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1. INTRODUCTION 

 

1-1. Section 

 

1-2. Stress and Strain 

 

1) One-Dimensional Problem 
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2) Two-Dimensional Problem 
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1-3. Beam Theory 
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1.4 Properties of Reinforced Concrete Structure 

Unit Weight 

Concrete Type 
Nominal Strength  

（N/mm2 = MPa) 
Unit Weight （kN/m3） 

Normal Concrete Fc≦36 24 

Material Parameters 

 
Young’s Modulus 

（N/mm2 = MPa) 
Poisson’s Ratio 

Thermal 

Expansion 

Coefficient（1/℃）

Steel Bar 200 000 1/4 1 x 10-5 

Concrete 

22 000 ( Fc = 18 ) 

25 000 ( Fc = 24 ) 

28 000 ( Fc = 30 ) 

1/6 1 x 10-5 

 

 

 



 6

2. SIMPLE EXAMPLE FOR FEM FORMULATION 

 

Step.1: Description of the Problem 

 

The problem is to obtain the deformation of a simple supported beam under various load 

conditions. 

 

If you change the load condition, you will get the different deformation pattern. Actually, 

there are infinite variations for the deformation pattern. 

 

Step.2: Assumption of deformation function 

 

We assume a particular function for the deformation pattern to fix the variation, such 

as the following function: 

)sin()( x
L

axv


     (1) 

 
Step.3: Relation between nodal displacement and element deformation 

 

From equation (1), The displacement δ at the center node A is calculated as 
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The relation between nodal displacement and element deformation is then expressed as, 
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Step.4: Stiffness equation at the node 

 

We obtain the relation between the nodal force and the nodal displacement, for example, 

by using the “Principle of Virtual Work Method.” 

 

KP       (4) 

 

 

The process is summarized as follows: 

Translate external forces into 

equivalent nodal force, P. 

Calculate nodal displacement,δ , 

from the stiffness equation,  

PK 1  

Obtain the element deformation 

from the nodal displacement. 

)sin()( x
L

xv
  

 

The above example tells the essence of the finite element analysis, which is: 

“Assume the deformation pattern to reduce the degree of freedom of the element, then, 

obtain the deformation from the limited number of nodal displacements.” 
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3. TRIANGULAR ELEMENT FOR PLANE ANALYSIS 

 

Step.1: Description of the Problem 

 

The problem is to obtain the deformation of a simple triangular element.   

 

There are infinite variations for the deformation patterns. 

 
 

Step.2: Assumption of deformation function 

 

To fix the variation for the deformation patterns, we assume a linear function for the 

deformation pattern. 
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In a matrix form, 
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Step.3: Relation between nodal displacement and element deformation 

 

The displacements of the element nodes are expressed as, 
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Node 1: 
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It is summarized as, 
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We can obtain the coefficients 61 ,    from the nodal displacements as, 

 

α = A-1 u    (11) 

 

Substituting equation (11) into equation (6), the relation between nodal displacement 

and element deformation is, 
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   u(x,y)  =     H(x,y)            u 

 

Step.4: Stiffness equation at the node 

 

We obtain the relation between the nodal force and the nodal displacement, for example, 

by using the “Principle of Virtual Work Method.” 
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      F  =  K u 

 

The process is summarized as follows: 

  (1) Translate external forces into equivalent nodal force, 

  F = {P1, P2, P3, Q1, Q2, Q3}T 

  (2) Calculate the nodal displacements from the stiffness equation,  

  u = K-1 F 

 (3) Obtain the element deformation from the nodal displacement. 

u(x,y) = H(x,y)u  
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4. STIFFNESS MATRIX FOR TRIANGULAR ELEMENT 

 

Stiffness matrix in equation (13) can be obtained from the “Principle of Virtual Work 

Method,” which is expressed in the following form: 

 

 
V

TT Fudv     (14) 

where,  is a virtual strain vector,  is a stress vector, u is a virtual displacement 

vector and F  is a load vector, respectively. 

 

In case of the plane problem, the strain   vector is defined as, 
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Substituting equation (12) into equation (15), the strain vector is calculated from the 

nodal displacement vector as, 
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ε =                        B            u 

 

In the plane stress problem, the stress-strain relationship is expressed as, 
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        σ =            C        ε 
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Substituting equation (16) into equation (17), 

 

        σ= C B u     (18) 

 

From the Principle of Virtual Work Method, 
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Therefore, the stiffness equation is obtained as, 
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5. FROM ELEMENT STIFFNESS MATRIX TO GLOBAL STIFFNESS MATRIX 

 

Element Stiffness Matrix: 
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Global Stiffness Matrix: 
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    F   =              K                   U 
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Set the load condition, 
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The displacement vector is then obtained by solving the stiffness equation, 
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6. HIGHER ORDER ELEMENT 

                                      

The linear triangular element assumes the 

deformation pattern to be a linear function 

between two nodes. 

 

It requires a large number of elements at the 

place where deformation changes largely. 

 

 

 

 

 

 

To reduce the number of elements, we 

introduce the higher order elements, such as 

the following second order elements where 

the deformation pattern is assumed to be the 

second order function of coordinate. 
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The displacement of the element nodes are then expressed as, 
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u  =                              A                              α 

 

From equations (27) and (28), we obtain 
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 u(x,y)  =                  H(x,y)                         u 

 

As the same as the linear triangular element, the stiffness equation is obtained as 
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F  =  K u 
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The process is summarized as follows: 

  (1) Translate external forces into equivalent nodal force, 

  F = {P1, …, P6, Q1, …, Q6}T 

  (2) Calculate the nodal displacements from the stiffness equation,  

  u = K-1 F 

 (3) Obtain the element deformation from the nodal displacement. 

u(x,y) = H(x,y)u  
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7. INTERPOLATION FUNCTION 

                                      

Suppose we have one dimensional element under loading. As discussed before, we 

assume a linear function for the deformation pattern after loading, 

 

      xaaxu 10)(   

     or 

        









1

01)(
a

a
xxu  (31) 
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                          u  =  A α 

 

The coefficients are obtained as, α = A-1 u. Then, the relation between the deformation 

and the nodal displacements is, 
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Instead of the previous procedure, we introduce the interpolation functions to express 

the deformation directly from the nodal displacements: 

 

2211 )()()( uxhuxhxu      (34) 

 

The interpolation functions, h1 and h2, have the following characteristics: 

 

  








1

1
1 ,0

,1
)(

ux

ux
xh , 









2

2
2 ,0

,1
)(

ux

ux
xh   (35) 

x1             x2 
x 

1 2 u1 

u2 

l 



 19

From these characteristics, the functions are easily obtained as, 
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One of the advantages of using interpolation functions is to reduce the burden to 

calculate the inverse matrix of A in equation (33). 

 

In the same manner, if we assume a second order function for the deformation pattern, 

the deformation can be directly expressed using interpolation functions as follows: 

 

   332211 )()()()( uxhuxhuxhxu    (37) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

x1             x2 
x 

1 2 u1 

u2 

l 

x1             x2 
x 

u1 

x1             x2 
x 

u2 

x1             x2 
x 

1 2 u1 

u2 

l 

x1             x2 
x 

u1 

x1             x2 
x 

u2 

x1             x2 
x 

u3

h1(x)u1 

h2(x)u2 

3

h3(x)u3 

h1(x)u1 

h2(x)u2 

Second order interpolation function First order interpolation function 



 20

8. NATURAL COORDINATE 

 

When we measure the coordinate of 

the pencil, the result is different 

depending on the scale we use. In 

this example, the coordinate of the 

head of the pencil is 5.0 in x-scale 

and 9.5 in t-scale.  

 

As long as we have one-to-one 

relationship between two scales, 

we can translate the value in one 

scale to the value in another scale 

anytime.  

 
 

The total weight of the pencil will be calculated in x-axis as, 
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To translate it into t-axis, we use the following relationships: 
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Local relationship:  
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Substituting equations (39) and (40) into (38), the total weight is expressed in t-axis as, 
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Next we consider a more complicated scale to measure the total weight of the pencil. 

 

 

The relationships between x-axis and t-axis are: 

 

  Global relationship: )(txx      (42) 

  Local relationship: dt
dt

tdx
dx

)(
    (43) 

 

Where dx(t)/dt represents the first derivative of x(x) by the variable t, which correspond 

to the slope of x(t) at t. Substituting equations (42) and (43) into (38), the total weight 

will be expressed in t-axis as, 
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This integration can be evaluated by the numerical integration formula which is 

generally expressed in the following form: 
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where, α1, …, αn are the weighting coefficients. This formula requires a limited 

number of function values, f(t1), …, f(tn), at the sampling points, t1, …, tn, to evaluate the 

integration. The integration range must be [-1, 1] to use this formula.  
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Going back to the problem to evaluate the total weight of the pencil, if we select the 

scale which has the range [-1, 1], we can use the numerical integration method to 

evaluate the integration.  

 

Setting α=-1, β=1 in equation (44),  
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Such coordinate is called “natural coordinate.” 
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9. ISOPARAMETRIC ELEMENT  

 

We now introduce the natural coordinate for the example of one dimensional element. 

 

If we assume the linear transfer function x(t) between x-axis and t-axis, x(t) will be 

expressed as 
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The deformation of the element is also 

expressed as, 
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interpolation functions we introduced before. 

 

The element where both the coordinate 

transfer function x(t) and the deformation 
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interpolation functions on the natural 
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Advantages of using isplarametric elements are summarized below: 

 

(1) The relation 



n

i
ii uthtu

1

)()( does not require the calculation of inverse matrix. 

(2) The relation 



n

i
ii xthtx

1

)()( enables to use the numerical integration method. 

(3) Both functions u(t) and x(t) are expressed using the same interpolation functions. 
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10. SYSTEMATIC FORMULATION OF INTERPOLATION FUNCTION 

 

(1) One dimensional element 

 
As presented here, if you increase a node to define the second order function for the 

deformation, the interpolation function changes in the following manners: 

-  Modify the existing interpolation functions, h1 and h2, 

-  Define a new interpolation function, h3. 
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(2) Two dimensional element 
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(3) Three dimensional element 
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11. STIFFNESS MATRIX FOR ISOPARAMETRIC ELEMENT 

 

Using a two dimensional isoparametric element, we will see the procedure to derive the 

stiffness matrix. 
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         (51) 

The deformation function {u, v} is also expressed using the same interpolation functions. 
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Stiffness matrix can be obtained from the “Principle of Virtual Work Method,” which is 

expressed in the following form: 
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V

TT Fudv     (53) 

where,  is a virtual strain vector,  is a stress vector, u is a virtual displacement 

vector and F  is a load vector, respectively. 

 

In case of the plane problem, the strain   vector is defined as, 
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    (54) 

Substituting equation (52) into equation (54), the strain vector is calculated from the 

nodal displacement vector as, 
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ε =                        B            u   (55) 

 

In the plane stress problem, the stress-strain relationship is expressed as, 
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     σ =            C        ε 
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Substituting equation (55) into equation (56), 

 

       σ= C B u    (57) 

 

From the Principle of Virtual Work Method, 
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Therefore, the stiffness equation is obtained as, 
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If we assume the constant thickness of the plate (= t), using the relation tdxdydv  , 
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Since this integration is defined in x-y coordinate, we must transfer the coordinate into 

r-s coordinate to use the numerical integration method. Introducing the Jacobian 

matrix,  
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the above integration is expressed in r-s coordinate as, 
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where 
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1) Evaluation of Jacobian Matrix 
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2) Evaluation of the matrix B 
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The derivatives 
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 4141 ,,,,,   are calculated as, 
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In a matrix form, 
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3) Evaluation of partial derivatives of the interpolation functions 
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12. NUMERICAL INTEGRATION METHOD 

 

The 3 points Gauss Integration Formula is defined as: 
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where,   5556.0,8889.0,5556.0 321    

7746.0,0,7746.0 321  ttt  

 

 
 

The stiffness matrix is then calculated numerically as follows: 
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where 
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