Dynamic Soil Structure Interaction

Kenji MIURA, Dr. Eng.

Professor

Graduate School of Engineering

Hiroshima University

Dynamic Soil Structure Interaction

Chapter 5 : Basis for Calculation of Dynamic Impedance Function

Kenji MIURA, Dr. Eng.

Professor

Graduate School of Engineering

Hiroshima University

Vertical Dynamic Impedance Function for Surface Foundation

Let us consider how to calculate the dynamic impedance function.

For a simple explanation, two dimensional rigid foundation resting on the soil surface is employed, which is subject to a vertical load P $e^{i\omega t}$.

During a vertical excitation $Pe^{i\omega t}$, a vertical contact earthpressure $\sigma(x_j)e^{i\omega t}$ is caused along the contact area $(x_1 < x_j < x_2)$ between the foundation bottom and the soil surface.

Contact Earth-Pressure

Consider a displacement $u(x_i)$ at a point x_i due to a earthpressure $\sigma(x_j)$ at a point x_j .

Green's Function

When $\sigma(x_j)=1$, a displacement $u(x_i)$ at a point x_i is called "Green's Function", and expressed by:

$$\mathbf{u}(\mathbf{x}_{\mathbf{i}}) = \mathbf{g}(\mathbf{x}_{\mathbf{i}} : \mathbf{x}_{\mathbf{j}})$$
(1)

The displacement at x_i due to whole contact earth pressure $\sigma(x_i)$, $x_1 < x_j < x_2$ is given by:

$$\mathbf{u}(\mathbf{x}_{i}) = \int_{\mathbf{x}_{1}}^{\mathbf{x}_{2}} \mathbf{g}(\mathbf{x}_{i} : \mathbf{x}_{j}) \boldsymbol{\sigma}(\mathbf{x}_{j}) \, \mathrm{d}\mathbf{x}_{j}$$
(2)

Partition the interface between foundation and soil into m sub-regions.

Then, Eq.(2) becomes,

Partition of the Interface

$$\mathbf{u}(\mathbf{x}_{i}) \approx \sum_{j=1}^{m} \mathbf{g}(\mathbf{x}_{i}:\mathbf{x}_{j}) \mathbf{\sigma}(\mathbf{x}_{j}) \Delta \mathbf{x}_{j}$$
 (3)

Put $\sigma(\mathbf{x}_j)\Delta \mathbf{x}_j = \mathbf{f}_j$, Eq.(3): $u(\mathbf{x}_i) \approx \sum_{\substack{j=1 \\ j = 1}}^{m} g(\mathbf{x}_i : \mathbf{x}_j) \sigma(\mathbf{x}_j) \Delta \mathbf{x}_j$ (3) transformed to Eq.(4):

$$\mathbf{u}(\mathbf{x}_{\mathbf{i}}) \approx \sum_{j=1}^{\mathbf{m}} \mathbf{g}(\mathbf{x}_{\mathbf{i}} : \mathbf{x}_{\mathbf{j}}) \mathbf{f}_{\mathbf{j}}$$
(4)

Arrange Eq.(4) from i=1 to m, Eq.(4) is expressed in a matrix form as:

$$\{u\} = [G] \{ f \}$$
 (5)

$$\{\mathbf{u}\}=[\mathbf{G}]\{\mathbf{f}\}$$
(5)

where,

$$\{\mathbf{u}\} = \{u(x_{1}), u(x_{2}), \dots, u(x_{m})\}^{T} \quad (6-1)$$

$$\{\mathbf{f}\} = \{f_{1}, f_{2}, \dots, f_{m}\}^{T} \quad (6-2)$$

$$[\mathbf{G}] = \begin{bmatrix} g(x_{1} : x_{1}) & g(x_{1} : x_{2}) & \cdots & g(x_{1} : x_{m}) \\ g(x_{2} : x_{1}) & g(x_{2} : x_{2}) & \cdots & g(x_{2} : x_{m}) \\ \vdots & \vdots & \vdots & \vdots \\ g(x_{m} : x_{1}) & g(x_{m} : x_{2}) & \cdots & g(x_{m} : x_{m}) \end{bmatrix} \quad (6-3)$$

Under rigid foundation condition, displacements $\{u\}$ at the interface can be expressed by representative displacement U_0 of the foundation.

$$\{\mathbf{u}\}=\{1, 1, \dots, 1\}^{\mathsf{T}} \mathbf{U}_{\mathbf{0}}$$
 (7)

$$\{\mathbf{u}\} = \{\mathbf{R}\} \mathbf{U}_{\mathbf{0}}$$
(8)
$$\{\mathbf{R}\} = \{1, 1, \dots, 1\}^{\mathsf{T}}$$
(9)

{**R**} is called **Restraint Vector**, which relates the representative displacement U_0 of the foundation to the displacement vector {**u**} at the interface.

In multi-degrees of freedom cases, the restraint vector {R} becomes Restraint Matrix [R].

The applied force P coincides with combined contact earth pressure (sum of contact earth-pressure).

$$F(=\mathbf{P}) = f_1 + f_2 + \dots + f_m = \{1, 1, \dots, 1\}\{\mathbf{f}\} = \{\mathbf{R}\}^T\{\mathbf{f}\}$$
(10)

$$\{u\} = [G] \{f\}$$
 (5)

gives,

$$\{ \mathbf{f} \} = [\mathbf{G}]^{-1} \{ \mathbf{u} \}$$
 (11)

Substitute Eq.(11): { f }=[G] ⁻¹ { u } (11) into Eq.(10):

$$F(=P) = \{R\}^{I} \{ f \}$$
 (10)

then, we obtain Eq.(12):

$$F(=P) = \{R\}^T \{f\} = \{R\}^T [G]^{-1} \{u\}$$
 (12)

Furthermore, the substitution of Eq.(8) : $\{u\}=\{R\} U_0$ (8)

into Eq.(12) gives Eq.(13):

 $F(=P) = \{R\}^{T}[G]^{-1}\{R\} U_{o}$ (13)

Because Eq.(13):

$$F(=P) = \{R\}^{T}[G]^{-1}\{R\} U_{o}$$
 (13)

relates the applied force F(=P) to the representative displacement U_0 of the foundation,

the coefficient in a right hand side of Eq.(13) can be denoted by Dynamic Impedance Function K .

That is:

$$\mathbf{F}(=\mathbf{P}) = \mathbf{K} \mathbf{U}_{\mathbf{0}}$$
(15)

where,

 $\mathbf{K} = \{\mathbf{R}\}^{\mathsf{T}}[\mathbf{G}]^{-1}\{\mathbf{R}\}$ (16)

Dynamic Soil Structure Interaction

END

Chapter 5 Basis for Calculation of Dynamic Impedance Function

Kenji MIURA, Dr. Eng. Professor Graduate School of Engineering Hiroshima University