

International Institute of Seismology and Earthquake Engineering

Strong Motion Observation in Japan

Toshihide Kashima

nterna

Contents

- Brief History of strong motion observation in Japan
- Strong Motion Instruments
- Sensor Configuration
- Data Processing
- Recent Strong Motion Networks in Japan

nterna

U

Purpose

- How does the ground shake?
- How do buildings respond?
- How do earthquakes cause damage?

Brief History in Japan

- Destructive Earthquakes
- Strong Motion Accelerometer Committee
- Strong-Motion Earthquake Observation Council
 - Specifications of Past and Present Instruments

#	Date	Location	Casualties
1	1923/09/01	S Kanto	Dead: 142,807
2	1925/05/23	N Tajima	Dead: 428
3	1927/03/07	NW Kyoto	Dead: 2,925
4	1930/11/26	N Izu	Dead: 272
5	1933/03/03	Off Sanriku	Dead: 3,064
6	1943/09/10	Tottori	Dead: 1,083
7	1944/12/07	Off Tokaido	Dead: 1,223
8	1945/01/13	S Aichi Pref.	Dead: 2,306
9	1946/12/21	Off Nankaido	Dead: 1,330
10	1948/06/28	Fukui	Dead: 3,769

ional Internai DNID Č1 **ZESE** BUIL

#	Date	Location	Casualties
11	1964/06/16	Off Niigata	Dead: 26
12	1968/05/16	Off Aomori	Dead: 52
13	1974/05/09	Off Izu Pen.	Dead: 30
14	1978/01/14	Izu-Oshima	Dead: 25
15	1978/06/12	Off Miyagi	Dead: 28
16	1983/05/26	C Japan Sea	Dead: 104
17	1984/09/14	E Nagano Pref.	Dead: 29
18	1993/01/15	Off Kushiro	Dead: 2
19	1993/07/12	SW Off Hokkaido	Dead: 231
20	1994/12/28	Far Off Sanriku	Dead: 3

0110 nterna DNID Č1 **ZESF**

#	Date	Location	Casualties
21	1995/01/17	S. Hyogo Pref. (Kobe)	Dead: 6,433
22	2001/03/24	Aki-nada	Dead: 2
23	2003/09/26	Off Tokachi	Missing: 2
24	2004/10/23	Chuetsu, Niigata	Dead: 68
25	2007/03/25	Noto Pen.	Dead: 1
26	2007/07/16	Off Chuetsu	Dead: 15
27	2008/06/14	S. Inland, Iwate	Dead: 13, Missing: 10

BUILDING International RESEARCH Seis INSTITUTE Earthquake

Brief History in Japan Strong Motion Accelerometer Committee

- 1948 Fukui Earthquake
- I 1951 Strong Motion Accelerometer Committee was established to develop strong motion instruments (some professors, researchers and engineers joined)
- 1953 the prototype instrument SMAC was developed

nst

International

Eart

BUILDING RESEARCH

BR

Brief History in Japan First model SMAC

Brief History in Japan Strong-motion Earthquake Obs. Council

- 1967 Strong-motion Earthquake Observation Council was established (secretariat in NIED)
- Many public bodies join (ERI, NIED, BRI, PWRI, PHRI, JR, NTT, etc.)
- Aims at promotion, coordination and publication of strong motion observation and its results

nterna

Strong motion instruments Outline

- Improvement of instruments for 50 years
 - Sensor: Pendulum -> Feedback
 - Signal processing: Analog -> Digital
 - Recording medium: Paper -> IC Memory
 - Size & weight: -> Small and light
 - Handling: -> Easy

SMAC-B

SMAC-B (1957)
Pendulum
Analog (Mechanical)
Stylus Paper
DC~10 Hz
\pm 1000 cm/s ²
25 cm/s ² /mm
10 cm/s ²
3 components
-

SMAC-M

SMAC-M (1972)
Feedback
Analog (Electrical)
Cassette Tape
0.1~30 Hz
\pm 1000 cm/s ²
1 cm/s ² /mV
5 cm/s ²
3
-

SMAC-MD

SMAC-MD (1988)
Feedback
Digital (16-bit)
Memory Card
0.02~30 Hz
\pm 1000 cm/s ²
0.03 cm/s ² /digit
0.5~32 cm/s ²
9 (max)
10 sec.

SMAC-MDU

SMAC-MDU (1997)Feedback Digital (24-bit) **Memory Card** DC~30 Hz \pm 2000 cm/s² 0.0025 cm/s²/digit 0.1~99.9 cm/s² 18 (max) 0~60 sec.

iterna

Strong motion instruments Features of recent models

- High dynamic range
- Pre-trigger recording
- Clock equipment
- Miniaturization
- Programmable control
- Telemetric handling
- Quick data processing

DNID

Strong motion instruments Sensor configuration #1

Ground motion and site effect

nternati

UNID

(1

L V L

Strong motion instruments Sensor configuration #2

Building response and soil-structure interaction

ional

Internati

BUILDING

BR

Eart

Strong motion instruments Sensor installation #1

Internationa

BUILDING

nterna

Data processing Process in BRI

- Collecting binary data files from the stations (via telephone line)
- Validating data (waveforms and Fourier spectra)
- Converting binary data files to human readable (usually ASCII text) files
- Collecting earthquake information (from JMA through the Internet)
- Compiling record information (with additional information)
- Entering records in database

ona

Internal

BUILDING

BR

Ū

RESEA

Data processing Information in database

Site	Name (and/or unique code), address
	Location (latitude, longitude, altitude)
	Ground condition
	Observation object (ground, building, or other structure)
Event	Origin time
	Location of focus (latitude, longitude, depth)
	Magnitude
	Place name of epicenter (name of earthquake)
Record	Trigger time
	Sampling frequency
	Number of steps
	Number of components
	Place and direction (for each component)
	Peak amplitude (and/or other intensity index)

Internationa

BUILDING RESEARCI

Data processing Search interface

Strong Motion Database

Search target

Search Target: Records 💌

Search (Records)

Magnitude	2 🖌	JMA magnitude
Depth (km)	2 🗸	Focal depth (km)
Epicenter		Epicenter
Period	from to	(yyyy-mm-dd)
Station name		Name of station (or building)
Address		Address of station
Distance (km)	2 🗸	Distance between station and epicenter (km)
Peak Acc.(gal)	2 🗸	of reference sensor (on GL or at building basement)
Seismic Intensity	2 🗸	of reference sensor (on GL or at building basement)
	Search	All records will be listed if you search without any conditions

Copyright © 2009 Building Research Institute

iterna

Recent Networks in Japan Outline

- JMA seismic intensity network
- K-NET and KiK-net by NIED
- Seismic Intensity Information Network of Local Governments
 - Other National Research Institutes and Public Bodies (BRI, NILIM, PARI, ERI, Yokohama City, etc)

ona

Internati

BUILDING

BR

Č1

RESE

Recent Networks in Japan Three Major Networks

	JMA	K-NET, KiK-net	Local Gov.
Stations	600	1,700	2,600
Primary Info.	I _{JMA}	PGA, (I _{JMA})	I _{JMA} , (PGA)
within	2~3 min.	< 10 min?	2~5 min?
by	Broadcast	E-mail	Special net
Acc. Data	Available	Available	N. A.
within	Afterwards	2~3 days	
by	CD-ROM	Web site	via JMA

nternati

UND

Ŭ

FSF

Recent Networks in Japan JMA seismic intensity scale

- Defined in 1996
- Calculated from filtered 3-comp. acceleration
- Compatible with old scale

 $I_{\rm JMA} = 2\log a_0 + 0.94$

onal

Interna

DNID

L U L

Recent Networks in Japan JMA seismic intensity scale

Scale	Explanation	
7	In most buildings, wall tiles and windowpanes are damaged and fall. In some cases, reinforced concrete-block walls collapse.	
6+	In many buildings, wall tiles and windowpanes are damaged and fall. Most unreinforced concrete-block walls collapse.	
6-	6- In some buildings, wall tiles and windowpanes are damaged and fall.	
5+	In many cases, unreinforced concrete-block walls collapse and tombstones overturn. Many automobiles stop due to difficulty to drive.	

nterna

ป Z

Recent Networks in Japan JMA seismic intensity scale

S	Scale	Explanation
5- Most peop		Most people try to escape from a danger. Some people find it difficult to move
_	4	Many people are frightened. Some people try to escape from a danger. Most sleeping people awake.
	3	Felt by most people in the building. Some people are frightened.
	2	Felt by many people in the building. Some sleeping people awake.
	1	Felt by only some people in the building.
	0	Imperceptible to people.

nst

International

OILDING

ΰ

► L U L U L

Recent Networks in Japan JMA stations

nst

International

BUILDING

Ū

► L U L U L

Recent Networks in Japan K-NET & KiK-net stations

DIILDING

0

Recent Networks in Japan Local government stations

Insti

International

BUILDING

Recent Networks in Japan Stations of major networks

[nstit

International

BUILDING

U

RESEA

R

Recent Networks in Japan Example (PGA, 2004 Chuetsu Eq.)

nstil

International

BUILDING

U

RESEA

R

Fart

Recent Networks in Japan Example (I_{JMA}, 2004 Chuetsu Eq.)

Instit

International

DIILDING

в

202

FSFA

R

Recent Networks in Japan Example (I_{JMA}, 2004 Chuetsu Eq.)

nterna

Recent Networks in Japan NILIM, MLIT

700 stations along roads and rivers for urgent inspection of facilities

DNID

U L

BR

Recent Networks in Japan PARI

60 stations at ports

U Z

Recent Networks in Japan ERI, University of Tokyo

Southern Kanto and Ashigara plain

Recent Networks in Japan Yokohama City

150 stations for disaster measures

Recent Networks in Japan Others

- Urban Renaissance Agency (UR)
- Nippon Telegraph and Telephone Corporation (NTT)
- Japan Railway Company (JR)
- Central Research Institute of Electric Power Industry (CRIEPI)
- Universities
- General Contractors