bb
c band pass filtering
 call bandp1(xx,nn,dt,fl,fh,fs,ap,as,ntype,nchara,ncausal)
c integration
 xx(1)=xx(1)*dt
 do 300 i=2,nn
 300 xx(i)=xx(i-1)+xx(i)*dt
 amaxdsp(kk)=abs(xx(1))
 do 400 i=2,nn
 400 if(amaxdsp(kk).lt.abs(xx(i))) amaxdsp(kk)=abs(xx(i))
 imaxdsp(kk)=int(amaxdsp(kk)*10000.+0.5)
 do 410 i=1,nn
 410 x(kk,i)=xx(i)
 500 continue
 do 600 kk=1,nch
 filenm=filen(kk)(1:15)//'DS.'
 filen(kk)=filenm//ccomp(kk)
 write(6,'(1x,a23)') filen(kk)
 600 continue
c 0.25 micron per digit
 scale=2.5e-5
 iscale=int(25./scale+0.5)
c
 do 1000 kk=1,nch
 do 1010 i=1,nn
 1010 ix(i)=int(x(kk,i)/scale)
 open(1,file=filen(kk),status='unknown')
 write(1,'(a18,i4,1x,i2,1x,i2,1x,i2,1x,i2)')
 * dummy(1),
 *
irgyear,irgmonth,irgday,irghour,irgmin
 write(1,'(a18,f5.1)')dummy(2),orglat
 write(1,'(a18,f5.1)')dummy(3),orglong
 write(1,'(a18,i4)') dummy(4),idepth
 write(1,'(a18,f4.1)')dummy(5),amag
 write(1,'(a18,a6)') dummy(6),cstcode
 write(1,'(a18,f8.4)')dummy(7),stlat
 write(1,'(a18,f8.4)')dummy(8),stlong
 write(1,'(a18,i4)') dummy(9),idepth
 write(1,'(a18,i4,1x,i2,1x,i2,1x,i2,1x,i2,1x,i2)')
 * dummy(10),
 *
ircyear,ircmonth,ircday,irchour,ircmin,ircsec
 write(1,'(a18,i3)') dummy(11),iratio
 write(1,'(a18,i3)') dummy(12),idur
 write(1,'(a18,A3)') dummy(13),cdir(kk)
 write(1,'(a18,a10,i7)')dummy(14),'25(cm)/',iscale
 write(1,'(a18,i8)') 'Max.Disp.(micron) ',imaxdsp(kk)
 write(1,'(a18,i4,1x,i2,1x,i2,1x,i2,1x,i2,1x,i2)')
 * dummy(16),
 *
icryear,icrmonth,icrday,icrhour,icrmin,icrsec
 write(1,'(a80)') cmemo(kk)
 write(1,'(8(i8,1x))')(ix(i),i=1,nn)
 close(1)
 1000 continue
 5000 continue
 close(10)
 stop
 end
PLTDIS.FOR
 include 'pltwv2.for'
 include 'timesft.for'
 include 'timecrt.for'
 program pltdis

c k-net data viewer (integrated displacement data)
 parameter(nmax=50000,nch=3)
 integer ix(nmax)
 real*4 x(nch,nmax),xx(nmax),amaxvel(nch)
 character
cid*6,filen*47,dummy*18,cdir*3,cmemo(nch)*80,cstcode*6,
 * cdrv*9,ccomp(nch)*2
 data aym,x0,yl,DTL/16.0,2.0,2.0,1.0/ fac/1./
 data ccomp/'NS','EW','UD'/ tst,ted/0.01,500./
 open(10,file='stlist.txt',status='old')
 read(10,*)cdrv,nsite
 do 5000 isite=1,nsite
 read(10,*) cid,tst
 filen=cdrv//cid//'ds.ns'
 write(6,'(a)')cdrv//cid//'ds.**'
 open(1,file=filen,status="old")
 read(1,'(a18,i4,1x,i2,1x,i2,1x,i2,1x,i2)')
 * dummy,irgyear,irgmonth,irgday,irghour,irgmin
 read(1,'(a18,f5.1)')dummy,orglat
 read(1,'(a18,f5.1)')dummy,orglong
 read(1,'(a18,i4)') dummy,idepth
 orgdepth=real(idepth)
 read(1,'(a18,f4.1)')dummy,amag
 read(1,'(a18,a6)')dummy,cstcode
 read(1,'(a18,f8.4)')dummy,stlat
 read(1,'(a18,f8.4)')dummy,stlong
 read(1,'(a18,i4)') dummy,idepth
 stheight=real(idepth)
 read(1,'(a18,i4,1x,i2,1x,i2,1x,i2,1x,i2,1x,i2)')
 * dummy,ircyear,ircmonth,ircday,irchour,ircmin,ircsec
 call timecrt(ircyear,ircmonth,ircday,irchour,ircmin,ircsec)
 read(1,'(a18,i3)')dummy,iratio
 sratio=real(iratio)
 dt=1.0/sratio
 read(1,'(a18,i3)')dummy,idur
 ndata=idur*100
 duration=real(idur)
 read(1,'(a18,A3)')dummy,cdir
 read(1,'(a18,10x,i7)')dummy,iscale
 scale=25./real(iscale+0.5)
 read(1,'(a18,i8)')dummy,imaxvel
 amaxvel(1)=real(imaxvel)
 read(1,'(a18)')dummy
 read(1,'(a80)')cmemo(1)
 read(1,'(8(i8,1x))')(ix(i),i=1,ndata)
 do 10 i=1,ndata
 10 x(1,i)=real(ix(i))*scale
 close(1)
 filen=cdrv//cid//'ds.ew'
 open(1,file=filen,status="old")
 do 20 kk=1,14
 20 read(1,'(a18)')dummy
 read(1,'(a18,i8)')dummy,imaxvel
 amaxvel(2)=real(imaxvel)
 read(1,'(a18)')dummy
 read(1,'(a80)')cmemo(2)
 read(1,'(8(i8,1x))')(ix(i),i=1,ndata)
 do 30 i=1,ndata
 30 x(2,i)=real(ix(i))*scale
 close(1)
 filen=cdrv//cid//'ds.ud'
 open(1,file=filen,status="old")
 do 40 kk=1,14
 40 read(1,'(a18)')dummy
 read(1,'(a18,i8)')dummy,imaxvel
 amaxvel(3)=real(imaxvel)
 read(1,'(a18)')dummy
 read(1,'(a80)')cmemo(3)
 read(1,'(8(i8,1x))')(ix(i),i=1,ndata)
 do 50 i=1,ndata
 50 x(3,i)=real(ix(i))*scale
 close(1)
 ntst=int(tst)
 nst=int(tst/dt+0.5)
 ned=int(ted/dt+0.5)
 call timesft(ntst,ircyear,ircmonth,ircday,
 * irchour,ircmin,ircsec)
 filen=cdrv//cid//'ds.ps'

 106

 write(6,*) filen
 open(25,file=filen,status='unknown')
 CALL PLOTS(25)
 call yoko(25)
 call symbol(1.5,5.0,0.8,cid,90.0,6)
 call number(1.5,11.0,0.25,real(ircyear),90.0,0)
 call number(1.5,12.25,0.25,real(ircmonth),90.0,0)
 call number(1.5,13.00,0.25,real(ircday),90.0,0)
 call number(1.5,13.75,0.25,real(irchour),90.0,0)
 call number(1.5,14.50,0.25,real(ircmin),90.0,0)
 call number(1.5,15.25,0.25,real(ircsec),90.0,0)
 CALL FACTOR(FAC)
 ndatamax=min1(real(ndata-nst+1),24.*dtl/dt)+nst-1
 do 60 kk=1,nch
 amaxvel(kk)=x(kk,nst)
 do 60 i=2,ndatamax-nst+1
 if(amaxvel(kk).lt.abs(x(kk,nst+i-1))) then
 amaxvel(kk) =abs(x(kk,nst+i-1))
 endif
 60 continue
 amaxx=amax1(amaxvel(1),amaxvel(2),amaxvel(3))
c write(6,*)amaxvel(1),amaxvel(2),amaxvel(3)
 if(amaxx.lt.500000.) xxmax=500000.
 if(amaxx.lt.200000.) xxmax=200000.
 if(amaxx.lt.100000.) xxmax=100000.
 if(amaxx.lt.50000.) xxmax=50000.
 if(amaxx.lt.20000.) xxmax=20000.
 if(amaxx.lt.10000.) xxmax=10000.
 if(amaxx.lt.5000.) xxmax=5000.
 if(amaxx.lt.2000.) xxmax=2000.
 if(amaxx.lt.1000.) xxmax=1000.
 if(amaxx.lt. 500.) xxmax= 500.
 if(amaxx.lt. 200.) xxmax= 200.
 if(amaxx.lt. 100.) xxmax= 100.
 if(amaxx.lt. 50.) xxmax= 50.
 if(amaxx.lt. 20.) xxmax= 20.

 if(amaxx.lt. 10.) xxmax= 10.
 if(amaxx.lt. 5.) xxmax= 5.
 if(amaxx.lt. 2.) xxmax= 2.
 if(amaxx.lt. 1.) xxmax= 1.
 if(amaxx.lt.0.5) xxmax= 0.5
 if(amaxx.lt.0.2) xxmax= 0.2
 if(amaxx.lt.0.1) xxmax= 0.1
 if(amaxx.lt.0.05) xxmax= 0.05
 if(amaxx.lt.0.02) xxmax= 0.02
 if(amaxx.lt.0.01) xxmax= 0.01
 if(amaxx.lt.0.005) xxmax= 0.005
 if(amaxx.lt.0.002) xxmax= 0.002
 if(amaxx.lt.0.001) xxmax= 0.001
 xxmax=xxmax*10000.
 call plot(x0,0.,-3)
 CALL NEWPEN(1)
 ay=aym
 if(ndatamax.lt.ndata) call symbol(26.,0.5,0.3,'C',0.0,1)
 do 1000 kk=1,3
 call symbol(2.5,ay+yl+0.3,0.4,ccomp(kk),0.0,2)
 call symbol(4.0,ay+yl+0.3,0.3,'Max=',0.0,4)
 call number(5.5,ay+yl+0.3,0.3,amaxvel(kk)*10000.,0.0,4)
 do 100 i=1,ndata
 100 xx(i)=x(kk,i+nst-1)*10000.
 CALL PLOT(2., AY,-3)
 call pltwv2(xx,ndatamax-nst+1,dt,dtl,xxmax,yl,3)
 CALL PLOT(-2.,-AY,-3)
 ay=ay-3.*yl
 1000 continue
 call plote(25)
 close(25)
 5000 continue
 close(10)
 stop
 end

 107

Reference for further reading
Chiu, H-C (1997): Stable Correction of Digital Strong-Motion Data, Bull. Seism. Soc. Am., Vol. 87,

932-944.
Graeme, J. G., G. E. Tubey and L. P. Huelsman (1971): Operational Amplifiers Design and Applications,

McGraw-Hill.
Minami, S. (1986): Waveform Data Processing for Scientific Measurements, CQ-Publishing (in Japanese).
Ohsaki, Y. (1976): Introduction to the spectral analysis of seismic motion, Kajima (in Japanese).
Papoulis, A. (1984): Signal Analysis, Mcgraw-Hill .
Press, W. H., S. A. Teukolsky, W. T. Vetterling and B. P. Flannery (1992): Numerical Recipes in FORTRAN,

The Art of Scientific Computing Second Edition, Cambridge University Press.
Rikitake, T., R. Sato and Y. Hagiwara (1980): Applied Mathematics -for Geosciences- Vol. I Basics, Center

for Academic Publications Japan (in Japanese).
Robinson, A. and S. Treitel (1980): Geophysical Signal Analysis, Prentice-Hall.
Saito, M. (1978):An automatic Design Algorithm for Band Selective Recursive Digital Filters,

BUTURI-TANSA, Vol. 31, No. 4, pp112-135 (in Japanese).
Sherbaum, F. (1994): Basic Concepts in Digital Signal Processing for Seismologists, Springer-Verlag.
Sherbaum, F. and J. Johnson (1992): Programmable Interactive Toolbox for Seismological Analysis

(PITSA), International Association of Seismology and Physics of the Earth’s Interior.
Sherbaum, F. (1996): Of Poles and Zeros, Kluwer Academic Publishers.
Silvia, M. T. and E. A. Robinson (1979): Deconvolution of Geophysical Time Series in the Exploration for

Oil and Natural Gas, Elsevier.
Vich, R. (1987): Z-transform Theory and Applications, D. Reidel Publishing Company.
Yanagisawa, T and B. Kanemitu (1980): Design of Active Filter, Sanpo-Publishing (in Japanese).
Yilmaz, Ö (1994): Seismic Data Processing, Society of Exploration Geophysicists.

