

International Institute of Seismology and Earthquake Engineering

Strong Motion Observation of BRI

Toshihide Kashima

iterna

Outline

- Nationwide strong motion network for buildings started in 1957
- 74 stations with digital instruments in operation
- Aims to contribute to the improvement of seismic design technology for buildings
- Targets effect of surface geology, input earthquake motions to buildings and dynamic behavior of buildings during earthquakes

Institut

International

BUILDING RESEARCH

R

в

na Eart LL **LSN**

Site location

Institute

International

BUILDING

В

Sei

RCH

RESEA

R

uak

19

Ĩ

FSZ

Recent Progress

Targets

Sensor Configuration

BUILDING

ΰ

L U L

R

Typical Sensor Configuration

Instit International Earthquak RESEARCH BUILDING Ш **NST** В R

Example

nst

Internationa

UNID

U

► L S L

Effect of Surface Geology (Sendai #1)

Acceleration at hard and soft sites

DNID

Ŭ

₹ L C L

Effect of Surface Geology (Sendai #2)

Fourier spectra at hard and soft sites

nterna

DING

RESEARC

R

BRI Annex Outline

11 sensors in the annex building

- 4 in the main building
- 7 in the surrounding ground

BUILDING

в

ΰ

FSFA

R

BRI Annex Sensor configuration in section

BRI Annex Sensor configuration in plan

RESEARC

OIILDING

BRI Annex

Change of dynamic characteristics

- f₀ is falling with time
- f₀ show amplitudedependence
- h_0 is 2% to
- 3%

Internati

BUILDING

U

RESEA

Kushiro Government Office Bldg. Outline

9-story SRC building with steel braces

nternat

UNIC

Kushiro Government Office Bldg. Base isolation devices

- 64 Laminated rubber bearing
- 56 Lead Damper
- 32 Steel Damper

nterna

U

Kushiro Government Office Bldg. Sensor configuration

3 sensors in the ground and 3 sensors in the building

nterna

DING

1

ZESF

Origin time	2003/09/26 04:50
JMA Magnitude	8.0
Focal Depth	42 km
Casualties	2 Missing,
	>700 Injured
Damaged	12 Collapsed,
Houses	>500 Partially Destroyed

BUILDING

в

R C H C H

RESEA

[nstit

International

BUILDING RESEARCH

BR

RESEARCH

ITSN

BUILDING

В

R

101

nsti

International

DND

RCH

RESEAL

na

nterna

NMWA Outline of building

 National Museum of Western Art (NMWA), Ueno park, Tokyo
RC/3F+B1F, Historic building (designed by Le Corbusier)

nterna

NMWA Retrofitting work

- Seismic retrofitting in 1998 with preserving exterior
- Base isolation system with 49 highdamping rubber bearings

BUILDING

Ū

ZESEA

NMWA Sensor configuration

GL, 2 sensors at B1F, 2 sensors at 1F and RF (6 in total)

nternati

OILDING

U

ESFA

NMWA Strong motion records

101 strong motion data (2000-2008)
PGA: 0.942 m/s² (Feb. 16, 2005)

202

FSFA

UNID

NMWA Acceleration records

M5.4, *h*=45 km, February 16, 2005 Distance: 37 km, PGA: 0.942 m/s²

DING

Ċ

NMWA Fourier spectral ratios (Feb. 16, 2005) Input loss and base isolation

1F/BF

DING

Ū

ZESEA

NMWA Fourier spectral ratios (Feb. 16, 2005) Building and overall

BUILDING RESEARCI

NMWA Fourier spectral ratios (Feb. 16, 2005)

Torsional movement

1FE/1FW

nternati

DNID

E S E

NMWA Natural frequency and damping ratio

 Assume SDOF
Identify *f* and *h* from input and resp.

NMWA Conclusions

- More than 100 records have been acquired
- Basic dynamic characteristics were discussed using a moderate record
 - Amplitude-dependency of natural frequencies was clearly observed
- Large damping effect was verified even in small amplitude range