Remote Sensing and Earthquake Damage Detection Using Optical Images

Masashi Matsuoka Tokyo Institute of Technology

What is Remote Sensing?

"Remote" means far away. Remote sensing means sensing things from a distance. Of **our** five senses **we** use three as remote sensors when we: 1

- a. watch a football game from the stands (sense of sight)
- smell freshly baked bread in the oven (sense of smell)
- c. hear a telephone ring (sense of hearing)

What are our other two senses and why aren't they used "remotely"?

five senses [touch, taste, hearing, eyesight, and smell] $_2$

Information from Remote Sensing data in terms of Disaster Management Cycle

Various Information Sources for Earthquake Emergency Response

3

Damage Assessment (Resolution-based Comparison)

Macro Scale Estimation
 Meteorological Satellites
 (MTSAT, NOAA, DMSP, etc.)

 Intermediate Scale Detection Earth Observatory Satellites (ALOS, Landsat, SPOT, Envisat, etc.)

Micro Scale Identification
 High-resolution Satellites,
 Airplane, Helicopter

Spatial Resolution of Satellites

- Images where only large features are visible are said to have **coarse or low resolution**.
- In fine or high resolution images, small objects can be detected. Military sensors for example, are designed to view as much detail as possible, and therefore have very fine resolution.
- Commercial satellites provide imagery with resolutions varying from a few meters to several kilometers.
- Generally speaking, the finer the resolution, the less total ground area can be seen.

9

Multispectral Sensors of Moderate-Resolution Satellites

Multispectra	I							
Sensor - S	atellite	Sponsor	Lifespan	Spatial Resolution	Swath	Spectral Bands	Other Sensor Specs	Repeat Cycle
<u>Landsat 4 & 5</u>	ТМ	NASA/NOA A/USGS	1984-	30m MS 120m TIR	185x172 km	MS 7 Bands VNIR-TIR		16 days
<u>Landsat 7</u>	ETM+	NASA/NOA A/USGS	April 15th 1999 - ongoing** 6 yrs	15m Pan 30m MS 60m TIR	185x172 km	Pan 520-900nm 5 Bands VNIR 2 Bands SWIR	** Data quality dropped significantly since the SLC failure in June	16 days
<u>SPOT 4</u>	2xHRV-IR & Vegetation	<u>CNES</u>	March 1998 - ongoing ?	10m Pan 20m MS	60x60 km	1 Band TIR MS 4 bands (500-590, 610- 680, 790-890, 1580-1750nm) Pan (610-680nm)	2003. Also Vegetation Instrument at 1.1km pixel	3 to 26 days ±27° inclination
IRS-P6	LISS-4, LISS-3 & AWiFS	INDIA (ISRO)	Oct. 2003 - ongoing	5.8, 23.5 & 56m	23.9, 141 & 740 km	LISS-4 3 bands 520-860nm		24 days
<u>ASTER</u>	Terra	MITI/NASA	December 1999 6 yrs mission	15m VNIR 30m SWIR 90m TIR	60 km x 60 km	3 bands VNIR 520-860nm, 6 bands SWIR 1600- 2430nm, 5 bands TIR 8125-11650nm, Bands for stereoscopy 780-	ASTER DEM product available, about 30m accuracy.	16 days
CBERS-2	CCD Camera	<u>CHINA-</u> BRAZIL	Oct. 2003	2 yrs 2	0m	CCD(high-res.,5bands)	113 km	26 days
ALOS	AVNIR-2 PRISM	JAXA JAXA	Jan. 2006 Jan. 2006	10m MS 2.5m Par	ı	4 bands 1 band		46 days

http://homepage.mac.com/alexandreleroux/arsist/arsist.html

Paths of Landsat 7

http://landsat.usgs.gov/

Path and Row of Landsat 7 and the areas affected by the 2004 Indian Ocean Tsunami

Sensors of High-Resolution Satellites

High Resol	ution							
Sensor - S	atellite	Sponsor	Lifespan	Spatial Resolutio	Swath	Spectral Bands	Other Sensor Specs	Repeat Cycle
<u>ORBView-3</u>		<u>Orbimage</u>	June 2003 5 yrs mission	1m Pan 4m MS	8 km	MS 4 bands (450-520, 520-600, 620-690, 760- 900nm) Pan (450-900nm)	±45° off nadir	< 3 days
Quickbird-2		<u>DigitalGlob</u> <u>e</u>	Oct. 2001 - ongoing	0.61m Pan 2.44m MS	16.5 km 165 km track	MS 4 bands (450-520, 520-600, 630-690, 760- 890nm) Pan (450-900nm)	QB 2 polar orbit ±30° in all directions Stereo	1-3.5 days
<u>IKONOS-2</u>		<u>Space</u> Imaging	Sept. 1999 - ongoing	1m Pan 4m MS	11.3 km wide at nadir	MS 4 bands (450-520, 520-600, 630-690, 760- 900nm) Pan (525.8-928.5nm)	±26° inclination 11 bits data	1-3 days
EROS 1A		West Indian	Dec. 2000 - ongoing	1.8m Pan	12.6x12. 6 km	Pan (500-900nm)		1.8-4 days
<u>SPOT 5a</u>	HGR & Vegetatio n	Spot Image	May 2002 > 5 yrs mission ?	2.5 & 5m Pan 10m MS 20m SW/IP	60 km	MS 4 bands (500-590, 610-680, 790-890, 1580- Pan 510-730nm	Also Vegetation Instrument	3 to 26 days ±31° inclination
IRS-1C & 1D	LISS3 & WiFS sensors	<u>INDIA</u> (ISRO)	1C: Dec. 95 - ongoing 1D: Sept. 97 -	5m Pan 20m MS 180m WiFS	70x70 k m Pan 142x142 km MSS 774x774 km WiFS	Pan 500-750nm MS 4 bands (520-590, 620-680, 770-860, 1550- WiFS 2 bands (620-680, 770-860nm)	Pan ±26° inclination	24 days 5-24 off- nadir Pan
WorldView-1	D	igitalGlobe	Sept. 2007	0.5m Pan	17.6km	Pan		1.7 days
WorldView-2	. D	- igitalGlobe	Oct 2009	0.5m Par	16.4km	MS 8 bands (1.8m) + Par	n (0.5m)	1.1 days
GeoEye-2	Ge	eoEye	Sept 2008	0.4m Pa	n 15.2km	MS bands (1.6m) + Pan	(0.4m)	2.1 days

11

http://homepage.mac.com/alexandreleroux/arsist/arsist.html

QuickBird-2

Launch on October 18, 2001

Features

Highest resolution sensors commercially available

Sensor Resolution

61-cm panchromatic at nadir 2.44-m multi-spectral at nadir

 Blue -Band 1
 450-520 nm

 Green -Band 2
 520-600 nm

 Red -Band 3
 630-690 nm

 Near IR-Band 4
 760-900 nm

Panchromatic 450-900 nm

QuickBird Captured Affected Areas of the 2003 Boumerdes, Algeria Earthquake

- $\mathsf{Mw} = 6.8$
- The epicenter is located offshore of the province of Boumerdes.
- Approximate numbers of collapsed and heavily damaged buildings were 7,400 and 7,000, respectively.

South Campus, Boumerdes University

С

15

Spectral Resolution

Different classes of features and details in an image can often be distinguished by comparing their responses over distinct wavelength ranges. **Broad classes**, such as water and vegetation, can usually be separated **using very broad wavelength ranges** - the visible and near infrared .

Other **more specific classes**, such as different rock types, may not be easily distinguishable using these broad wavelength ranges and would require comparison **at much finer wavelength ranges** to separate them.

Electromagnetic Spectrum

Microwave fundamentals

- Ka, K, and Ku bands: very short wavelengths used in early airborne radar systems but uncommon today.
- X-band: used extensively on airborne systems (e.g. PI-SAR) for military reconnaissance and terrain mapping.
- C-band: common on many airborner um -10[€] research systems (e.g. NASA AirSAR) and spaceborne systems (ERS-1, 2 and RADARSAT).
- S-band: used on board the Russian ALMAZ satellite.
- L-band: used onboard SEASAT and JERS-1 satellites and airborne systems.
- P-band: longest radar wavelengths, used on NASA experimental airborne research system.

Multi-spectral and Hyper-spectral Sensors

Many remote sensing systems record energy over several separate wavelength ranges at various spectral resolutions. These are referred to as multispectral sensors.

Advanced multi-spectral sensors called **hyperspectral** sensors, detect **hundreds of very narrow spectral bands** throughout the **visible**, **near-IR**, and **mid-IR** portions of the EM spectrum.

Their very high spectral resolution facilitates **fine discrimination** between different targets based on their spectral response in each of the narrow bands.

Hyperspectral Sensors

Hyperspectral								
Sensor - Sate	ellite	Sponsor	Lifespan	Spatial	Swath	Spectral Bands	Other Sensor	Repeat
				Resolution			Specs	Cycle
EO-1	Hyperion	NASA	Dec. 1999 -	30m	7.5 km x	220 bands 400nm to 2500nm @10nm		
			ongoing !		100 km	Grating Imaging Spec		
			(sept. 2003)			Grating Imaging Spec		
			1 yr mission					
EO-1	LEISA AC	NASA	12/1/1999	250m	7.5 km x	309 Bands 850-1600nm @2.4nm		
			1 yr mission		100 km	Wedge Imaging Spec		
Envisat-1	MERIS	ESA	May 2002	300m	1150 km	15 bands programmable	5 identical	35 days
		Aerospatiale	5 yrs	@nadir and		390-1040nm @2.5nm	sensors	
		France,	mission	1200m				
		Cannes,		global				
		ACRI						
ADEOS-2	GLI	NASDA	Dec. 2002 -	250/1000m		19 bands 375-865nm @8-20nm	Failed	
			Oct. 2003				prematurely on	
			3 yrs design			4 bands 460-825nm @50-110nm	october 25 2003	
						0 h an da 4050 0040am @00 000am		
						o bands 1050-2210nm @20-220nm		
						7 bands 3715-12000nm @330-1000nm		

Terra-MODIS (Moderate Resolution Imaging Spectroradiometer)

Sees every point on our world every 1-2 days in 36 discrete spectral bands.

Primary Use	Band	Bandwidth
Land/Cloud	1	620- 670
Boundaries	2	841- 876
Land/Cloud	3	459- 479
Properties	4	545- 565
	5	1230-1250
	6	1628-1652
	7	2105-2155
Ocean Color/	8	405-420
Phytoplankton/	9	438- 448
Biogeochemistry	10	483- 493
	11	526- 536
	12	546- 556
	13	662- 672
	14	673- 683
	15	743- 753
	16	862-877
Atmospheric	17	890- 920
Water Vapor	18	931-941
	19	915-965
Surface/Cloud	20	3.660- 3.840

Temperature	mperature 21 3.929- 3.989				
	22	3.9	929- 3.989		
	23	4.0	020-4.080		
Atmospheric	Atmospheric 24 4.433-4.49				
Temperature	25	4.482-4.549			
Cirrus Clouds	26	1.3	360- 1.390		
Water Vapor	Water Vapor 27 6.535- 6.895				
28 7.175-7.475					
	29	8.400-8.700			
Ozone	30	9.:	9.580- 9.880		
Surface/Cloud	31	10	10.780- 11.280		
Temperature	32	11.770-12.270			
Cloud Top	33	13.185-13.485			
Altitude	34	13	.485-13.78	35	
	35	13	.785- 14.08	35	
	14	.085- 14.38	35		
Pands 1 to 10 nm: P	ands 20.36 um				
Spatial Resolution: 2		250m	11	m	
(at madir): 500 m (has	$\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$				
(at naun). 500 m (ba		500m			
1000 m (bands 8-36)		JUUII		า	

Swath of various satellites

1000 m (bands 8-36)

	2048 km swath				
AVHRR, MODIS					
 spatial resolution, 250m, 500m, 1000r spectral coverage, VIS, NIR, SWIR, MWIF calibrated @ ≤ 5% absolute 	m R, TIR	 global coverage, 2 days nadir only 			
Landsat • spatial resolution, 15m, 30m • spectral coverage, VIS, NIR, SWIR, TIR • calibrated @ ≤ 10% absolute	185 km	 16 day orbital repeat seasonal global coverage capability nadir only 			
IRS • spatial resolution 36m, 72m • spectral coverage, VIS, NIR • relative calibration	146 km	 22 day orbital repeat nadir only 			
SPOT spatial resolution 10m, 20m spectral coverage, VIS, NIR relative calibration 	117 km via 2 @ 60 km	 26 day orbital repeat pointable, stereo capability 			
IKONOS • spatial resolution 1m • spectral coverage, panchromatic • calibrated @ ≤ 10% absolute	11 km 🛛	 global coverage, years to pointable, stereo capability 			

21

Type of Sensors

✓ Optical

Visible and near-infrared

✓ Thermal

✓ LiDAR (Light Detection And Ranging)

✓ Radar (Radio Detection And Ranging)

The Remote Sensing Framework

- Source of Energy
 - Passive Sources (Natural)
 - Reflected solar radiation
 - Emitted terrestrial radiation
 - Active Sources (Man-made)
 - Flash photography
 - Radar/LIDAR/Sonar

International Charter on Space and Major Disasters

- Background
 - Following the UNISPACE III conference held in Vienna, Austria in July 1999, the European and French space agencies (ESA and CNES) initiated the International Charter "Space and Major Disasters", with the Canadian Space Agency (CSA) signing the Charter on October 20, 2000. In September of 2001, the National Oceanic and Atmospheric Administration (NOAA) and the Indian Space Research Organization (ISRO) also became members of the Charter. The Argentine Space Agency (CONAE) joined in July 2003. The Japan Aerospace Exploration Agency (JAXA) became a member in February 2005. The United States Geological Survey (USGS) has also joined the Charter as part of the U.S. team. BNSC/DMC and China National Space Administration (CNSA) became a member in November 2005 and May 2007, respectively.
- Aim and activity
 - The International Charter aims at providing a unified system of space data acquisition and delivery to those affected by natural or man-made disasters through authorized users. Each member agency has committed resources to support the provisions of the Charter and thus is helping to mitigate the effects of disasters on human life and property.
 - Earth Observation (EO) satellite image-based maps and other regional maps are also opened to public through the web site. (http://www.disasterscharter.org/)

Index in Building Damage

Based on the classification of damage to buildings of reinforced concrete used in the European Macroseismic Scale (EMS)

Index	Description	Interpretation
Grade 1	Slight Damage	Cosmetic cracking, no observable distress to load bearing structural elements
Grade 2	Moderate Damage	Cracking in load bearing elements, but no significant displacements across the cracks
Grade 3	Heavy Damage	Cracking in load bearing elements with significant deformations across the cracks
Grade 4	Partial Collapse	Collapse of portion of the building in plan view (i.e. a corner, or a wing of building)
Grade 5	Collapse	Collapse of the complete structure or loss of a floor of the structure

Classification of damage to buildings of reinforced concrete used in the European Macroseismic Scale (EMS)

Grade 1: Negligible to slight damage (no structural damage, slight non-structural damage) Fine cracks in plaster over frame members or in walls at the base. Fine cracks in partitions and infills.

Grade 2: Moderate damage

(slight structural damage, moderate non-structural damage) Cracks in columns and beams of frames and in structural walls. Cracks in partition and infill walls; fall of brittle cladding and plaster. Falling mortar from the joints of wall panels.

Grade 3: Substantial to heavy damage

(moderate structural damage, heavy non-structural damage) Cracks in columns and beam column joints of frames at the base and at joints of coupled walls. Spalling of concrete cover, buckling of reinforced rods.

Large cracks in partition and infill walls, failure of individual infill panels.

http://www.gfz-

potsdam.de/portal/gfz/Struktur/Departments/Department+2/sec26/projects/04_seismic_vulnerability_scales_risk/EMS-

Classification of damage to buildings of reinforced concrete used in the European Macroseismic Scale (EMS)

Grade 4: Very heavy damage (heavy structural damage, very heavy non-structural damage)

Large cracks in structural elements with compression failure of concrete and fracture of rebars; bond failure of beam reinforced bars; tilting of columns. Collapse of a few columns or of a single upper floor.

Grade 5: Destruction (very heavy structural damage) Collapse of ground floor or parts (e. g. wings) of buildings. 27

Damage map of Bam and Baravat and the strong motion and aftershock stations

Summary of comparison for 7 stations

Field	G 1	G 2	G 3	G 4	G 5	sum
QuickBird						
G 1 & G 2	12	50	29	15	2	108
G 3	4	37	57	30	25	153
G 4	0	2	10	11	30	53
G 5	0	0	10	7	95	107
sum	16	89	101	63	152	421

Summary of comparison for 7 stations

Damage Detection

- Visual Interpretation
- Image Processing
 - Color composite (pre- and post-event)
 - Index (band ratio, texture...)
 - Supervised Classification
 - Non-supervised Classification

High-resolution Satellite Images Before and After Tsunami

- Banda Aceh: QuickBird, res.: ps.0.6m, swath: 40km -Pre-tsunami image (June 23, 2004) Post-tsunami image (Dec. 29, 2004)

source: UNOSAT

ASTER Images Before and After Tsunami

The 1990 Luzon Earthquake, The Philippines

Damage at East Coast of Lingayen Gulf

Barrio Narvacan (villages sunk into the sea due to liquefaction)

Color Composite Image to Estimate Damaged Areas

Inverse image of post-event (for red color)

Image of pre-event (for green color)

Inverse image of pre-event (for blue color)

Pink color area ...reflectance became low (area of sunk into the sea due to $E^{37}_{Q.}$)

Comparison with Survey Report

Tsunami-Affected Area Detection

Sumatra Earthquake Tsunami on Dec. 23, 2004 ASTER (15 m resolution)

Easily to detect the boundary of the affected areas because vegetation was stripped away.

© METI and NASA

KHAO LAK, Phang nga, THAILAND

2002/11/15

2004/12/31 ³⁹

Several Indices of Tsunami Damaged Area

ASTER (15 m resolution)

Normalized Difference Vegetation Index, NDVI = (NIR – Red) / (NIR + Red) Normalized Difference Soil Index, NDSI = (SWIR – NIR) / (SWIR + NIR) Normalized Difference Water Index, NDWI = (Red - SWIR) / (Red + SWIR)

Yamazaki et al., Forecast of Tsunamis from the Japan–Kuril– Kamchatka Source Region ,Natural Hazards, Volume 38, Number 3, July 2006, pp. 411-435(25) Springer, DOI: http://dx.doi.org/10.1007/s11069-005-2075-7 40

15/11/2002

15/11/2002

31/12/2004

31/12/2004

15/11/2002

31/12/2004

Automated Damage Detection Technique Using Image Texture

Jan. 27, 1995 (10 days after the Kobe EQ) HDTV (High definition TV)

> 9 cm/pixel (lower) 17 cm/pixel (upper)

Nishinomiya City HDTV image taken on 1995/1/27

Edge intensity image

Procedure of Edge-based Damage Detection

- Edge textures are computed from the intensity image
- Edge intensity (*Ei*) is maximum value in eight directions derived from 7x7 Prewitt filter.
- Using *Ei*, edge intensity variance (*Ev*) is computed in 7x7 local window.
- The ratio of predominant direction of *Ei* (*Ed*) is also computed in 7x7 local window.
- Then, co-occurrence textures: angular second moment (*Ta*) and entropy (*Te*) are computed in 7x7 local window.
- Collapsed buildings show a strong trend of non-uniformity. Our investigation showed the following threshold values are suitable,

Fig.10.9.1 Examples of spatial filters of 3×3 window

SPATIAL FILTERS	3 × 3 OPERATOR	EFFECTS
Sobel	$ A + B \text{ or } \sqrt{A^2 + B^2} \text{ where,} A = $	gradient (finite differences)
Gradient -Prewitt	$ A + B \text{ or } \sqrt{A^2 + B^2} \text{ where,}$ $A = \begin{bmatrix} -1 & 0 & 1 \\ -1 & 0 & 1 \\ -1 & 0 & 1 \end{bmatrix} B = \begin{bmatrix} -1 & -1 & -1 \\ 0 & 0 & 0 \\ 1 & 1 & 1 \end{bmatrix}$	gradient (finite differences)
Laplacian	$ \begin{bmatrix} 0 & -1 & 0 \\ -1 & 4 & -1 \\ 0 & -1 & 0 \end{bmatrix} $ or $ \begin{bmatrix} -1 & -1 & -1 \\ -1 & 8 & -1 \\ -1 & -1 & -1 \end{bmatrix} $	differential
smoothing	$ \begin{pmatrix} 1/9 & 1/9 & 1/9 \\ 1/9 & 1/9 & 1/9 \\ 1/9 & 1/9 & 1/9 \\ 1/9 & 1/9 & 1/9 \end{pmatrix} \text{ or } \begin{bmatrix} 0 & 1/5 & 0 \\ 1/5 & 1/5 & 1/5 \\ 0 & 1/5 & 0 \end{bmatrix} $	smoothing
median	Replaced with median of 3×3 window	noise removal
High-pass	$ \begin{pmatrix} 0 & -1 & 0 \\ -1 & 5 & -1 \\ 0 & -1 & 0 \end{pmatrix} \text{ or } \begin{pmatrix} -1/9 & -1/9 & -1/9 \\ -1/9 & 8/9 & -1/9 \\ -1/9 & -1/9 & -1/9 \end{pmatrix} $	edge- enhancement
sharpening	$ \begin{bmatrix} 1/9 & -8/9 & 1/9 \\ -8/9 & 37/9 & -8/9 \\ 1/9 & -8/9 & 1/9 \end{bmatrix} $	clear image

43

Edge Information (1)

Variance of edge intensity (7x7 pixel window)

"Collapsed" : a lot of edge elements "Non-damaged" : a small of edge elements

Ratio of predominant edge direction (7x7 pixel window) To distinguish between "Collapsed" and "Non-damaged" (Prewitt-type template can indicate an edge direction with the strongest edge intensity

Edge Information (2)

Angular second moment (7x7 pixel window)

$$Ta = \sum_{k=0}^{15} \sum_{l=0}^{15} \left[\delta(k,l) \right]^2$$

large $Ta \longrightarrow$ uniform texture

Entropy (7x7 pixel window)

$$Te = -\sum_{k=0}^{15} \sum_{l=0}^{15} \left[\delta(k,l) \log_{e} \delta(k,l) \right]$$

small $Te \longrightarrow$ uniform texture

How to derive "Edge Texture"

Cumulative relative frequency of collapsed buildings (c1) is converted from 8 to 4-bit data

47

How to derive "Edge Texture"

How to derive "Edge Texture"

How to derive "Edge Texture"

Procedure of Edge-based Damage Detection

Index	Threshold values
Ev (edge variance)	2.0 - 6.8 (x 10 ⁵)
Ed (edge direction)	0.3 - 0.6
Ta (angular second moment)	0.75 - 6.6 (x 10 ⁻²)
Te (entropy)	3.5 - 4.2

• Finally, local density of the detected pixels is assessed to remove the meaningless spots.

Threshold Values to Extract Pixels in Damaged Areas

- Variance of edge intensity, *Ev*:
- Predominant edge direction, *Ed*:
- Angular second moment, *Ta*:
- Entropy, *Te*:

- 2.0 6.8 (x10^5)
- 0.3 -0.6

3.5 - 4.2

0.75 - 6.6 (x10^-2)

53

Spatial Filtering

Calculate the percentage of the extracted pixels in the window of the size of approximately one building.

Red : the extracted pixels

Result from Aerial Television Image taken after Kobe Earthquake

Estimated damage

Black: damaged building (level slice by edge information)

Actual damage by field survey

Black: collapsed White: severe damage (dotted area: plastic sheet covered on roof)

Near Real-time Damage Detection Using Only Post-event Aerial Images

Application to Other Earthquakes

Estimated damage

Black: damaged building Threshold values are same as the Kobe earthquake Aerial image of Golcuk, Turkey taken after the 1999 earthquake

Application to Other Earthquakes

Estimated damage

Black: damaged building Threshold values are same as the Kobe earthquake Aerial image of Bachau, India taken after the 2001 earthquake

Damage Detection Using Supervised Classification

Supervised Damage Estimation

Trial for damage detection using post-earthquake image and limited truth data

Band5, G:Band4, B. Band1

