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1. INTRODUCTION

1.1 Short History of Earthquake Resistant Desxgn Method

Earthquake resmtant des1gn method in a sense of modern technology started immediately after the
Great Kanto Earthquake (1928)(See Table 1.1). Since then, duringthree fourths century earthquake
resistant design has made a great progress. As the scope of the applied structures was extended,
the design ideas became versatile. As the electronic digital computers and apparatuses for field ob-
servation became avaliabie, analytical techniques for response analysis developed drastically and
became versatﬂe On the other hand, successive attacks of big hazardous earthquakes made us con-
tinuously recogmze the ‘arrived level earthquake resistant design method to be still incomplete.
The earthquake resistant design started as a measure by which a structure basically designed for
gravity loading is to be supplied. addmonally with a resistance against earthquakes. Increased ex-
periences of earthquake hazard and the progress of response analysis techniques have raized the
importance of earthquake resistant design to such a extent that the,desagn:_o__f structures is governed
mostly by earthquake resistant design. .

Under such a circumstance, a methodology to be perfectly free from dreadful hazard made by earth-
quakes has been sought after in realizing so-called “‘base-isolated structures." Such a methodology,
however, had to wait the chance of germination for about a half century in the shade of a steady
.development of earthquake resistant design method. In order to establish a base-isolated structure,
matured design theary and reliable structural element such as the laminated rubber bearing which
appeared in 1970's had to be prepared as preconditions.

The deveIOpment of earthquake resistant design and realization of base-isolated structured, how-
ever, did not devdoped favorably without any obstacles and each had to go through hardships.
One of the reason is that the earthquake resistant design in Japan assumed from the start a charac-
ter of law to be observed for the public welfare, On one hand, the earthquake resistant design must
be rational one supported by scientific grounds and, on the other hand, it must be equippéd with a
lucid logic. The scientific fact and a logic, however, are not same. Incorrect recognition of a fact
can be always stated logically. This basic contradiction lying under the earthquake resistant de-
sign has been the cause of a tenaciously made long dispute. This dispute is calied the dispute about
“flexible or stiff’, which started immediately after the introduction of the lateral force method and
raised a question on the recommended principle, at that time, that structure should be stiff.
Although the lateral force method is superior in its practicability and logical conéistency, it is not
perfect scientifically,

The lateral force method has been established during the period of Introducmg nuclear POWET
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plants and drasiic economic growth in j’apan as a design methodology that the important struc-
tures should be designed stiff and strdng. A high rate of economic growth in late 1960's promoted
raising the height of buildings in urban areas, and the possibility of super high-rise buildings in
highly seismic countries were discussed in the second dispute about "flexible or stiff’, Asa reéult,
it was made clear that as the natural period of a structure increases, seismic force applied to the
structure reduces reversely proportional to the natural period. Thus, the side of “flexible” tri-
umphed.

As the development of computers and techniques of field observation brought about more detailed
knowledge of structural behavior under earthquakes, also, it has been made clear that the struc-
tures with intermediate height can receive far stronger seismic forces than. that prescribed by the
lateral force method. Comings of the Niigata Earthquake (1963), the Tokachi-oki Earthquake
(1968) and the Miyagiken-oki Earthquake (1973) made us realize the insufficiency of the lateral
force method. Then, the third theme of the dispute was how {0 endow a structure with a sufficient
energy absorption capacity.

In 1981, the Japanese building code was revised to cope with the energy absorption capacity.



In addition to the previous lateral force method, the energy absarption capacity was introduced as
a basic performare Wthh should be eqmpped with a structure to resnst 1o earthquakes
By this, the basic framework of seismic design in which the basis requuement of force by the lateral
force method was supplemented with the requirement of deformation capacxty._was estabhshed. o
How to secure the deformation capacity, however, is a matter'cc:)ncem_ed with the xjonlinear field be-
vond the elastic limit and can not be easily implemente'd even by applying advanced modern tech-
nologies,. Even more as the analytical toois are well prepared, we should be confronted Wlth the
situation in Whlch we are bewildered by getting too many options and losmg objective measures to
judge the validity of the results of analysis, . |
The main theme of the third dispute about “flexible or stiff’ can be said to be a pragmatic problem
about how to reflect the energy absorpticn capacity in the inelastic range to the seismic design
in general. Atthe same time, also, in this period, as ,én opponent o the earthquake resistant desi.gn
which dashed forward to the way of complication, the base-isolated structure, which aims to escape
fundamentally from the devastative damage, began to be seriously discussed of its real applicability
in Japan. o
The earthquake resistant structures are expected to develop both the sirength and deformation ca-
pacity as required to resist earthquake, T herefore_, it is inevitable that structural skeletons suffer
some damage under an attack of an earth'quake. Contrary to this, the base-isolated structure chal-
lenged the earthquake resistant structure, asserting that the structural skeletons should Ee made
free of any damage, For this assertion, the circle of the earthquake resistant design hardly under-
stood the true meaning, still keeping the standpoint that the possibility of base-isolated structures
couldn't be proven in such a highly seismic country as Japan. On the other hand, in spite of tena-
cious resistance of the circle of the earthquake resistant design, the circle of the base-isolated struc-
tures at last succeeded to prove the applicability, based on the same ground as that on which the
earthguake resistant design stands. _ .
To be able to do so, the appearance of the excellent structural element such as “laminated rubber
isolater™ was inevitably necessary. '
The principle of the base-isolated structure can be recognized as follows.
The base-isolated structure is a dual structure, in which the building part forms a
éuperstructure and the base-isolating layver and foundations form a s_ﬁbstructure. The base-
isolating layer is formed with a group of laminated rubber isolaters which acts as a flexible
elastic part and with a group of dampers which acts as a stiff energy absorbing part. Since the
rigidity of the superstructive is sufficiently stiff compared to that of the substructure, the base-
isolated structure is identified to be a one-mass system,
The high vertical-load bearing capacity and the large elastic deformation capacity of the laminated
rubber bearings enable the base-isolated structure to be equipped with a naturél period longer than
4.0sec, and the base-isolating laver can behave as a highly efficient energy absorbing mechanism
due to a favorable combination of elasticity of isolators and plasticity of dampers,
The base-isolated structure is equipped with simplicity and oclarity which should be intrinsic in the
true earthquake resistant structure.
Moreover, it is equipped with advantageous characteristics of the long-period structure, and the un-
certainty in damage distributions is basically removed in the base-isolated structure in which- the
seismic energy input is totally absorbed in the base-isclating layer. Although the base-isolated



structure Just emerged as an opposmg concept to the earthquake resxstant structure, through the
fourth dtspute on “fle}uble or stiff”, it was proven to be an exceilent earthquake resistant structure,
On’ the other hand ordmar:,r earthquake resistant structures structural skeletons of w}uch are de-
signed pnmarrly to support gravrty loadmg and are utilized also to develop the strength and energy
absorption capamt}r requu‘ed to resmt to earthquakes have a fundamental defunency to be 51mp1e
and clear structures ' '
Just then at dawn of January, 17th in 1995, The I—Iyogoken Nambu Earthquake happened and
taught us the real level of earthquake resistant structures at present,

The mtensr‘ues of ground rnotlons in the epiceniral zone were partly far greater than that pre-
scnbed by J apanese bu11dmg code. Observed various sorts of damage, however, made us feel that
the goal of SElSIﬂlC design 1s still far away. Two base-isolated buildings constructed not so far from
the eprcentral zone were proven to have developed an anticipated performance

The sersmzc design of 20th centur“y is closing in rise and flourish of base-isolated structures. It is,
however inconceivable that all buildings would turn to be base-isolated structures. The earthquake
resistant structures will make a strenuous effort toward a breakthrough awakened by superronty
of base isolated structures.

And also, the base-isolated structures would change qualitatively Wlth an enormous increase of
their application, In any Way, the fifth dispute about “flexible or strff' Would develop on the axis
of base-isolated structure. '

This dispute must be a hard and desperate battle for the earthquake resistant structure.

1.2 Importance of Energy Concept D
In order to know the process of collapse of structures subjected to earthquakes, a high nonlinearity
of structures must be analysed by using the equation of motion. Although the obtained results are
specific and isolated solutions, characterized strongly by specific conditions, these results can be
synthesized through the equation of energy balance which is obtained by multiplying a displace-
ment increment on both sides of the equation of motion and by integrating over the duration of the
ground motion. '
The reason is;

» Information is integrated through integration.

« The energy is a scaler composed by the product of force and deformation and is a suitable
guantity for synthesis.
» The seismic energy input in total is a stable amount which depends mainly on the total mass
and the fundamental natural period of a structure as predicted by Housner 2.
As far as the total energy input is a stable constant quantity, the major concern in the seismic de-
sign should be focussed on the manner in which the input energy is distributed over a structure,

The equation of motion for one-mass system is written as

Mij+Cy+F(y) = — M) (1.1
where M : mass

y : relative displacement of the mass

C : damping coefficient

F(y) : restoring force.

%, : ground acceleration



Eq(z.l) expresses a fundamental relationship which governs the vibrational response and any re-
sponses can be obtained by integrating the equation,

By multiplying dy to Eq(1.1) and integrating over the duration of ground motlon the equation of
energy balance is obtained as foliows

0 . [ .9 U(‘D) L g .. TR . G
LA@@+£(@@{L)Mm@f ﬁﬁth o (1.2)
Eq(1.2) can be written also as

W+ W+ W, = E - (1.3)
where W, : elastic vibrational energy- '

W, : cumulative ij;_aelastié strain energy

W enefgjr absorbed by damping

E : total énergy input exerted by an earthquake

Egs.(1.1) and (1.2) are easily extended to apply to multl—mass systems by expressing related quan-
tities with matrices and vectors.
Eq.(1.1) expresses a balance of force at an instant and the numerical integration of Eq.(1.1) yields
structural responses at any level of s’_crucfural damage irres;necti\?e of structural states to be elastic
or elastic. - h R '
The obtained information is scattered and discrete one governed by specific conditions.
Oniy one guarantee for exactness of results obtained by Ea.(1.1) is given by a proper execution of
numerical calculation, and Eq.(1.1) does not speak much of the structural behavior under earth-
quakes.
On the other hand, Eq.(1.2) or Eq.{1.3), which is also an exact expression of structural responses,
can speak generally about various phases of structural behavior in te:ms of W, W, and W,.
Moreover, the stable nature of the total energy input stated below enhances the applicability of
Egs.(1.2) and (1.3).
The total energy input exerted by an earthquake is mainly governed by the total mass and the
fundamental natural period of a structure and is hardly influenced by design parameters such
as the strength distribution, mass distribution, and stiffness distribution.
As a basis Df design consideration, deep understanding for the real behavior of structures under
earthquakes is indispensable. In order {o store knowledge, it is effective to accumulate mdwmlual
results obtained by Eq.(1.1) by means of Eq.(1.3). Through this procedure, the relationship between
the seismic input and the structural response can be synthetically grasped and the practical meas-
ure to realize the structural performance which is aimed by structural designers can be explicitly
shown. .
The design method based on Eq.(1.3) grounded by enormous amount of results of numerical analy-
ses made by Eq.(1.1) can cope with the general design judgements. In this sense, this design
method can be called z general design method or a synthetic design method.

F_W’The required structural performance of a structure is originally claimed by the owner of the struc-
ture, Therefore, the desigh method can be stated by a language which can be understood not only
engineers but also laymen. Since the synthefic design method can be spoken by a plain language,
the significance of synthesis in constructing a system of technical language can not be disregarded.



Design Language

System > Performance
Based on Balance of '
Energy

ﬁ Compilation of Language

General Design Outlined Design
Method

improvement of Design

-Response Analysis Detailed Design
Grasp of Fact
Experience of — Construction
Seismic Hazard

Fig.l.l Development of Seismic Design

An outlined design can be made using the design language and the general design method as
shown by Fig.L.1. '

In the process of the detailed design, sometimes, the numerical response analysis is required io
prove the fulfillness of structural performances, )

The numerical response analysis is useful to improve the applicability of the general design method
and, then, to improve the design language.

In such a manner, repetition of the analysis and synthesis and the accumulation of experiences of
seismic hazard will lead to the progress of the earthquake resistant design method.



2 Energy Input in Single-Degree of Freedom System.

2.1 Equilibrium of Force and Equilibrium of Energy
The equation of equilibrium of the one-mass system shown in Fig.2.1(a) is expressed as

Miy+Cy+F(y) = F, _ 2D
where M : mass R S '
Cy . damping force
F(y) : restoring force
F, : seismic force
Z, : horizontal motion of the ground

vy : displacement of the mass relative to the ground

Fig.2l One-mass Vibrational System

Eq.{2.1) can be also applied to the system which stands on the fixed ground and is subjected to the
force, 7, applied on the mass. The response of the system can be obtained by integrating Eq.(2.1),
Whereas the analytical closed form of solution is obtained for elastic systems, Eq(2.1) is generally
solved by means of numerical analysis for the plastified systems. When the solution is cbtained, the
equilibrium of force stated by Fig2.1(b) can be transformed to the equilibrium of energy. The im-
portant response is the relative displacement, y. ¥ causes straing in the system. Also, with respect
to energy, the energy which is associated with strain is important in structural design point of view,
Therefore, herewith, the equilibrium of energy is evaluated for the model shown by Fig.2.1(b), by
multiplying dy (= dt) to Eq.(2.1).

The equilibrium equation 15. written as

t t .2 . fr . _ 7 . ’
Mfo ygdz+cfu gat+ | F(y)ydt—fu F.idt (2.2)
The constituent of Eq.(2.1) is discriminated as follows.

E -—-ff;ydt | | (2.3).
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W,=C fu gidt . (2.5)

where E{f): energy input at the time of ¢ .
W,(1) : elastic vibration energy at the time of ¢

W;(i) : curnulative inelastic strain energy at the time of ¢

W, (t) : energy absorption due to damping at the time of ¢

The elastic vibration energy W, can be written as

W, (8) = W, (8 W (D) (2.6)
where W, (1) : elastic strain energy

W, (t) : kinetic energy

The first term of the left hand side of Eq.(24) expresses, W, (#). Considering #(0} = 0, W, () is
written as |

Mg}z(t) o ' :
= (2.7)

W, () =
Therefore, the second term of the right—hand side of Eq.(24) is expressed as

W) + W) = [ Fudyat S (2.8)

t, being the duration of the grourid motion, the quantities at the time of ¢, are defined as follows.

E = E(t) )
W, = W, (1)
(2.9)

W, = W, ()
W, = W;(fu)
where F . total energy input

W, : elastic vibrational energy

W, : cumulative inelastic strain energy

W, : energy absorption due to damping

Eq.{2.2) is rewritten as

W+ W+ W, = E | | (2.10)

Eq.(2.10) is the fundamental equation on which the earthquake design method is constructed.
Similar to Eq.(2.1), Eqs.{2.2) and (2.10) are equations of exact equilibrium. Eq.(2.1) provides struc-
tural responses. On the other hand, Eqs.(22) and (2.10) do not provide structural responses di-
rectly, but are very helpful to express and interpret structural responses.

The reasons are; whereas Ea.(2.1) expresses a state of equilibrium of force at an instant, Eqgs.(2.2)
and (2.10) provide an integrated information of vibrational state. Moreover, the effectiveness of
Eq.(2.10) is guaranteed by the stability of the total energy input.
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Fig.22 Time History of Energy

Fig2.2 indicates the structural responses in time histories of energy. Fig2.2(a) indicates the case of
an undamped system, in which the Tesponse is all elastic vibrational energy.

The energy input, £(¢) being always positive, is not necessarily increasing as time passes. Under
t greater than f, £{¢) is kept to be E, since the ground motion which adds energy input does not
exist any more. The purely elastic system continues to vibrate under a constant energy input, E.
Fig2.2(b) is a case of damped elastic system. The energy absorption due to damping, W,(¢) is mo-
notonously increasing. Therefore, as the damping factor increases, E(#) tends to be monotonously
increasing. The displacement response, ¥, reaching the maximum at a time within T, rapidly re-
duces to zero.

Fig2.2(c) is a case of elastic-plastic system. The cumulative inelastic strain energy, W,(8) is also
nionotonously increasing. The absorbed energy due to damping becomes smaller than that ab-
sorbed by the elastic system with same damping coefficient, C.

2.2 Fundamental Characteristics of Energy Input
2.2.1 Energy Input in Undamped Elastic System .
The vibrational equation of the undamped elastic system is given by the following equation.



Mij+ky = — Mz, (2.11)

where k. spring constant

Under the initial condition of y(¢) = #(0) = 0, Eq.(2.11) is solved by using Duhamel integral as fol-
lows.

4
y(t) = —L #(t)cos wy(t—)dr (2.12)
where w, = circular frequency = yk/M

The undamped elastic system continue to oscillate with a constant amplitude after the ground mo-
tion fades away as shown in Fig2.2(a). Then, the total energy input can be obiained by using the
maximum velocity amplitude, 9,.. as follows.

Ml
5= %zf (2.12)

The response at ¢ longer than ¢, is obtained from Eq.2.12) as follows.

ty . / £
g = ( - ‘fo‘a #,{t)cos wﬂrdr> cos wot-l-( - L ’ Z(o)sin coﬂrdt) sin gt (2.14)

Therefore 4,,.. is given by

e = TEP .15

1
where amfeoﬁn(r)cos woTd T
] . I
b=f0 Z,(v)sin wyTdT

¢ and b in Eq.(2.15) are called Fourier integral. The meaning of this integral is to extract the wave
component characterized by the circular frequency, w, among wave components which composes

the ground moticn, &,.

Therefore, Eq.(2.15) tells that the wave component which exerts energy input to an undamped elas-
tic system is limited to a single wave component characterized by wy.

Vibration of the undamped elastic system becomes resonant under a stationary sinusoidal input
with wy. This fact is common to the fact shown by Eq.(2.15) Thus, the undamped elastic system re-
ceives the energy very selectively.

The total energy input is transformed into an equivalent velocity by applying the following equa-
tion.

_ My _ [eE
E="r (t@— /M> (2.16)

where ¥ : equivalent velocity of the total energy input

V; is the square root of the total energy input per unit mass, having an understandable dimension
of velocity. The relationship between V; and w, (otherwise f = wy/27 or Ty = 27/ w,, f : natural fre-
quency, Ty = natural period) is called energy spectrum. The energy spectrum of the undamped

elastic system coincides with the so-called Fourier Spectrum



2.2.2 Energy Input in Elastic Damped System

The second and third terms of the left-hand side of Eq.(2.1) are combined to express a quantity, R.
The relationship between R and y is depicted schematically for the elastic undamped system, the
damped elastic system and the inelastic system as shown in Fig.2.3. Fig23(a) is for the case of

purely elastic system. The Ry relationship for the damped elastic system increases nonlinearity
as C increases. | '

e By

/

Iy e

(a) purely elastic system  (b) damped elastic system A (c) inelastic system

Fig.2.3 R—y Relationship

The free vibration of a damped elastic system is expressed by

§+ 2hwg g+ wiy =0 _ (2.18)
where A = C/2ZMuw, : damping constant

Under the initial condition of ¥ = 3, and # = @, the free vibration is obtained as

Y= m,ly"—hze"‘ﬂ"’of cos(Y1—h wyt—e), tane = ﬁ (2.19)

the period of free vibration is given by

T2t M (2.20).
J1-pt YV & ‘
The period given by Ea.(2.20) almost coincides with the natural period of the undamped elastic sys-

tem, T, = 2m/ M/k. The tangent slope in Fig.2.3(b), &,; however, varies around k.

The instantaneous period, 7; is defined to be

T, =2x |~ . (2.21)
k, .
T} lies in the range of
L~AT < T, < T,+AT (2.22)

At which indicates the band of variation of 7; increases as k increases.

h and AT are roughly related by the following relationship .

I



AT = 1547, o S @y

Therefore, the damped elastic system is characterized by a band of vibrational periods, while the
purely elastic system is characterized by the single period of 7;. In this manner, as the vibrational

system becomes complex, the wave components which supply energy to the system are plurallized.
On the assumption that each wave component supplies energy evenly, the energy input in the
damped elastic system can be calculated on the basis of the energy spectrum for the undamped
elastic system, (V;(7;) as follows.

LHaT
M fT AT

— AT

_ 0
E= 2:2AT (2.24)

2.2.3 Energy Input in Inelastic System ,

The energy input for the system with R = F(y) is discussed. The R—y relationship is shown in
Fig.2.3(c), where the initial slope is & and the instantaneous vibration period is elongated as the ine-
lastic deformation develops. Then, the band of variation of vibratibnal pericd is expressed as. fol-
lows, taking thg width of band to be 2A7T, similarly to the case of damped elastic system. ’

T, < T < T+2AT (2.25)

where T : substantial vibrational period

Therefore, the energy input in the inelastic system can be expressed as follows, similarly to the case
of damped elastic system.

Ty+2aT
Mf; V(AT
2 IAT

E= (2.26)
Thus, the energy input of the damped elastic system and that of the inelastic system are basically
identical and can be calculated through averaging the energy input of the purely elastic system
within a band width of period which corresponds to the variation of substantial vibrational period
of each system. '

2.2.4 Shape of Energy Spectrum
In this chapter, the major characteristics stated in 2.2.1 to 2.2.3 are ascertained and observed mi-
nutely.
Used ground motion records are;

+ El centro record of the Imperial Vallay Earthquake (1940)

» Hachinohe record of the Tokachicki Earthquake (1868)

. Kob_e Marine Observatory record of the Hyogoken-nanbu Earthquake (1995)
In Fig.2.4, the energy spectra for elastic systems are shown. It is clearly seen from the figure that
as the damping is increased, the effect of averaging is deepened. The energy spectrum for the
purely elastic system is highly dependent on the period. On the other hand, the energy spectrum
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Fig.24 Energy Spectra for Elastic.System

for the highly damped systems is not so dependent on the period. In each figure, the bi-linear type
of spectrum which envelopes the energy spectrum for the damping of £ = 0.1 is depicted by a bro-
ken line. Asisstated in 2,26, the energy spectrum for the damping of £ = 0.1 has an importance to
be a design spectrum, The envelope of the energy-spectrum with £ = 0.1 has a shape as shown in
Fig. 25, According to the range of period, the simplified energy spectrum can be described as fol-



iows.

T < T, (shorter period range)

Ven T :
Vg =al =—0 (2.27)
G

T > T, (longer period range)

Vi = Vo R (2.28)
where T : period which divides ranges of period

Ve + maximum value of energy spectrum
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|
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0 T,

Fig.2.5 Shape of Energy Spectrum

In the range of longer period, ¥ ﬂuctﬁates as T increases, characterized by hills and valleys. The
positions of hills and valleys, however, differ for different ground motions, As a result, a general
shape in the range of longer period should be taken to be flat,
Next, the energy spectra for inelastic systems are discussed.
Used restoring force characteristics are shown in Fig.2.6 and these are;
' » glastic-perfectly plastic type
- prigin-orienting type
(applicable to the reinforced concrete shear walls)
» degrading type
(applicable to steel cylindrical shells)
The extent of plastification is expressed by the plastic deformation ratio defined. The apparent

plastic deformations are defined as follows.

o = G5 — Oy (2.29)
where 6;?; . apparent plastic deformations in positive and negative directions

& . . . s . . . ‘
8. : maximum deformations is positive and negative directions

The plastic deformation ratio is defined as folows.

s _ O (2.30)
g = 53’ .
o -
=4 Tu (2.31)

i



where f: average.plastic deformation ratio

ui . plastic deformation ratios in positive and negative directions

In inelastic system, by adjusting the level of @y, the aimed response of fZ can be easily obtained.
First, 7 is fixed to be a certain value. Next, the response of 7 is calculated by Eq.(2.1). When the
obtained response of j is smaller than the aimed value, the revised response of 2 closer to the aimed
-value is obtained by reducing &y by a suitable amount. Thus, after several times of trials, the aimed
value is obtéined, since the total'énergy input is a very stable amount. .

In Fig.2.7, the total energy energy input in the inelastic system obtained for a specified value of g
is indicated. In Figs.2.7(al), (b1) and (c¢l}, % is depicted for T, A general tendency that the extent

of averaging is deepened with the increase of 2 is clearly seen in reduction of undulation of energy
inputs with the increase of 4.

In the range of shorter period, the averaging of energy spectrum, ,% is made on the left hand side
of T, as shown in Eq.(2.26). Thus, when the averaged value of 1 is depicted on the abscissa of T,
it is anticipated that V; increases with the increase ‘of f. Such a tendency is also clearly seen in
Fig.2.7. In case of the elastic-perfectly plastic type of restoring force characteristics, this tendency
is not remarkable. In other two cases, however, the increasing tendency of ¥; is so remarkable that
the energy spectrum for the elastic system wifh the damping of & = 0.1 can not be a spectrum en-
veloping the energy input for inelastic systems in the range of shorter period.
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Fig.26 Types of Restoring Force Characteristics
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Fig.27 Energy Input in Inelastic System

2.2.5 Concept of Effective Period

In the range of shorter period, the energy spectrum is given by Eq.{2.27). The energy spectrum for
the inelastic system is obtained by Eq.(2.26).

Denoting 7,, = T,+2A7T, T,, means the maximum value of the instantaneous pericd of vibration.
Substituting Eq.(2.27) into % in Eq.(2.26), E is obtained as

2
M T+ L+ TE \  M(aT)
“ 3 [T g (2.32)



S e |
where T = T — (2.33)

Eq.(2.32) implies that the energy input in the inelastic system can be expressed by the same expres-
sion as Eq.(2.27) by applying the effective period, T, in place of 7,
As is shown in Fig.2.8, Eq.(2.33) can be approximated by

T+T,
T = e (2.34)

Eq.(2.34) implies that the effective period can be given by the simple average of the natural period
and the instantaneous maximum period, Considering that an energy spectrum can be represented
by piecewise-linear relations, it is concluded that Eq.(2.34) caﬁ be applied to any shapes of energy
spectrum.

2.2.6 Application of Effective Period

When the restoring force characteristics are to be described precisely, a standard load-deformation
relationship is required. To be standard is identical to be well-definable. The best well-definable
load-deformation relationship is the load-deformation relationship under monotonic loading. Thus,
the monotonic load-deformation curve is indispensable to describe the restoring force characteris-
tics. In Fig.2.9, a monotonic load deformation curve is schematically shown. Referring to'a maxi-
mum response, j and the monotonic load-deformation curve, the instantaneous rigidity of a system,
k. can be defined as follows.

k“;: g8y
GETOL

where ¢@y : vield level, associated with g

(2.35),

The period of vibration which corresponds to k&, 7; is defined as follows.

T =0z X =q /LI (2.36)
k, g

The maximum instantaneous period of vibration, 7,, can be evaluated on the basis of 7, and is ex-
pressed in a following formula®,
1+

T;n = QTT_; = a:,":ra 'T‘ (2.37)

where ar: modifying constant

T Ty

3.0 ;
_’&_Ji T To+ (Tl To)? -

T _ 1+TalTo
Ty 2

: t ] l T /T,
1.0 2.0 3.0 4.0

Fig.28 Effective Period
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Fig29 Load-Deformation Curve under Monotonic Loading

ar is obtained as follows, according to the type restoring force characteristics.

For the eiastic—perfectly plastic type:

(2.38)

(2.39)

In Figs.2.8(a2), (b2) and (c2), the energy input in inelastic systems are indicated on the abscissa of
7. Ttis clearly seen that the energy spectra for the elastic system with the damping of 2 == 0.1 can

be representative of all cases of energy inputs of the inelastic systems, irrespective of the level of
damage. Thus, the envelope spectrum shown by broken lines can be a design spectrum for general

use.

8



3. Energy Input in Multx-})egree of Freedom System 3)

3.1 Energy Input in Elastle System

Based on the modal analys1s the total energy 1nput in the contmuous shear strut shown in Flg 3 1
which corresponds to a system with infinitely large number of masses is given by

'““f zg%(f m¢jdx>dr Y

~where _E total energy mput in Jth mode
. g;.+ time function
-¢; : mode function
m  distributed mass
H ; height of shear strut
z ; height ﬁom the gropnd_ _

FigA.1 Shear Strut

Evaluating ¢; and ¢, for various distribution of shear rigidity, the total energy input was found to
he D

Mg*T: %0
firz ' aé )' G2

where a(0) : base-shear coefficient = @,,..(0)/Mg

@....(0) : maximum shear force response at the base

E>

M : total mass
T : fundamental natural period

Therefore, the total energy input in the lastic system can be estimated conservatively by

Mg T? ' a*(0)
4zt 2

E= (3.3)

/M



The base-shear coefficient of structure, ¢(0) is governed by the fundamental natural pericd. Then,
it can be said that the total energy ;nput in elastic system is only go*&:erned by the ’{.(')'tai.mass and
the fundamental natural peribd of the sysiem. | '

3.2 Energy Input in Inelastic System

It is shown that the total energy input in elastic systems is determined exclusively by the total
mass and the fundamental natural pericd. The correspondence between many-mass inelastic sys-
tems and many-mass elastic systems is similar to that between one-mass inelastic systems and one-
mass elastic systems. That is, plastification has the effect of expandmg instantaneous periods.
Eventually, the total energy input of an inelastic system governed by the natural period in the elas-
t1c range, Ty, and a period, 7; greater than that in the elastic range is expressed by a mean value of
energy inputs for an elastic system, the natural period of which drops in the range of
T, £ T < T,. T, depends on the extent of plastification, becoming longer as plastification develops.
In this chapter, the above-mentioned inference will be verified with some specific’ examples of
muiti-story inelastic systems. The multi-mass systems adopted are undamped, shear-type five-mass
systems.

Because any modes higher than the fifth mode are of no significance in actual buildings, the five-
mass system may represent multi-mass systems. A multi-mass vibrational system is spec1fied by
the mass ratio m; /m;, the yield-shear force ratio «; /o, the stiffness ratio k;/k,, and a set of m,, ay,
%,. m, and k, are reduced to cne parameter 7, /&y, as my [k, is related to the fundamental natural
period. The subscript, 4, denoting the number of masses or stories, increases in ascending order
with the height of a structure. The yield-shear coefficient, ¢, is defined by the following relation.

i

(3.4

a; = 5

Z m;g
=i
where Qyt . vield-shear force coefficient of the ith story.

In order to distinguish distributions of parameters, such notations as M, for the mass distribufion,
A, for thé yield-shear force distribution, and K, for the stiffness distribution, are introduced. Thus,

a vibrational system is denoted by M,, 4, K,, ¢;, and T.

Table 3.1 Parameters in Vibrational Systems

i (Number of Stories or Masses)

Index 1 2 3 4 5
M, 10 1.0 10 L0 10
m; M, 10 0333 0333 0333 0333
m, - M, L0 10 30 1.0 10
M, 10 L0 1.0 10 3.0
CAL 10 110 125 1565 20
2 A, 10 10 100 160 100
a, 4, 19 100 100 100 10
A, 10 1.0 1.0 1.0 0.1
., K 10 0867 0733 0600  0.400
- K, L0 0820 0640 0500  0.200
K, 10 1.0 1.0 19 0.1

17



M, stands for the case of a uniform distribution of masses. M, expresses the case for which masses
other than the first mass are one-third of the first mass. M; and M, correspond to the case in which
one mass is greater than the others by three times. l

A, expresses the case for which the yield-shear force distribution is controlled so that the cumulated
ductility ratio, n;, becomes nearly equal in all stories. ﬁg is defined by the accumulated inelastic hori-

zontal deformation of the ith story divided by the elastic horizontal deformation of the ith story
under a vield-shear force ‘The yleld-shear force distribution for this case is obtained by a trial-and-
error procedure of numencal analysis. A, stands for the case in Whlch all the stories above the first

story are ten times stronger than the first story. In this case, melastlc deformatlon can take place °

only in the first story As is the case for which only first and fxfth stones are forced to succumb to
melastzc deformation. In the case of A4, only the fifth story behaves melastlcaiiy -
K, and K; are cases for whlch sprlng constants change Imearly along the hexght K, bemg equipped

with a steeper change of stiffness distribution. In the case of K;, the stifiness of the fifth story is
one-tenth that of the other stories.

Actual buildings are conditioned almost by a set of cases (M, 4,, K,) or (M, A,, K;). The applied
restoring-force characteristics of each story are two typical types, One is the elastic-perfectly plas-
tic type, in terms of story shear-force, &, and story displacement, &; (= y,—y;_,)( being a horizon-
tal displacement of the ith mass). Another type is the degrading type, as shown in Fig.3.2., Broken
lines in this figure, denoted by OAE and OA'E’, are the @, — &, relations under monotonic loading in
the positive and negative directions, respectively. OAE and OA'E’ are symmetric with respect to
the origin, and under an arbitrary history of deformations it is assumed that the &;,— &, relation is
governed by the foilowmg law:

The slope in the elastm range 1s unchangeable and the SIOpe in the meiashc range, d@,/ds;

is constant. A relation, WhiCh is obta}ned by connecting through parallel movement, plecewise
load-deformation curve in the mel_astlc range under the_pos1twe sign of @, coincides with

the load-deformation curve under the same sign of monotonic loading. That is, moving parallel

Q:
A
Qvil
B’ B R
2
~
C ~
k ~E
5=y, —y-,)

- QY:‘

Fig.3.2 Restoring-Force Characteristics with Deterioration in Strength
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‘to the segment B'C in Fig.32 and overlapping the point B’ on B, the curve thus obtained,

A—B(B)~C, agrees with the curve under monotonic loading. In the same manner, under the
negative sign for €., inelastic deformation increments connected sequentially provide the ine-
lastic portion of the monotonic load deformation curve. .
Under .such a hysteretlc law, inelastic deformation develops until point U in Figd.2 is reached,
where with Q 0, the restoring force is lost, and the system loses its resistance to the P—4§ effect
(due to vertical loading) and collapses. The aim of applying such degrading types of restoring-
force characteristics is to discern whether the energy input in a system that collapses in a certain -
story is domparabie to tiiat in a system with elastic-perfectly plastic restoring-force characteristics.
The accelerogram used is from El Centro. '
Total energy input can be calculated by the followmg equatlon using a velomty for each mass, Y

relative to the ground.

5

E=— (mff zuygdt) | : - (38.5)

i=1

In Fig.3.3, the relation between the non-dimensionalized total energy input, Ay and «; is shown for

a representative natural period,
Ay, is defined to be

Mg*T?
47r2

E/ (3.6)
The solid line in the figure is the total energy input of undamped one-mass systems with restoring-
force characteristics of the elastic-perfectly plastic type. It is clearly shown in the figure that the
energy input into five-mass systems is fairly close to that in one-mass systems.

Similarly, the energy input in elastic-perfectly plastic systemsis shown in Fig.34, in which the solid
line indicates the responses of one-mass systems. Ap—a, relations (Az;—ea5 in the case of 4, where
only the fifth story can behave inelastically) for various sets of K, M,, and A, are compared. The
aim is to discern the dependence of the total energy input on the stiffness distribution, the mass dis-
tribution, and the strength distribution, As a rule, it may be said that the stiffness distribution, the

——one-mass system. o five-mass system

(M, Ky, AY)
1 T =04 gec 4 T =1.0sec 9 T =2.0sec ¥ T = 3.0sec
- o] L L g L
N R o i
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L2 i i E ] 5
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Fig.33 Comparison of Energy Input between One-Mass System and Five-Mass System
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Fig35 Energy Input in Degrading Systems

mass distribution, and the strength distribution are not influential with regard to the total energy
input. ‘

Fig.35 shows the response of a five-mass system that is equipped with the degrading type of
restoring-force characteristics {as shown in Fig.3.2) in the first or fifth story, while the other stories
are of the elastic-perfectly plastic type. This case is conditioned by {M;, K;, A4;). The ratios of the

slope in the degrading range, k, to that in elastic range, & were selected to be

ky

&

It

—0.025, —0.05, —0.075, —0.1

Whether a story with a degrading type of restoring-force characteristics will collapse depends on
the magnitude of the yield-shear force. The magnitude of the yield-shear force for each story is de-
scribed by ;. It is obvious that the larger @, becomes, the less the possibility of collapse. When the

limit of @y, which enables the system to remain uncollapsed is denoted by a,,, collapse does not



occur under the condition @, < a;, ¢, at the collapse limit, is obtained by making a; increase
gradually, and is shown in Fig.3.5. As for the relation between |kp i/.k and a,,, a larger value of
a,, is required to prevent collapse as 1k, /R increases, owing to the decrease of inelastic energy ab-
sorption capacity in the degraded story. o |

Four points in the figure, which correspond to each natural period and the position of each de-

graded story, are located upward from one anothier, in ascending order of magni_tude of lkpl /k. As

clearly shown by the figure, even the total energy input in a building which just collapses int a cer-
tain story is nearly equal.to that of a one-mass system with elastic-perfectly plastic restoring char-
acteristics. '
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4. Estimate of Structural Damage .

4.1 Expressxon of Damage '

In the basic equation of earthquake resistant design based on the balance of energy shown by
Eq(2.10), the term which corresponds to structural damage is W. Whereas the elastic deformation
is restored to the non-stress state as the load is removed, the inelastic deformation remains unre-
leased and is monotonously accumulated until the collapse state is reached.

In this sense, the cumulated inelastic deformation or curnulated inelastic strain energy can be called
damage and its quantity implies the degree of damage., W, means the total sum of structural dam-

age, When a structure is composed of many elements W, is generally written as

%=Z% | - | ~ ,H  |   @@'

where W, : cumulative inelastic strain energy of ith element
Assuming a structure with a single element, W, is expressed as follows.

W, =&y =nQydy (4.2)
W,
Qr,

g, : cumnulative inelastic deformation

where 7= : cumulative inelastic deformation ratio

7. being a nondimensionalised damage, is called cumulative inelastic deformation ratio.
Assuming the elastic-perfectly plastic restoring force characteristics, 7 is written as

: 6 +3, ' : S L
n= —ma =t +p” ' ' (4.3)
where 7" =g, /6y : cumulative inelastic deformation ratio in the positive direction (see
Figdl) |
no=4, /8y : cumulative inelastic deformation ratio in the negative direction

Q atdy
E‘nm»—-——h-
. Ady
|
Qv a5
81: = -gap-‘
= é\p ,"ay

8,7 = 48, + 48,
5,7 = A8+ A8y
! 5

Figd.l Restoring Force Characteristics of Elastic-Perfectly Plastic Type

AT



In this case, 7 means the real cumulative inelastic deformation divided by the elastic limit deforma-
tion. A visual image of damage can be given by the residual deformation, The residual deforma-
tion in case of the eiastic-perfegtly plastic restoring force character_i_stics, &, is expressed by

5=|a" —-5 |—|n —n ]5], o (4.4)

Another important expression of damage is the maximum deformation or the apparent maximum.
plastic deformation as stated in 2.2.4,

The apparent maximum plastic deformation can be related to the cumulative plastic deformation,
The nondimensionalised apparent maximum plastic deformation is expressed by u as shown by

Eqgs.(2.30) and (2.31). Then, the estimate of 7, tn““—n_l and g is essential in the seismic design.

Among them, 7 can express most directly the structural damage. [n"‘“wn‘| and p can be subse-

quently qualified in relation to p.
When W, is dominant in Eq(2.10), W,+ W, can be neglected and 7 is quantified based on the follow-

ing relationship.

W=E (4.5)
When the system consists of single element ¢ can be directly obtained from Eq(4.5),
When the system consists of plural elements, the total damage is clearly described by Eq(4 5).
As for the distribution of W,;, however, any possibilities can exist. Therefore, it is most important

to clarify a law governing the distribution of W,

4,2 Basic Damage Distribution Law Applied to Shear-Type Systems with Elastic-Perfectly
Plastic Restoring-Force Characteristics
The vield strength of ith story is denoted by @ and the elastic limit deformation under @y is de-

noted by 8y;. Using the cumulative inelastic deformation ratio of ith story, 7, Wj; is expressed as
Wi = 7 @y Oy ) (4.6

The spring constant of ith story is denoted by k. Using the total mass, M and the fundamental

natural period, 7, the spring constant of an equivalent one-mass system, k,, is define as

ar*M

by = 4.7y
g T2
k; is related to k,, by the following expression
ke = K kag (4.8)
Then, Eq{4.6) is rewritten as
22 .
W, = M“Qdfﬁ; (4.9)
4
2
Z m;
= 1
where ¢=| +—— }— (4.10)

M 5
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As a standard distribution of damage, the damage distribution under an uniform distribution of
7; is taken as follows ‘

. )
Wie - Ckak

" , e (41D

an

z—l

The yield shear force coefficient distribution which realizes the standard damage distribution is de-
fined to be the optimum yield shear force coefficient distribution and is expressed as

& = o;/ ey

Eq(4.11) is also written as

=i

Moe _ S
TN (4.12)
7
N/ m k
where § =K d = ), (—ﬁ) éf‘(—,ﬁ—) (4.133

Eq(4.18) signifies that the standard damage distribution is given by the mass distribution, the
spring constant distribution and the optimum yield shear force coefficient distribution.

4.3 Optimum Yield Shear Force Coefficient Distribution

If the optimum yvield shear force coefficient distribution is unchanged, irrespective of the quantity
of 7;, & can be given by the shear force coefficient distribution of the elastic system which corre-
sponds to the case of infinitesimally small constant damage.

The above-mentioned inference has been checked to be applied to practical cases, and an unified ex-
pression for & has been already obtained V.

In Fig4.2, the optimum yield shear force coefficient distribution which was ohtained I.by a trial-and-

error approach applied to multi-mass systems with N of 3 to 9 is shown. The ordinate is taken to
be (i—1)./N.

1 —1
N
1.0~
/’_"
o
vl o6 N=3
¢ s+ N=5
05 / -
Go o N=T
. . ng
o
.
0]1’ : | -3
1.0 2.0 3.0 4.0

Fig42 Optimum Yield Shear Force Coefficient Distribution



The sequence of the numerical analysis is as follows, First, a,, and ¢;/ ¢, is set, and the response is
obtained. A relatively weaker story suffers damage concentration.
Then, in the stories where 7, is larger than the averaged damage my, «; is increased and in the stories
where 7; is smaller than ny, ¢; is decreased. _
This procedure is repeated several times until the condition of 7; = 7y is almost satisfied. Used
accelerogram is of El Cenfro (1540). The result of analysis can be expressed by an unified curve as
shown in Fig4d.2.
The unified curve is expressed by
for r =402,
@, = 1+1.6027z—11.8519z°+42.58332°—50.48272+ 30.1586z°
: ; (4.143
for = < 0.2,

& = 1405z

i1

where = = I

4.4 Damage Distribution Law

4.4.1 Basic Expression )

Under the optimum yield shear force coefficient the damage distribution is given by Eq(4.12)
Based on numerical analyses for systems equipped with strength distribution different from d;, it
~ was found that the damage distribution in general case can be expressed by a following expression
continuous to Eq(4.12)

W s " 1
= = — (4.15)
W, A
Sjpj
j Y
h =%
where p; = 0d,

n : damage concentration index

1, + damage dispersion factor

p; expresses the extent of discrepancy of a;/ a, from the optimum distribution.

When p; = 1, it is obvious that Eq(4.15) is reduced to Eq{4.12). 7 is termed damage dispersion fac-
tor, since 7, indicates the extent of damage dispersion into stories other than ith story. = is a posi-
tive exponent. As z increases, the dependency of damage distribution on p; increases.

In case of # = 0, the damage concentration does not take place, In stories with p; > 1, damage is re-
duced as n increases. Reversely, in stories with p; < 1, damage concentration is emphasized, as » in-

creases.

4.4.2 Damage Concentration Index

When the damage distribution is given by Eq{4.15), the value of # can be obtained by observing the
chance of the damage distribution due to a decrease of strength in the observed story as follows.
First, the damage distribution in kth story under an arbitrary strength distribution is obtained as
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Fig43 Value of n for Weak Column Type of Frames

follows. -
VW s
“= =g - : (4.16)
P
i=t

Next, the damage distribution under another strength distribution in which the strength in kth
story is modified by multiplying p; is obtained as follows.

W s

b = e (417
W, Z §p; sl " ba
iFhk
From Eqs.(4.16) and (4.17), the value of n is obtained as follows
_ e -a) g

Herewith, the result of analysis is shown. Fig4.3 shows the value of n for weak-column ivpe of
frames with elastic-perfectly plastic restoring force characteristics. It is obvious that z# can be ex-
pressed by an increasing function of p,;. It is already ascertained that the value of n for the weak-

column type of frames should be 127,
n = 12 corresponds to an upper bound value for p, = 0.8. Then, it can be deduced that the value

of n for practical use can be obtained by taking p, = 0.8 in Eq{4.18)

In Fig.4.4, the value of n for weak-beam type of frames is shown, taking p, = 0.8 and varying stiff-
ness ratios between columns and beams, k.

kg is the ratio of stiffness of column to stiffness of beam. A reasonable result that the damage con-

centration is mitigated by the increase of stiffness of column is clearly seen in decreasing tendency
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Fig4d4 Value of n for Weak Beam Type of Framgs

of n as k&, increases.

As a representative and conservative vatue of n for the weak-beam type frames, n = 6 can be taken.

~

45 Relationship between Cumulative Inelastic Deformation and Maxzimum Deformation
A load-deformation relationship under a monotonic loading is indicated in Fig.4.5, in which @y is the
yield strength and &y is the elastic deformation-corresponding o @y.

The inelastic strain energy under the monotonic load-deformation curve, W, is defined to be

W ufdy Q- do - (4.19)

Using the inelastic deformation ratio, 1,
g, 1s written as

8, = (1+u) 8, (4.20)

W, is an increasing function of g.

)
0 Sy : Fm

Fig45 Load-Deformation Curve under Monotonic loading



Under a seismic excitation, a structure develops maximum deformations in positive and negative
directions, 6%, 8.4 and .~ correspond to & * and 67, and g is the average of u* and ¢~
. The cumulative strain energy of a story can be formally expressed as follows, using W,,, given by
Eq{4.19).
W= 2Wm(@ay -~ __(4.21.)

a, is a coefficient and is defined to be

% = T Sen
The cumulative inelastic deformation ratios, n* and 7~ are defied to be
+ _ S R '
.= W, o W : _ _ e (4.23)
Qydy’ Qy Sy '

where H;*-, W, < cumulative inelastic strain energy in positive and negative loading domain

The sum of 7™ and 7~ is the cumulative inelastic deforrﬁat_ion ratio, 7 and the average of 7" and
7~ is the mean cumulative inelastic deformation ratio, 7. ' '
A non-dimensional expression of W,, is defined by

W, (2)
A, (g) =——"F—7— 4.24
() 0,6, (4.24)
Using these quantities and referring to E£q(4.21), the following equation is obtained.
A ()
7= AR, =00 - (4.25)
Referring to Eq(4.25), the following expression is obtained.
. () .
7 Amll) (4.26)
i i

The greater of n* and 77 is defined to be 4, Then, knowing 7 = 27, the next equation holds.

R AOL B S

(4.27)
Hay i Hom

4./ 11, expresses the deviation of maximum deformations in one direction, being in the range of

0.5 < £ <10 (4.28)
s

Referring to Eq(4.27), the following relationship is obtained.

A n

a, <

A
<20 ;”’ a, (4.29)

n

When the monotonic load-deformation curve is elastic-perfectly plastic type, 4,,/2 is unify and



Eq(4.29) is reduced to
a, < fw <2.0a, | (4.30)

When a, and g s are quantified, the maximum deformation is related to the cumulative inelastic
deformation. Since 7 is definitely related to the {otal energy input, the maximum deformation is re-
lated to the total energy input. In order to obtain g, and 2,/ 1t,,, the numerical analysis is indispen-
sable.

Using shear type of multi-story frames, 7+, relationship is quantified.

A general form of the shear-type frame can be expressed by the flexible-stiff mixed frame. The
flexible-stiff mixed frame is characterized by the mixture of the flexible elastic element and the stiff
elastic-plastic element in each story as shown in Fig4s,

Ordinary structures, which are not intentionally equipped with flexible elements, are identified to
be structures singly equipped with stiff element {ordinary structures).

By introducing flexible elements, hysteretic behaviors tend to orient the point of origin.

As a result, the residual deformation is reduced and the maximum deformation is restrained under
a certain amount of energy input. The flexible-stiff mixed structure is characterized by the rigidity
ratio,  and the shear force ratio, 7, defined by ~

kg '
5 = u};: {4.3D)
me ' ;
o 4,32
=, (4.32)

where k;: spring constant of flexible element
k . spring constant of rigid element
me . average of maximum shear forces developed in the positive and negative loading

dornains in flexible element
<&y : vield shear force of rigid element

[ : average inelastic deformation ratio

7, under a maximum deformation of 2.dy ( 8y : elastic limit deformation of stiff element) is ex-

pressed as follows, knowing

BRILEN
fQ sQ Q:fQ-E_SQ
kf ; .'.'QY

[ o el g IS
= 3 , T 8 0/_, 3
_SQY

| #:0r |

(a) flexible elernent (b) stiff element (¢) mixed system

Fig46 Flexible-Stiff Mixed Structure
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sQY = ksél" IQ—m = kf(l—i_ﬂ)sé}" ] . .
n=+oy \ - o (4.33)

When %; and Gy are kept constant values, it is anticipated that as k becomes greater, the Stlff ele-
ment absorbs energy maore eff:;clently, thus the maximum deformatmn bemg more effectzvely re-
strained, However, as k; becomes greater 7, is decreased. Therefore % can not be a major quantity
effective to restrain the maximurm deformation. On the other hand, 7 expresses direcily the degree
of origin-orienting tendency, thus, can be a major quantity to restrain the maximum deformation.
In this context, the results of numerical analysis are arranged by using 7» Used restoring force char-
acteristics are elastic-perfectly plastic type.

In Fig4.7, deformation responses are shown for three different seismic records.

a) Deviation of Maximum Deformation

In Fig.4.7(a), i,/ /2 —1, relationship is shown for 7; = 2.5 sec These results are summarized as fol-

lows.

Upper bound value:

212 B
for =10 = =755, S |
o ‘ _ (4.34).
4 .
for 7 > 10, ”'ﬁ—;-*é‘“
Medium value:
: I 3+7;.
< e =
for L 1.0, i 227,
(4.35)
for 7, > L0, ‘Z ~1.0

b) Deviation of Cumulative Inelastic deformation
In FigA.7(b), 5,7 —1, relationship is shown for T, = 2.5sec. As 7, increases, 7,7 rapidly con-

verges to unity. Referrmg to Eq.(4.4), it can be seen that residual deforrnation almost vanishes as
7, reaches 0.2.

¢) Correspondence between 7 and j
In Fig4.7(c), 7,/ —r, relationship is shown for T; = 2.5 sec. Results are summarized as

Lower bound value:

for 7 =10, L =2+2r

i

) (4.36)
for 7 > 1.0, & =40

Jil
Design value:
for r, < L0, % =341,

(4.37)

for 7 > LG,

= |-’-‘.!|
il
1
(o]



The design value means the value which is proposed for practical use in design and is selected to
be slightly larger than the lower bound value,

d) Correspondence between 7 and tn '

In Fig_.4.7(d),_ 1 Mo — relat1onsh1p is shown. Knowmg n/ p and ;,zm/ £, 77/ U, 1S gwen by )

m_ 2 _ 2(3_)(_#_> . (4.38)
M M NE/N\im ) S -
Using the lower bound value of 7,742 (Eq.(4.36)) and the upper bound value of 1, (Eq.(4.34)),
the lower bound value of n/ i, is obtained as follows.

for 7 < 1.0,

(4.39)
for 7 >10, - =60
P

To take the lower bound value of 7,/ 1, for practical design purposes seems to be over-conservative.
Taking the design value of 7,/ (Eq.(4.37)) and the medium value of 2,1, (Ea.(4.35)), the design
value of 7,4, is obtained as follows.

for 7, <10,

% = 4+4r,
(4.40)

for 7, > 10, — =80
o

The obtained form ulas can be applicable for different values of 7; than 2.5sec as shown in FigdT,

Q4.
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5. Practical application of Energy Approach

5.1 Ordinary Earthquake Resistant Structures

5.1.1 Loading Effect of Earthquakes .

The loading effect of earthquakes on structures can be grasped most concisely by means of the en-
ergy input. The energy input can be expressed in a form of energy spectrum as follows

» The Fourier spectrum of acceierogram of an earthquake motion comc1des thh the T~ T rela-

tionship of the same earthquake mo*aon. V; is the equivalent velocfcy obtamed through the fol-

lowing conversion from the total energy input in the undamped one-mass vibrational system
with the natural period of T.

%ﬂ/%? . (5.1)

where E : total energy input into the system
M : total mass of the system

« The Vz— T relationship defined by Ea.(5.1) is termed as the energy spectrum.

The energy spectra for damped systems or inelastic systems can be obtained by smoothing (or
averaging) the energy spectrum for the undamped elastic system The extent of smoothing in-
creases proportionally to the extent of nonlinearity of the system.

« The energy spectra for the inelastic systems can be represented by the energy spectrum for the
elastic system with 109 of fractlon of critical damping (R =0.1). In this sense, it can be easily
understood that the total energy mput made by an earthquake mainly depends on the total mass
and the fundamental natural periocd of the structure, and is scarcely influenced by the strength,
strength distribution, stiffness distribution, mass distribution and type of restoring force charac-
teristics of the structure.

Compared to the conventional acceleration response spectrum and the velocity response spectrum
which can be directly applied only to elastic systems, the energy spectrum has deci_sive advantages
as following.

* The energy spectrum can be d1rect1y applied both to elastic and inelastic systems

» The energy spectrum can be represented by a single curve which corresponds to the energy spec-
trum for the elastic system with & = 0.1

« Two major indices of structural damage are expressed in terms of the cumulative inelastic defor-
mation and the maximum deformation. The cumulative inelastic deformation can be directly re-
lated to the total energy input and it is not difficult to find a relationship between the maximum
deformation and the cumulative deformation through numerical response analyses.

. On the basis of energy spectrum, the earthquake resistant design can be clearly formulated to be
Control of Damage Distribution under a Constant Energy Input.

5.1.2 Earthquake Resistant Design
The equilibrinm of energy can be written as
W+ W+ W, = E (5.2)
where W, : elastic vibrational energy
: energy absorbed by damping

Wi
W, : cumulative strain énergy
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Fig5.l Restoring-Force Characteristics

The total energy input £ is a very stable amount irrespective of structural behavior.

On the other hand, the distribution of energy over a structure depends on the structural type, and
mechanical properties of structural components. The structural damage corresponds to W

In order to know the distnbutmn of energy, numerical response anaIysea are 1nd1spensable By
summearizing the results of numerical analyses it is p0351b1e to construct a simplified and concep-
tual desxgn method based on {ue energy spectra.

W, consists of cumulative inelastic strain energy in every story W,. Thus,
N
W= ) W (5.3)
i=1 :

where N : number of story.

W, and W, can be regarded as structural damage, Each story of a shear type multi-story struétures
is considered to be composed of a stiff element and a flexible element. The flexible element has a
small stiffness and remains elastic, whereas the stiff element has a large stiffness and behaves
inelastically. The relation between the shear resistance and the story displacement is depicted in
Fig5.1, where the elastic-perfectly plastic restoring force characteristics of the stiff element is as-
sumed, Assuming that the spring constant of the stiff element, k, is sufficiently larger than that of
the flexible element, k;and the contribution of energy absorption of the flexible element can be ne-

glected, then, the damage of the first story of a building is written as

Mg'T? 27,
4zt £y

where g, : yield shear forée coefficient of the first story (= @y, / Mg)

Wey =

(5.4)

&y; : yield shear force of the stiff element in the first story
7;  averaged comulative inelastic deformation ratio of the stiff element in the first

story (=cumulative inelastic deformation / two times of vield displacement)
0y : yield displacement (see Fig.5.1(a))

27



Ky = k,/(A7* M/ T®)

g : acceleration of gravity
The total damage of a structure. W, can be formaliy related to W}, as
W = W, (5.5)

In the shear-type multi-story structures, it has been made clear that 7; is expressed by the following

formula,

7= 1 2 %(Pj/px)—n (5.8
iF1

N 2
o,
where p; = i sj=< Z m,—/M) dj?(kl/kj)

o, d; i=j
&; : optimum yield shear farce coefficient distribution
a;/ery @ actual yield shear force coefficient distribution
m, : mass of ith floor

k; : spring constant of ith story " .

b; means a deviéti_on of the actual yield shear force distribution from the optimum yield shear force
distribution under which the damage of every story 7; is equalized, and is termed the damage con-
centrat.i.o.n factor, » is termed the damage concentration index. When 7 becomes sufficiently large,
71 becomes unity. It means that a sheer damage concentration takes place in the first story. When
n is nullified, a most preferable damage distribution is realized. Practically, the value of n ranges
between 2.0 and 12.0, Weak-column type of structures are very susceptible of damage concentra-
tion, and the ﬁ-value for them should be 12.0. In weak-beam structures, the damage concentration
is considerably mitigated due to the elastic action of columns, and the n-value can be reduced to 6.0.
In Fig5.2 (¢), a generalized form of weak-beam type structure is shown. The presence of a verti-
cally extending elastic column is essential to this type of structure. The elastic column by itself is
not required to withstand any seismic forces. While ordinary frames pin-connected to the elastic
column absorbs inelastically seismic energy, the elastic column plays a role of damage distributor.

» possible place of plastic hinge formation
o real hinge

n=120 n=60 10<«n=<12.0

(a) weak-column type (b) weak-beam type (c) generalized weak-beam type

Fig.ﬁ.é Various Structural Types



By applying this type of structure, the n-value can be reduced to 2.0,
The damage concentration is also governed by the value of p;. To simply estimate the damage con-

centration in the first story, an unifi_ed value may be applied as p; as follows.
b= ]7-0 Din1 = Py 5.7

Eq.(5.7) signifies that the stréngth gap is assumed between the first story and the other stories. It
is impossible to make the yield shear force distribution of an actual multi-story building agree com-
pletely with the optimum distrib'uti_on. The reasons are'e'asily found in the scatter in mechanical
properties of material and the rearrangement of geometrical shapes of structural members for the
purpose of simplification in fabricating process. Taking account of such a situation, the following
value is proposed as a probable strength gap to be taken into account in the design procedure.

Dg = 1.185—0.0014N Pz 11 (5.83

The elastic vibrational energy is expressed as follows.

Mg*T?  of
W=t (5.9)

4zt 2
Taking account of damping, Eq.(5.2) is reduced to

1
(1+8h+1.2/% )

where A = damping constant

W+ W, = EX (5.10)

Substituting Egs.(5.9) and (6.5) into Eq.(5.10) and using Eq.(54), the following formula is obtained.

'cre 2n Ve 1
R s — a =
Ny ©  Tg 1+3h+1.%h

£y

ay =

(5.11)
1+4

Eq.(5.11) is rewritten as

a,(T) = Dy(7) e, (T) (5.12)
where «,(7T) : required minimum vield shear force coefficient for the elastic system with the
fundamental natural period 7 ‘
a,(T) : required minimum yield force coefficient of the first story for the inelastic sys-
tem with T
D(#) : reduction factor for the yield shear force coefficient, which depends on 7

The distribution of masses is assumed to be uniform. The yield deformation of every story is also
assumed constant. Then, the stiffness distribution k,/k,; becomes equal to the strength distribution

QY:'/ Q-
The optimum yvield shear force coefficient distribution g; is given by the following formula.

o _ A4 i—1 .
a,-—mf( v ) (5.13)

for x> 0.2, f(z) = 1+1.5927x~11.8519x" +42.583z° —59.482* +30.16z°
for £ £0.2, f(z) = 14+0.5z
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Figh.3 D.-Values for Multi-Story Frames

Using the above-mentioned parameters, 7; in Eq.{56) and &, are calculated and approximated by the

following relations.

n = 1+0.64(N—1p; " (5.14)
K, = 0.48+0.52N _ 3 (5.15)

Then, the D-value is written as
N
/1-+ s{14+0.64V—Dpg "

0.48+0.52N

D, = (5.16)

Fig.5.3 shows the relationship between the Dy-value and the number of story N for specific values
of ;. |
The difference of D-values is caused by the difference of the damage concentration index n which
governs the damage distribution in multi-story buildings. D.values inevitably increase with the in-
crease NV due to the effect of damage concentration. '
The goal of earthquake resistant design can be summarized as follows.

1) to minimize a;,

2) to minimize the maximum story displacement 8.,

3) to minimize the residual story displacement §,, (see Fig5.1(a))

To attain the first item, the following two measures are practicable.

‘1) to increase the deformation capacity #

'2)  to reduce the damage concentration index n
The former is realized by applying mild steels to the stiff element. When the structural members
are carefully selected so as to avoid structural instability such as local buckling and lateral buck-
ling, it is not impossible to attain the value of 7; greater than-100. The later is realized by applying

the weak-beam type structure or more general damage dispersing systems as shown in Fig.5.2(c).

e



High-strength steels can be most effectively used as a vertical damage distributor.
To discuss the maximum story displacement, the inelastic_ deformation ratio, g is introduced as fol-
lows,

= (par~0y)/ by = (5.17)
where §,,, : average value of the maximum story displacement in the positive and negative

directions.

The residual story displacement, &, is equal to the difference between the cumulative inelastic de-
formations of positive and negative directions as seen in Fig5.1(a). To reduce §, and Z, the most
effective measure is the application of “the fiembie-stsz mzxed structure”. Only slight participation
of the flexible element enables to nullify &, and to reciuce i remarkably as is seen in the following

empirical relations (see 4.5).
for =0 == for >0, g=7 o pi=7¢ (5.18)

The stiff elements are the source of energy absorption, whereas flexible elements restrain effec-
tively the development of excessive deformations and one-sided deformations.

5.2 BASE-ISOLATED STRUCTURES
In the light of earthiquake resistant design method described in the foregoing section, characteris-
tics of base-isolation technique can be summarized as follows. _

+ Since, by applying flexible isolators at the base of structure, the superstructure can be assumed
to be relatively rigid, the base-isolated structure can be assumed to be a single-degreé of free-
dom system under horizontal ground motions

- Since the elastic energy absorption capacity of isolators is large enough to meet the total en-
ergy input due to an earthquake, the superstructure is liberated from several restrictions re-
quired for ordinary earthquake resistant structures to secure inelastic energy absorption
capacity.

« By applying dampers, the horizontal displacement at the base is effectively reduced.

In turn, dampers must absorb almost all of the total energy input. When leads or steels are used for
the material of dampers, the restoring-force characteristics at the base of the base-isolated strucfure
take a shape as shown in Fig5.4. Q denotes the total shear force and § denctes the horizontal dis-
placement at the base of base-isolated structure. a, and oy are defined as

' SQ}’ meaJ:
g = Mg oy = My (5.19)

where @y : vield strength of dampers

4mar © maximum shear force of isolators

M : total mass of superstructure

The results of numerical response analysis are summarized as follows,
* The maximum displacement &,,., takes place in almost same amount in the positive and nega-

tive directions.
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-Fig54, Restoring-Force Characteristics of the Base—lsoiated Story

» The energy absorbed by dampers at the mstant When the maximum dlsplacement is reached
can be approximately expressed by the area twme as large as the area covered by the closed
loop in Fig.5.4.

The ecjﬁﬂibrium of energy at the instant when the maximum displacement is reached can be ex-
pressed by ' '

W+ W, = E(1,) : : (5.20)
Where W, : energy stored in isolators

W, : energy stored in dampers

E(t,) : total energy input at z = 1,

: time when the maximum d1spiacement is reached

The energy absorption due to damping of isolators is ignored. Referring the response characteris-
tics, W, and W] are written as '

Qma.zamu:z
o == f—z"_ (5.21)
V;/; = BSQYS??I{II (522)

As the total energy input E is defined to be the energy input exerted by an earthguake during
whole duration of time, F is generally greater than E(%,,). Therefore, by applymg E in place of

E(t, ) in Eq.(5. 20), the maximum responses can be obtained with some errors of over-estimate.
Then, the basic equation for the estimate of the maximum responses can be written as

J"Q’na:r 6ma.'r . MVI:'.‘Z

0,.¢z Can be expressed as



& _
— I %mazx

where Jk,: spring constant of isolators

k; is written as

e = _ . _ R : - 5.25
T | : 25
where -T;: period of base-isolated structure without d_ampe_rs .

Using Eqs(5.19), (5.24) and (5.25), Eq.(5.23) is reduced to

o )
o= —gtd a1 (5.26)
a:S
where g = 8(%)
g
_ inlg
ay =~ ?}g

a, signifies the shear force coefficient for the base-isolated structure without dampers. The total

shear force coefficient at the base of base-isolated structure a is obtained as

o = af+as = (-—"'Z'Sg‘"{' a2+1 )ao (5.27)

Then, the D.-value for the base-isolated structure is obtained as

D, = -1;»+ at+1 C (5.28)
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The maximum displacement is obtained as

S —_ meax — T}zafg
max kf 4;'{2

(5.20)

The D.-value given by Ea.(5.28) is shown in Fig55. Asis seen in the figure, the Ds—vaiué for the
base-isolated structure is hardly less than 0.5. The major advantage of base-isolated structure in re-
ducing shear force response must be ascribed to the reduction of a,. Since the Vg-value in the range
of longer periods can be assumed to be constant, to make T; large is of primary importance for the
reduction of ¢;. In order to make 7; large, the most effective measure is to reduce the number of iso-

lators and this can be realized by properly evaluating huge compressive load-bearing capacity of
igsolators.
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6. Prospect and Lessons

6.1 Advanced Design Method (Flemble Stiff Mixed Structures)

6.1.1 Introduction

Prewous seismic design methods have been developed with structural safety as the major consid-
eratiomn, while performance in other areas has been neglec:ted with the following results,

* During the severe earthquakes, structure are mewtably damaged to some extent and some-
times, repair is very expensive, P
» Strengthening structures in order to reduce structural damage results in an increased accelera-

tion response, which causes overturning of furniture and equipment. Thus, it causes an mter-

ruption of daily activities such as medical treatment and results in the loss of property.

On the other hand, the recently developed base-isolation technique has overcome the above-
mentioned difficulties, without deterioration of the performance obtained by using conventxonal
earthquake-resistant design methoeds.

In this section, an earthquake resistant design method for buildings which meets the requirements
for both structural safety and reduction of the acceieration response is discussed.

The proposed design method is consistent to the method applied io base-isolated structures and is
developed based on the balance between the sefsrnic energy input and the energy absorption capac-
ity of the structure. Structures in general are very cornplic:atéd and prediction for exact behavior
of them is, sometimes, very difficult. Therefore, in order to develop the performance-based design
method, it is also necessary to exploit preferable structural types of which prediction of structural
behavior can be explicitly made. _ ' o S

As a preferable structural type, the flexible-stiff mixed structure igs introduced. The flexible-stiff
mixed structure consists of the flexible elements which remain elastic even under severe earth-
quakes with a relatively low elastic rigidity and the stiff elements which behave mainly plastically
with a relatively high elastic rigidity.

Conventional type of multi-story buildings can be remodeled to be a flexible-stiif mixed structure
by definitely allotting a role of the flexible element or the stiff element to each structural element.
Major damage indices such as the cumulative plastic deformation, the maximium deformation, the
residual deformation and the maximum vield shear force coefficient are clearly related to the level
of seismic input.

6.1.2 Flexible-Stiff Mixed Structure

The structure which is composed of the flexible elements remained elastic and the stiff elements
with a high elastic rigidity and a high plastic deformation capacity is defined as the flexible-stiff
mixed structure . In flexible-stiff mixed structures, the vield strengths in positive and negative

loading domains, I Qy | and | &y ! become different as the deformation develops. Generally, cumula-

tive plastic deformations are liable to concentrate in the element with a relatively weak yield
strength. Therefore, a further development of the plastic deformation in a loading domain where
plastic deformations have developed with an increase of the yield strength is restrained autono-
mously in the flexible-stiff mixed structure, thus resulting in equalization of deformations in posi-
tive and negative loading domains. Main features in the response characteristics of the flexible-stiff
mixed structures are summarized as follows.
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1) The cumulative plastic defamations in positive and negative loading domains are nearly

equal. ‘ '

9) The maximum deformation in positive and negative loading domains are nearly equal.

3) Efficiency of the energy adsorption with respect to a maximum deformation is high.

4} The residual deformation can be made considerably small. | _
Referring to these characteristics, in comparison 1o the ordinary structures consisting of monoto-
nous elastic-plastic elements, the flexible-stiff mixed structures are considered to be a preferable
structural type of which performance in the seismic resistance can be clearly stated.

The cumulative plastic def_ormation, 5,, is related to the maximum deformation, d,, by the following
empiricéi equajcion in tﬁ_e f_lgxible-stiff mixed structure, negleciing the elastic deformation of the
rigid element. " . ' ' o

8, = 83, , o | (6.1)
Also, the residual deformation in the flexible-stiff mixed structure, 6, is expressed empirically as

g = O.ZSQY<—1E-~L}C>, and also &, < 6, R : - {6.2)
: s . :

where &y : yield strength of the rigid element
/K : rigidity of the flexible element
ok 1 rigidity of the stiff element

6.1.3 Response of the Fleﬁible—Stiff Mixed Structure
The form of the energy spectrum can be represented by a bilinear curve shown in Fig6.1. That is,
the Vi~ T relationship is expressed by a line passing through the point of origin in the short-peried

range and takes a constant value in the long-period range as is expressed by

for T<T., V %’"T
or I = dg, &

e GRS
for T>T;, %=V,

where V;, : maximum value of ¥

The energy input attributable to the structural damage, Ep, is also converted to the equivalent ve-

locity, Vp, through the equation similar to Eq.(5.1).

Ve

ifEm -

j T
0 T

‘Fig.G.l Energy Spectrum
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¥, is related to ¥; by the following empirical formula,

v

7 J——
o 14sh+1avE

(6.4)

The flexible-stiff mixed structure is assumed to be a shear type. of r__nuitis,torj f__z_‘ame.. _Th_é restbring
force characteristics of the stiff element in each story is assumed to be elastic—perfecfly plésﬁ.c.i:ype.
A hysteretic behavior of one story is shown in Fig6.2, The rigidity of the stiff element is denoted
by .k and the rigidity of the flexible element is denocted by k. 0y is the yield deformation of the
stiff element. Under the maximum deformation, §,, the instantaneous period of Vibration of the sys-
tem takes a value of T, The secant rigidity, k., associated with 8, can be applied in order to prédict

T, by using the following formula,

Q ke
=
skt ek . v
\ . -
-~
i sQy+£Q
Q 1]
IY / Z ,

Fig6.2 Hysteresis Loop

L=z /% (6.5)

The energy attributable to the damage can be expressed in terms of potential energy under the
gravity field i.e, by the equivalent height of the mass, &g, according to the following equation.
E, W
0 _ 0 (6.6)
Mg 2g

where ¢ : acceleration of gravity

hg

Generally, the energy input attributable to the damage is finally absorbed by structural skeletons
of a structure in a form of cumulative plastic deformation. Therefore, the following equation
holds.

N
Ey= ) W, (6.7

i=1
where W, : cumulative plastic strain energy in each story

N : number of the story

ar



Eq.(6.7) can be written in respect to the damage of the first story as

Ep=W:n (6.8)
where 7;: the ratio of the total damage to W,, given by Ea.(5.14)

The damage concentration index, » is taken to be 6.0 for the flexible-stiff mmed structure
By d1v1d1ng Eq (6 8) w1th Mg, the foilowmg equatlon 1S obtamed

hp = sqyOnT : : SR - (6.9)
where .y = Qv / Mg : vield shear force coefficient in the first story
Using_ Eds.(ﬁ.l)"a‘hd (6.9), ;ay, is determined as

hg
87101

where §,, : maximum displacement of the first story

(6.10)

% =

The fundamental natural period of the shear-type system can be written in terms of the spring con-
stant of the first story, &, as

M : : _‘
T == 9 s (6.11).
k; ,

where £ =k, /k,

k., : equivalent spring constant of the single-degree of freedom system with M and T
k; is given by Eq.(5.15).
K, = 0.48-+0.52N (6.12)

While in the long-period range, the energy input is given regardless of the value of the period, the
energy input in the short-period range depends on the period. Therefore, the period must be
precisely estimated.

The substantial period for the sysytem of which the period of vibration changes between Ty and

T, is calculated for the short-period range as

2 " 2
- /ug_i 6.13)

where 7T, : substantial period of the sysytem

Ty : period in the elastic range

Referring to Fig6.2, Tp and T, are written as

iy

T, =2r . (6.14)
(2e2)
56}’! 6m1
fk16m1 - . . "
where ,a = Mg - shear force cocfficient of the flexible element in the first story

6.1.4 Xliustrative Example
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As an illustrative example, the sysytem in which ,k is sufficiently greater than (& and 6y is negli-
gible small, is taken.

Applying these assumptions, 7; becomes nulified, and 7, is reduced to

2 K181

L=y T p.am | (€1

where f= ,a,/ay

Denoting az at T = T; by hg,, hz in the short-period range characterized by the lnear Vo T rela-

tionship is written as
T\ . o

Using Eqs.(6.10)(6.15) and (6.16}, ;ay, for the energy input in the short-period range is determined

as follows, regardless of g,,;.

T Pgmtiy
sly; = . 6.17
=Ty (+Den - | 61

On the other hand. in the long-period range, since kg = hg,, .2y, is obtained as

hEm

gy = 8?’15,7;1 . (618)

As an illustrative example, the maximum level of the ground motion which competes with the
Hyogoken-nanbu earthquake, 1995 is applied, ie, 7 and V;,, in the energy spectrum shown in Fig6.1

are selected to be

Vim = 400cm
(6.19)

T, = 1.0sec
The damping‘of i = 002 is assumed. Then, the maximum value of ¥;, ¥, and kg become as

VE‘Im

== = 395 o/ SEC
1+3h+1.2Jh

Vom

(6.20)"

Rgn = Ddem
As a structural performance, the maximum story dislacement in the first story is assumed to be
8, = 5cm, 6.67cm, 10cm : (6.21)

A weak-beam type of structure is assumed, that is, in estimating the damage distribution, n = 6.0

is taken.,
Gy, Obtained by Eq.(6.17) is dencted by (;ay ) and say, obtained by Eq.(6.18) is denqted by

(;ay)g. The smaller of those becomes the real value of (ay, which corresponds to the given energy

spectrum, The larger value of those corresponds to the extended lines of the two line segments of
the energy spectrum. The ¢y, — N relationships for f = 1.0 are shown in Fig.6.3 in which the solid

lines are valid due to the above-mentioned reason.
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Table 6.1 ,ay—N Relationship
= (s al’l)].!
vt | | G | 5, (cm)
10.0 6. 67 5.0
1 1.00 1.00 0.213 3.7 0.675 1,011 1. 350
2 1.23 1.52 Q. 237 23.2 0. 548 0.822 1.0086
3 1.47 2.04 0. 251 18.3 0. 459 0. 688 0.9t8
4 1. 71 2.56 0. 261 15. 1 0. 394 0. 591 0.788
5 1.96 3.08 0. 267 12.8 0. 344 0. 516 0.688
a3 2. 21 3.60 0.272 1.2 0. 305 0. 458 0.610
8 2.7 4, 64 0.279 8.9 0. 249 0.373 0.498
10 3.23 5.68 0.285 7.4 0. 209 0.313 0.418
12 3.77 6.72 0, 284 8.3 0.178 0. 268 0. 358
14 4 32 7.76 0. 289 55 0.156 0.234 0.312
i8 4.88 8. 80 0. 286 4.8 0.138 0. 207 0.276
18 5. 47 9. 84 0.286 4.3 C. 123 0.185 0. 247
20 6. 07 10. 88 0. 285 3.9 0111 0,167 0.222
22 6. 68 11.92 0. 283 3.6 0.101 0. 151 0. 202
24 7.32 12, 96 0, 283 3.25 0.092 0.138 0.184
26 7.97 14, 00 0. 282 3.0 0. 085 0. 127 0.169
28 8. G4 15. 04 0. 281 2.8 0.078 0. 117 (0.156
30 9.32 16, 08 0. 280 2.6 0.072 G. 109 0. 145



Also, in Table 6.1, the values of ;ay, for f = 1.0 are shown. The values of (sttyr)y listed above the
horizontal line are larger than (;ay,);. Accordingly, those value are not valid. In the short-period
range, @y takes a constant value irrespective of §,,,. In this case, however, &, is limited by the con-

dition that 7 does not exceed 7;. Denoting &,; which corresponds to 7; by &,,, &, is written as

5 = 3QsC¥Y1Taz — WETG Ghpm
o U+Hr%, 2040y mm -

(6.22)

In the short period range, an arbitrary value of 6,; can be taken under a constant value of sqyr.

However, under the given condition s@y) = fstty;, sk, must be ©

fsa '
== it : (6.23)
- . .

Actually, the restraiﬁi_ng condition of Eq.(6.23) can be mitigated, that is, the rigidity higher than
that given by Eq.(8.23) can be allowed on the reason that a higher rigidity makes 7, smaller than
the prescribed value due to Eq. (6 23) resultmg in a decrease of the energy input in the short-period
range. In the region of §,, > c?m,, Uy 1 given by ( am)n and the rigidity is secured also by
Eq.(8. 23} Assummg that fk/ kis neghglbly small and substltutmg QY = ny/ F mto Eq. (6 2) the

residual plastic deformation in the first story is obtained as

0.28:,

m]

8y <= i (6.24)

6.2 Lessons Learnt from Hyog’ok’én'—Nanbu Earthquake .
6.2.1 Typical Type of Damage
A common phenomenon found in both the Northridge earthquake (Jan.17.1994) and the

Hvogoken-nanbu earthqﬁake (Jari. 17. 19@5) was unexpected fractural type of failure of steel mo-
ment frames 98, Steel structural members are composed of plate elements. It has been believed
that the maximum strength of the plate eleménts is generally 41imi"téd' by the local buckling in the
plastic range with rare exception in Whiéh the maximum strength is determined by the ‘tensile
strength of the material. And also it has been believed that the deformation capaicity of the plate
element limited by breakiﬁg under tension is greater than that limited by local buckling under com-
pression.

Typical examples of fracture in the Northridge earthquake are found around the field-weld joint be-
tween heavy H-shape columns and deep H-shape beam (Fig.6.4). The flange of beam is welded to
the flange of column together with the use of the bolted connec_:tion in the web of beam. In such a
connection, the bending moment at the web of beam is hardly transmitted to the column, resulting
in the stress concentration in flanges at the end of beam. Defects in materials of the heavy column
must be an incentive for the propagation of brittle cracks on the side of the column.

Typical examples of fracture in the Hyogoken-nanbu earthquake are found around the weld con-
nection between rectangular-hollow section columns and H-shape beams, While the stress trans-
mission between the beam-flange and the column is made complétely through the diaphragm plate,
the bending moment in the web of the beam can't be transmitted completely to the coluﬁm, since
the stress transmission is made through the out-of-plane bending of the flange plate of the column.
Therefore the stress concentration can occur in the flange of beam. The diaphragm plate is usually

|
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thicker and wider than the fiénge of beam. Theﬁ the fracture develops on the side of beam. Asa
yield-mechanism, the weak-beam type is preferred both in Japan and USA. This situation charac-
terizes the fracture at the end of beams. In order 1o secure the deformation capacity of beams, com-
pact beam section with small width {o thickness ratios were selected and the stress concentration
on flanges at the end of beam hindered the extension of the inelastic region along the beam-axis.
These must have brought avoidance of local buckling and revelation of fractural mode of failure in
beams. Moreover, an extrémely high intensity of the ground motion must be also responsible for
such a wide range of damage. In this paper, referring to the current seismic design method in
Japan, the following points relevant to the Hyogoken-nanbu earthquake are made clear,

Under what condition could occur the fractural mode of failure of the steel moment frames?

What measure will be effective to prevent the fractural mode of failure?

6.2.2 Earthquake Resistant Design Method in Japén
The earthquake resistant design method shown in the Japanese building code which revised in 1981
is summarized as follows.
a) The buildings should be proportioned on the basis of allowable stress design method under
the seismic input which corresponds to the intensity level of Gy = 0. 2,
b) The building should be equipped with the energy absorption capacity for the seismic iﬁput
which corresponds to G, = 1.0

C, is a coefficient which indicates the level of seismic input, and the simplified design spectra for
C, = 1.0 are shown in Fig.65, specifying ground conditions by I, I and IH.

Observing the giving and receiving of the energy input, the basic relationship between the strength
for a structure and the seismic input is obtained as shown in Eq.(5.11).
Eq.(5.11) can be rewritten as

_ gTay 1+2nm
en Ky

(6.25)

&

v

where 14 = ————mz
2l 3n+1avn

NG
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Fig.6.5 Design Spectra for C; = 1.0

By applying Eq.(6.25) to existing buildings, we can evaluate the level of seismic input to which the
existing building could resist,

6.2.3 Condition for Eliminating Brittle Fraclure :

In 1930s, brittle fracture became most prevailing mode of failure in welded steel ships. The exten-

sive investigation arrived at a conclusion that Charpy impact test can provide a reliable basis to es-

_tablish a criterion in order to eliminate brittle fracture 7.

Under a certain temperatﬁre, the fracture surface of V-notch specimen of Charpy impact test

changes into perfectly crystallized one and indicates no trace of ductility. This temperature is de-

fined to be the nilductility temperature, NDT.

As for the criteria to eliminate brittle or unstable fracture, the following conditions have been es-

tablished for mild steels. '

+ Under the temperature higher than NDT+15°C, the unstable fracture does not occur under the
stress level less than oy,/2, where oy is the yield strength of materials.

« Under the temperature higher than NDT+30°C, the unstable fracture does not occur under the
stress level less than oy.

« Under the temperature higher than NDT+60°C, the unstable fracture does not occur under the
stress level less than gg, where oz is the tensile strength of materials. '

« NDT-+60°C is the temperature limit to eliminate brittle fracture in the plastic range and is de-
fined to be the fracture-transition plastic, FTP.

» NDT+30°C is the temperature limit to eliminate the brittle fracture in the elastic range and is de-
fined to be the fracture-transition elastic, FTE.

In order to develop a sufficient inelastic deformation, the condition for used temperature greater
than FTP must be satisfied. Aforementioned criteria for FTP was established for ships. The prob-
lem is; what is the criteria for FTP in the seismic design of buildings? In order to grapple with the
problem, a full scale shaking table tests become inevitably necessary, since the real situation of
stress concentration, strain rate and heat generation accompanied with plastic deformation can be
adequately simulated only in the full scale shaking fable tests.

The results of full scale shaking tests are summarized as follows 8.
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FTP = NDT+40°C }

(6.26)
FTE = NDT+30°C

The reason for the reduction of the temperature of FTP in the shaking table tests by 20°C is as-

cribed to the rise of temperature around the plastified zone due to the rapid development of plastic
strains,

6.2.4 Ultimate Seismic Resistance of Weak Beam Type Moment Frames

The inelastic deformation capacity for frames which collapse in the fractural mode of faﬂure in
beams is estlmated under the condition that beams are used under the temperature higher than
FTP. The relationship between the applied moment, M, and the rotation at the end of beam sub-
jected to the asymmetric moment distribution, 8 becomes such as shown in Fig.6.6. When the maxi-
mum strength is limited by local buckling or lateral buckling, the beam can continue to absorb
energy in the range of strength deterioration. On the other hand, when thé fracture takes place, the
energy absorption capacity is limited at the maximum strength point. When 'buckling does not
takes place, the full-plastic moment M,, and the fractural moment, My, are expressed by

M, = oyZ, : :
(6:27)

MB = OBZP

where Z, : plastic section modulus

The flexural rigidity in the strain-hardening range of the M~ @ relationship, Dy, is approximately re-
lated to the rigidity in the elastic range, D as follows. '

D, = 0.03D (6.28)

Approximating the M — @ relationship with the solid line in Fig.6.6, the cumulative inelastic defor-
mation ratio under monotonic loading, 7z, is expressed by

Ha B= 68 H

My IH

sk fracture
B
Dsi=0.03.D

8 .
CM\‘/XD stability
6 - M :

1 ]

8y 6B 8

Fig.66 M—6 Relationship of Beam
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M/ MY -1 (ap/ap)—1
= "9p, /D 0.08 (6.29)

7iz can be related to 7 in Eq.(6.25) as follows
205y B .
m = apa, 1, . (6.30)
Y1 : o _ . : _ _

where ap: amplification factor due to Ba_uschinger_ effect o

a, : ampiification factor due to the plastification of structural components other than
beams ' .'

dpy : yield deformation of the first story calculated on the assumption that members

other than beams are rigid (see Fig.6.6 in which H is the height of story)

The factor of 2 in Eq.(6.30) corresponds to the assumption that the inelastic deformation takes place
with equal amount both in positive and negative directions. Assuming &gy /8y, = 1/3,a5 = 2.0 and
a, = 1.5, £q.(6.30) is reduced to

m =2 N (6.31)

In beam-to-column connections as is shown in Fig.64, the transmission of bending moment through
the web plate of beam is incomplete, and an effective section modulus, Zy, = rZ, must be introduced

to estimate the maximum strength, Mz, as follows.

Zpo =72, ' (6.32)
_ Af+TwAw/4
= A4/ _ (6.33)

where 1 : reduction factor of the section
7, : reduction factor of the web
A, : area of the flange (one side)
A, 1 area of the web

In such a case, 7 becomes

L (rog/ ov)*—1

- 6.34)
s 0.06 (6.34)

Beams are generally connected to concrete slabs with stud bolts. In such a composite beams, since
the plastification of upper flange of beams is not likely to occur under the bending moment which
praoduces a compressive stress in the concrete slab, the energy absorption capacity of beams can be
reduced fo three fourths of the original, Considering such a situation, the uitimate seismic resisti-
bility of the moment frames is evaluated on the basis of Eq.(6.25). As a practical example, the fol-
lowing conditions are taken.

i
150

material : oy = .20y, 05 = 1.10g
(ay = 3.3t/ cm®, og = 5.0t/ cm® )
specificated values for SM490 steels
others: h =10.02

structures ; 8y = , H=400cm ; n = 6 (weak beam type)



From Fig.6.5, the shear force coefficient used for the allowable stress design, &, is read as follows.

For T £ 1.28sec, a, = 0.2

256 (6.35)

For T > 1.28sec, «, "‘ﬂmf—

Since the skeletons are designed on the basis of the elastic analysis, the strength which corfes;aoads
to o, is the elastm limit strength &,;. The yield strength Qy;. and &, can be roughly related to be

@y = 1.58, _ (6 36)

Therefore, considering also the increase of yield point stress by 20 percents, &, can be assumed to
be L - _ .

a; = 1.5X1.2a, = 1.8, o | (6.37)

The fundamental natural period 7 is Writtén as

M Mr,
T=2 - =
7; 3 2 % (6.38)
Knowing k, = Q,,/ 6,; = ayMg/ dy,, T is reduced to
£10y
T=2r | —
o (6. 39)
Applying Eqs.(6.29) and (6.31) for the given condition,
m = 31.0 _ (6.40)

For reference’s seike, two other values of 7, are taken, ie. 7 = 20.0 and », = 10.0. Values of » and
r, which corresponds to the selected values of 1, are obtained as follows by applying Eqs.(6.32) and
(6.33) and practical values of 4,/ 4, ranging from 1.0 to 2.0.

For 7, = 20.0, r = 0.91, n, = 0.55 ~ .73

Form = 10.0, r = 0.82, , = 0 ~ 0.46
Considering the influence of composite-beam action, n factored by 0.75 is also applied. Vj-values
obtained by Eq.(6.25) are shown in Fig6.7. ¥j-spectra along the fault line of the Hyogoken-nanbu
earthquake are indicated by three bi-linear curves according to the classification of ground and the
V-spectrum for the record at Kobe Meteorological Observatory by ‘Japan Meteorological Agency-
(JMA) is also shown. The bi-linear relationship shown by broken line is the ¥,-spectrum on the

soft ground prescnbed in Japanese Building Code.
Comparing the mtenszty of the seismic input and the capacity of frames, the followmg facts can be
seen form Fig#8.7.
1) The maximum intensity of the seismic input in the Hyogoken-nanbu Earthquake was one
point five to two times as large as the intensity prescribed in the current Japanese Building
Code.
2) The deficiency of the moment-transmission through the web plate at the beam-to-column
connection governs the deformation capacity of the beam.

T



3) The allowable stress design under the seismic input of Gy = 0.2 is very effective to secure a-

minimum required level of strength of frames,

4) Under the condition of 7, > 0.5, n, reaches the level of 20.0. Therefore, it can be said that the

fractural mode of failure could be avoided by applying the current design method as far as

the condition of 7, > 0.5 is kept.
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