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1. INTRODUCTION

1-1. Section

Area

1-2. Stress and Strain

1) One-Dimensional Problem

D1y,
N o)
o=— E=—
A L
Stress Strain
S—

) _bD? é , _bD
12 : Y12
Moment of Inertia
5-
(o}
) N
E
/l &
o=Ee¢
Hook’s Law
E: Young's Modulus
_
—
N=FAs
L

Force — Deformation Relationship



2) Two-Dimensional Problem

Normal Stress and Strain

v Poisson Ratio

Shear Stress and Strain

Ty
)
Ty l I Ty
<=
Ty
Lt
gX E E O-X
1 1
8y = —VE E 0 O'y
7xy O 0 l Xy
i G

Q

Oy
o (o2
gx :_X_V_y
E E
o o
g, =——v—=
E E

or

Ty =Gy,
1
= E - Shear Modulus
2(1+v)
o, 1 v 0 (¢
E
o, |= v 1 0 &
1-v 1-v
2-xy 00 T 7 x



1-3. Beam Theory
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1.4 Properties of Reinforced Concrete Structure

Unit Weight

Nominal Strength ) )
Concrete Type Unit Weight (kN/ms3)
(N/mm?2 = MPa)

Normal Concrete Fc=36 24

Material Parameters

Thermal
Young’s Modulus ] . .
Poisson’s Ratio Expansion
(N/mm? = MPa) - .
Coefficient (1/°C)
Steel Bar 200 000 1/4 1x105

22 000 (Fc=18)
Concrete 25000 (Fec=24) 1/6 1x 105
28 000 (Fe=30)



2. SIMPLE EXAMPLE FOR FEM FORMULATION
Step.1: Description of the Problem

The problem is to obtain the deformation of a simple supported beam under various load

conditions.

m || g

A

If you change the load condition, you will get the different deformation pattern. Actually,

there are infinite variations for the deformation pattern.

! &5

\/ A\_/—é etc.

Step.2: Assumption of deformation function

We assume a particular function for the deformation pattern to fix the variation, such

as the following function:

wnzagm%@ (1)

Step.3: Relation between nodal displacement and element deformation

From equation (1), The displacement § at the center node A is calculated as

o=v(05L)=a 2

A
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The relation between nodal displacement and element deformation is then expressed as,

w@=5gm%@ (3)



Step.4: Stiffness equation at the node

We obtain the relation between the nodal force and the nodal displacement, for example,
by using the “Principle of Virtual Work Method.”

P=K§ @)
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The process is summarized as follows:

Translate external forces into

P
Wi l l i = ’ equivalent nodal force, P.
A A x

>

Calculate nodal displacement, 0 ,
from the stiffness equation,
S=K™*P

I>

=T (T

Obtain the element deformation

from the nodal displacement.

it
w V(X) = §sin(% X)

The above example tells the essence of the finite element analysis, which is:
“Assume the deformation pattern to reduce the degree of freedom of the element, then,

obtain the deformation from the limited number of nodal displacements.”




3. TRIANGULAR ELEMENT FOR PLANE ANALYSIS

Step.1: Description of the Problem

The problem is to obtain the deformation of a simple triangular element.

There are infinite variations for the deformation patterns.

ete.

Step.2: Assumption of deformation function

To fix the variation for the deformation patterns, we assume a linear function for the
deformation pattern.
u(x,y) =a, +a,X+a,y
V(X, ) =a, +ax+a.y
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In a matrix form,
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Step.3: Relation between nodal displacement and element deformation

The displacements of the element nodes are expressed as,



Node 1: u1:1 XX ¥, 00 0)a @)
00 0 1 % Ve

Node 2: [uzJ:[l X, ¥, 0.0 0\ ®

Node 3: (usjz(l X; ¥3 0 0 0)a 9

It is summarized as,
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We can obtain the coefficients «;,---¢, from the nodal displacements as,

a =Alu (11)

Substituting equation (11) into equation (6), the relation between nodal displacement

and element deformation is,

ul

u2
u=1xy OOA_lu3 (12)
v 0 0O y A

V2

V3
uky) =  Hky) u

Step.4: Stiffness equation at the node

We obtain the relation between the nodal force and the nodal displacement, for example,

by using the “Principle of Virtual Work Method.”

P, u,
P, u,
P u
*l=K| (13)
Q Vi
Q, v,
Q; Vs
F = Ku
The process is summarized as follows:
(1) Translate external forces into equivalent nodal force,
F=1{P;, P5, Ps, @1, Q2 Q37
2 Calculate the nodal displacements from the stiffness equation,
u=KI!F
3 Obtain the element deformation from the nodal displacement.

ulx,y) = Hx,y)u
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4. STIFFNESS MATRIX FOR TRIANGULAR ELEMENT

Stiffness matrix in equation (13) can be obtained from the “Principle of Virtual Work

Method,” which is expressed in the following form:

cdv=U"F (14)
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where, &£ is a virtual strain vector, o is a stress vector, Uis a virtual displacement

vector and /' is a load vector, respectively.

In case of the plane problem, the strain & vector is defined as,

au
£, OX
gy |= % (15)
7 xy ou ov
—_ _|_ _
oy oX

Substituting equation (12) into equation (15), the strain vector is calculated from the

nodal displacement vector as,

u
& N
g, gé 010000 ?
u
g |=| — |=|/0 0000 1|A7 " (16)
y % 001010 Y
S CEC) v,
oy oX v,
e = B u
In the plane stress problem, the stress-strain relationship is expressed as,
o, . 1 v 0 g
o, |= slv 1 0 |sg a7
1-v 1-v
Xy 0 0 T 7xy
o = C £
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Substituting equation (16) into equation (17),
c=CBu (18)

From the Principle of Virtual Work Method,

[ (B0) (CBUYIV =0 ( [ BTCde]u ~U'F (19)
\%

\

Therefore, the stiffness equation is obtained as,

F=Ku K :jBTCde (20)
\Y
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5. FROM ELEMENT STIFFNESS MATRIX TO GLOBAL STIFFNESS MATRIX
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F = K U

13



Set the load condition,

P, 0
P 0
4= (24)
Qs -P
Q, 0
The displacement vector is then obtained by solving the stiffness equation,
U, 0
u 0
Yl=K? (25)
A -P
Vv, 0

14



6. HIGHER ORDER ELEMENT

After
deformation

Before
deformation

U= o, +a,X+ay+a, X +aXy+a,y’

The linear triangular element assumes the
deformation pattern to be a linear function

between two nodes.

It requires a large number of elements at the

place where deformation changes largely.

Before

To reduce the number of elements, we
introduce the higher order elements, such as
the following second order elements where
the deformation pattern is assumed to be the

second order function of coordinate.

(26)

V=0, +agX+agy +a X +an Xy +a,y’

In a matrix form,

(27)

: In order to define the second order function, we need
4 vs an additional node in the middle of each side of the
6 triangle. At the result, the total number of nodes in
o 3 us one element is 6.
1 2
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The displacement of the element nodes are then expressed as,

uj X\ Vi X %y, yro |
u, X, Yo X5 XY, Y5 | 0
S : o
Us | |1 X Yo Xo XY Yo |
— | =1 _ _ _ _ _ _ | _ _ _ _ _
v I X\ Vi X XY,
v, |1 % ¥, X XY,
. 0 | L :
Ve | 1 X Y Xo X¢Ye
u = A
From equations (27) and (28), we obtain
u) (1 x y x* xy yY 00 0 0 0 0
v) (0 00 0 0 1 x y x* xy y?
uxy) = Hx,y)

Y1
Y2

Ye

- | 28

(29)

As the same as the linear triangular element, the stiffness equation is obtained as

Pl ul
P2 u2
P u
6 — K 6
Q Vi
Q, vV,
Qs Ve
F = Ku
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The process is summarized as follows:

(1 Translate external forces into equivalent nodal force,
F=\Pi, ... Ps @, ..., @37

2 Calculate the nodal displacements from the stiffness equation,
u=K!F

3 Obtain the element deformation from the nodal displacement.

ulx,y) = Hx,y)u

17



7. INTERPOLATION FUNCTION

Suppose we have one dimensional element under loading. As discussed before, we

assume a linear function for the deformation pattern after loading,

/‘ u(x) =2, +a,x

A uz or
u |1 2

< < i u(x) =1 x)(aoj (31)

al
| 1 |

The next step is to obtain the coefficients, ao, a1, from the nodal displacements. From
the relations:

U, =a, +a;X;
U, =a, +a;X,

u, _ 1 x \a, (32)
u, 1 x,\a

u = A«

or

The coefficients are obtained as, @ =A*Z u. Then, the relation between the deformation
and the nodal displacements is,

2

u(x) =1 x)A‘lulj (33)

Instead of the previous procedure, we introduce the interpolation functions to express
the deformation directly from the nodal displacements:

u(x) = h, (x)u, + h, (x)u, (34)

The interpolation functions, A7 and Az have the following characteristics:

hl(x)={l’ = hz(x)={1 X=, (35)

0, x=#u 0, x=#u,

18



From these characteristics, the functions are easily obtained as,

X, — X

="t ="

(36)

One of the advantages of using interpolation functions is to reduce the burden to

calculate the inverse matrix of A in equation (33).

In the same manner, if we assume a second order function for the deformation pattern,

the deformation can be directly expressed using interpolation functions as follows:

u(x) = h,(x)u, + h, (x)u, + h,(x)u, (37)
/‘
us
Q us y
ui |1 2
ui |1 2 X _  » X
X1 - X1 3 X2
1 | 1 |
hi(x)u: hix)w
u1 T u1
> X » X
X1 X2 X1 X2
hz(x)us uz
ha(x)u2 e
» X p X
X1 X9 X1 X2
us hs(x)us
/R » X
X1 X2
First order interpolation function Second order interpolation function
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8. NATURAL COORDINATE
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w(x) : distribution of weight
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When we measure the coordinate of
the pencil, the result is different
depending on the scale we use. In
this example, the coordinate of the
head of the pencil is 5.0 in x-scale

and 9.5 in t-scale.

As long as we have one-to-one
relationship between two scales,
we can translate the value in one
scale to the value in another scale

anytime,

t

‘\_/

Xx=2(t=7)

The total weight of the pencil will be calculated in x-axis as,

W = jw(x)dx

To translate it into t-axis, we use the following relationships:

S B N W b~ O
| I
1
o
X

l l l | [ t
I I I I Ll
6/7 8 9 10

Global relationship:

Local relationship:

(38)
Xx=2(t-7) (39)
dx = 2dt (40)

Substituting equations (39) and (40) into (38), the total weight is expressed in t-axis as,

W = ZTW(x(t))dt

20
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Next we consider a more complicated scale to measure the total weight of the pencil.

T X

X = X(t)
—t—t—t—+—+—+— x
0 1 2 3 4 5 6 >
| >t 47T
a B 37T -\ dx
o . 27T
w(x) : distribution of weight dt
1+
» X 0 T >
a t B
W(x_
2l ﬂ IR > X
X X+dx
The relationships between x-axis and t-axis are:
Global relationship: X = X(t) (42)
: : dx(t
Local relationship: dx = ﬁdt (43)

dt

Where dx(t)/dt represents the first derivative of x(x) by the variable t, which correspond
to the slope of x(t) at t. Substituting equations (42) and (43) into (38), the total weight

will be expressed in t-axis as,

s
W = IW(X('[))% dt (44)

a

This integration can be evaluated by the numerical integration formula which is

generally expressed in the following form:

1
jf(t)dtzalf(tl)+a2f(t2)+-~+anf(tn) (45)
)
where, a1, ..., an are the weighting coefficients. This formula requires a limited
number of function values, f(t1), ..., f(tn), at the sampling points, t1, ..., tn, to evaluate the

integration. The integration range must be [-1, 1] to use this formula.

21



f(tn)

-1 t1 to tn +1

Going back to the problem to evaluate the total weight of the pencil, if we select the

scale which has the range [-1, 1], we can use the numerical integration method to

evaluate the integration.

> x
0 1 2 3 4 5 6
i —> t
-1 +1
Setting a=-1, =1 in equation (44),
dx(t)

W = j f(t)dt, f(t)=w(x(t)) (46)

dt

Such coordinate is called “natural coordinate.”

22



9. ISOPARAMETRIC ELEMENT

We now introduce the natural coordinate for the example of one dimensional element.

ui |1 2
I » X
X1 X2
: — ¢
1 +1

X1

If we assume the linear transfer function x(t) between x-axis and t-axis, x(t) will be

expressed as

where

n® = a-0),

Actually, it satisfies the fact that

X(t) = h ()%, +h, (t)x, (47)
1
h, ()= @+1) (48)
X(1) = X, (49)

X(_l):Xp
/‘
i uz
u1
— t
1 +1
I
T hi(t)u:
u1 -
-1 +1
+
ha(t)us us
» t
1 +1

The deformation of the element is also

expressed as,

u(t) = h,®u, +h,(u,  (0)

Therefore, the functions h,(t), h,(t) are the

interpolation functions we introduced before.

The element where both the coordinate
transfer function x(t) and the deformation
function u(t) are expressed using the same
interpolation functions on the natural

coordinate is called “Isoparametric element.”

23



Advantages of using isplarametric elements are summarized below:

n
(1) The relation u(t) = Z h; (t)u, does not require the calculation of inverse matrix.
i1

(2) The relation x(t) = Z h; (t)x; enables to use the numerical integration method.
i1

(3) Both functions u(t) and x(t) are expressed using the same interpolation functions.

24



10. SYSTEMATIC FORMULATION OF INTERPOLATION FUNCTION

(1) One dimensional element

I
+ \ B=_(1-r)
mls L . _“r--!: ! .............................................
H hy - (141
= 1 —+1 -
B U~ P I I
o —— ! ] -'2 -
=i G =t
e ]
3Nodes - “ 1 | .
- - tl=r) - {1-r)
g ff - 3 i -
1F -
/= - I hl - I g
o i rmef

As presented here, if you increase a node to define the second order function for the
deformation, the interpolation function changes in the following manners:
Modify the existing interpolation functions, h1 and he,

Define a new interpolation function, hs.
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(2) Two dimensional element

Include inly if node i is defined

L et R A . =6 1 =T A =9
hl:%(1+ r)(L+s) —%hS —%hs —%hg
hZ:%(l—r)(1+ 5) —%hS —%h6 —%hg
hS:%(l—r)(l+ ) —%hs -%m —%hg
h4:%(1+ r(l—s) —%hY —%hg —%hg
hS:%(l—rz)(1+s) —%hg
hG:%(l—sz)(l—r) —%hg
h7:%(1—r2)(1—s) —%hg
hS:%(l—sz)(1+r) —%hg

h,=(L-r?)(1-s%)

(b) Interpolation functions

26




(3) Three dimensional element

.uk y
fal Sofi i 20 variabip-rnunberrdes Haee-cEneasona slnmn

b 4

hy =g — (4 + ¢, + ;)12

h, =@, —(fy + Pro + $1s) 1 2
hy = @3 = (do + Pu +¢9) 12
hy =@, — (i + P, + 9/ 2
hs = @5 = (Pis + b + 417) 1 2
he = @6 — (s + Pu + 015) 12
h; =¢, — (b +éis +¢5) 1 2
hg =gy = (dis + i + P0) 1 2
hi=¢ for i=9,....., 20

¢ =0 if node iis not included; otherwise,

¢i :q)(r'ri)cD(S!Si)q)(t’ti)

OB p) =5 A+ ff) o =41

p=r,s,t
(B, f)=1-p%) for p =0

(b) Interpolation functions

27



11. STIFFNESS MATRIX FOR ISOPARAMETRIC ELEMENT

Using a two dimensional isoparametric element, we will see the procedure to derive the

stiffness matrix.

The coordinate transfer function {x, y} is expressed using the interpolation functions as

follows:

x(r,s) = ihi (r,s)x; = %(1+ rN+s)x, +%(1— r@+s)x, +%(1— r@d—s)x, +%(1+ rNAL-s)x,

i=1

Y09 = SRS, =AW Y, + A DAY, + 2 MDAy, + + W09y,

(51)

The deformation function {u, v} is also expressed using the same interpolation functions.

u(r,s) =Z4:hi(r,s)ui =%(1+ r+s)u, +%(1— r)(d+su, +%(1— ra-sju, +%(1+ r@-su,

i=1

v(r,s) = 24: h, (r,s)v, :%(1+ N+ s)v, +%(1— rL+s)v, +%(1— rL-s)v, +%(1+ rL--sv,

(52)
Stiffness matrix can be obtained from the “Principle of Virtual Work Method,” which is

expressed in the following form:

28



Todv=U"F (53)

™)

J

where, &£ is a virtual strain vector, ois a stress vector, Uis a virtual displacement

vector and /' is a load vector, respectively.

In case of the plane problem, the strain & vector is defined as,

o
£, OX
&, |= % (54)
7y ou ov
JR— + JR—
oy oX

Substituting equation (52) into equation (54), the strain vector is calculated from the

nodal displacement vector as,

2, oh

ou i
“ —u
£, OX %;gﬁ
ov i
Sy = 5 = Zavi
i=1
Vxy ou ov 2, oh, 2, oh,
—t— | | DU )y,
oy oX i Oy it OX

ul

oh oh oh oh Y
10 =2 0 =2 0 =% 0 |u

OX OX OX OX 2

= 0 gl 0 @k. 0 gh 0 QE Va

oy oy oy Yy | Us

a_hl a_hl oh, oh, oh, oh, oh, oh, v,

oy oOx oy ox oy oOXx oy OX u,

V4

£ = B u (55)

In the plane stress problem, the stress-strain relationship is expressed as,

o, 1 v 0 |[eg

o, __E v 1 0 |eg (56)
1-v 1-v

Ty 0 T Y xy

o = C £

29



Substituting equation (55) into equation (56),

c=CBu (57)
From the Principle of Virtual Work Method,
[(Bu) (CBU)V = UT[ [ BTCdedyju ~u'F (58)
v V(xy)
Therefore, the stiffness equation is obtained as,
F=Ku, K=[B"CBdv (59)
v

If we assume the constant thickness of the plate (= t), using the relation dv = tdxdy,

K=t [BTCBdxdy (60)

V(x,y)

Since this integration is defined in x-y coordinate, we must transfer the coordinate into

r-s coordinate to use the numerical integration method. Introducing the Jacobian

matrix,
ox 9y
_|or or|. ; -
J= ox oy : Jacobian Matrix (61)
oS OS

the above integration is expressed in r-s coordinate as,

K= tjl' '1[ B(x(r,s), y(r,s)) CB(x(r,s), y(r,s)) aa((): Z)) drds (62)

-1-1

where

30



ox oy
—77 —detd =
a(r,s) ox oy
0s 0s

1) Evaluation of Jacobian Matrix

OX

4 oh,

oy X i
- A. N — Y
J= or or|_ izl or %ar
oX oy oh, oh,
os  0s ~ s ; 0s Vi
2) Evaluation of the matrix B
Y
OX OX OX OX
O N
oy oy oy oy
a_hl a_hl oh, oh, oh, oh, oh, oh,
oy oOx oy oOx oy oXx oy OX
The derivatives _11.“,%,8_?11,“.’% are calculated as,
OX OX oy
oh_chor ohos o eh _dhor oh 0
OX or ox s OoX "Ox  or ox s ox
o _chor oo oh _char ohds
oy or oy s oy oy or oy s oy
In a matrix form,
a_hl oh, oh, oh, ﬂ @ a_hl oh, ¢oh, oh,
OX OX OX OX |_|OX OX| or or or or
8_hl oh, oh, oh, ﬂ @ 8_hl oh, ¢oh, oh,
oy oy oy oy oy oyNos os s 6s
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=J°

oh, oh, oh,

or or or
oh, by oh,
0s 0S 0S

3) Evaluation of partial derivatives of the interpolation functions

oh,

or
oh,

or
oh,

or
oh,

or

1

==(1+59)

4
1

—=(1+s
,+9)

S

%a—ﬁ

oh, 1
ERrial
oh, 1
ERA
oh 1

% 2t
oh 1
EN A
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12. NUMERICAL INTEGRATION METHOD

The 3 points Gauss Integration Formula is defined as:

1

[ 1 (t)dt = 05556 f (~0.7746)+0.8889 f (0)+0.5556 f(0.7746)

-1

=, f(t)+a,f(t,)+a,f(t;)

where, o, =0.5556, «a, =0.8889, «a,=0.5556
t, =-0.7746, t,=0, t,=0.7746

£(0.7746)

f(t)

£(-0.7746)

-1-0.7746 0 +0.7746 +1

The stiffness matrix is then calculated numerically as follows:

K= tjle(x(r, s),y(r,s))" CB(x(r,s), y(r, s))%drds
= tﬁF(r, s)drds
=tiiaiaj F(r,s;)
where
o(x,y)

F(rs)=B(x(r,s) y(rs)) CBIX(r.s) y(rs)) 7

a, =0.5556, «, =0.8889, «, =0.5556
rn=s =-07746, r,=s,=0, r,=s,=0.7746
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