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Preparation: Phase Velocity & Group Velocity

f(x+Dx,t)

f(x,t)

Propagation of Energy: Group Velocity v.

Propagation of Information: Phase Velocity c.

Dependency of Phase Velocity on the Frequency  f (or Wave Number k): Dispersion.

c is different from v in Dispersive Media.

dk

dv
cv 

c
k



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Preparation: Phase Velocity Determination

Definition of Cross-correlation        dtyxtCxy  

 y

 x

 ty

t

Product & Integration Cross-correlation
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Preparation: Phase Velocity Determination by Cross-Correlation

Cosine Function with the angular frequency  (one cycle only)
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0

2

0

Time lag t gives coincidence. If distance is r, the phase velocity c is given by r/t.

The maximum value of Cc corresponds to this time lag.
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In the frequency domain:
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Phase lag due to wave propagation is

because

Therefore,

Coherence 

Here, c is the phase velocity measured along the measurement line.

            22
,,,,,,0,0,0,0  rFrrCcrAcFCcAc 

Auto-Correlation
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Pioneering Work of Aki(1957)

Spatial Auto-Correlation (1D wave propagation along measurement line)

In the time domain

In the frequency domain 

SPAC coefficient
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Spatial Auto-Correlation (2D wave propagation)

In the time domain

In the frequency domain

SPAC coefficient

     tyxftyxftCc ,,*,,,,  

      ,,,,,,  yxFyxFCc  sin,cos rr 

   

 

 



























































































c

r
J

d
c

ri

d
c

ri

dCohr

apparent

0

2

0

2

0

2

0

cos
expRe

2

1

expRe
2

1

,,
2

1
,

    krJdikr 0

2

0
2cosexp 





A Mathematical Formula 
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Spatial Auto-Correlation (2D)
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Aki(1957) gave the formulation for the vertical component that corresponds

to Rayleigh waves.

Aki(1965) showed the extension of the theory to the horizontal components

that are superposition of Rayleigh waves and Love waves.

For the horizontal component parallel to the direction among two sensors,

For the horizontal component perpendicular to the direction among two

sensors
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Derivation given by Aki (1957) is not easily understandable. It is

recommendable to read Okada (2003, 2006) for theoretical back ground.
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Assumptions used:

+Microtremor is both spatially and temporally a stationary ergodic process 

at and around the area where array is deployed.  

+Surface waves are dominant in microtremor.

+Dominance of Single (Fundamental) mode.

+Plane waves do not interfere each other (zero correlation).

+Horizontally stratified media that is implied by propagation of plane wave 

with a constant velocity.

They are not always fulfilled. A possible cause of disturbance is a strong 

localized and temporal vibration source such as traffic near by array.
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How to realize the average over propagation direction .

x xx D

x xx D

Isotropic wave field: waves come

from all directions with uniform

power.

Averaging can be done by wave field

itself.

Anisotropic wave field: isotropic

sensor arrangement of array

observation can perform averaging.
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Calculation of SPAC coefficient from observed data (Okada 2003)

where E[ ] denotes ensamble average over time that is in practice

replaced with average over time blocks. The auto-correlations in

the denominator work to compensate very local amplification of

microtremor.
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Note that in calculation Cross-correlations are always handled by station pairs.

16

x xx D

The way of averaging over azimuth
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The information about the sources of

microtremor is always unknown. The

dependency of its power on propagating

direction neither.

Bigger number of seismometer along the

circle may give better averaging,

however the cost is higher.

Equilateral triangle array that has three

seismometers on a circle is the most

efficient (Okada 2003, 2006) . However

not the best.
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How Many Stations / How Less Stations ?

=

3 station array:

1 measurement gives

1 inter-station distances

4 station array:

1 measurement gives

2 inter-station distances

If microtremor field is stationary over space around the target area:

18

7 station array:

1 measurement gives

5 inter-station distances

10 station array:

1 measurement gives

8 inter-station distances
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Shiraishi et al. (2006) formulate the Complex Coherence Function.

          
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n
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p,q: Number of observation points.

l : Number of source

l: Azimuth of source measured from the segment connecting observation 

points (p, q)
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pllplpl hkrkAFfrC   exp2 2/12/1

New Interpretation of SPAC Method based on the Sensitivity 

Analysis of array (Shiraishi et al. 2006)

The same assumptions are 

used as Aki(1957)
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For source located at enough far, the power spectra at p-th observation point is 

approximately same as that at q-th observation point. Thus,





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C

C
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2

2

 : Contribution of l-th source to power spectra at p-th or q-th 

observation points 

For a line array (#1) fixed to the ground,
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For another line array (#2) with angle  from the above line array,
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Cpl: Amplitude of predominant mode of Rayleigh wave excited by l source and 

observed at p observation point.

A: Ground Response

h: Damping constant of ground

Fl: Amplitude of excitation force
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In the conventional concentric & equi-lateral triangle array,                       is

employed, the formula corresponding three sides are the following.
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Sensitivity of Conventional Concentric & equi-lateral triangular array
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The average over azimuth gives 
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The terms of J2(kr) and J4(kr) are canceled out by the average over azimuth

for  any azimuth dependency of sources. Then, the conventional concentric 

& equi-lateral triangle array gives a simple form.
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Sensitivity of Conventional Concentric & equi-lateral triangular array
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In the conventional L or T shape array, =0, /2 is employed, the formula 

corresponding two sides are the following.
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The average of #1 and #2 gives
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This implies that L- or +- shape array is also available, if the range of k(f)r is 

selected carefully.

For k(f)r<2/3, the contribution of 4-th order term is negligible in usual case. 

    rfkJpq 0Re 

Is L or T shape array possible?
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New Interpretation of SPAC Method based on the Seismic

Interferometry (Yokoi & Margaryan 2008)

Principle of generating new seismic responses

by cross correlating seismic observations at

different receiver locations (Wapenaar &

Fokkema 2006).

“Seismic Interferometry” refers to

         
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Spatial ensamble average

temporal ensamble average

(ergodicity)
p-th component of the

particle velocity observed at

xA due to a unit force applied

to q-th direction at xB

Common source

power spectra

In moderately azimuth dependent wave field:
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Then,
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Site dependent amplification is cancelled out 

The similar derivation can be done for the horizontal components and their SPAC 

coefficients can be given same as Aki(1957) and Okada(2003).

The consequence of Seismic Interferometry implies 

+Complex coherence function of every station pairs has physical meaning, i. e., the 

elastodynamic Green’s function normalized by its zero-off set version,

+If dependency of wave power on azimuth is enough moderate, average over 

azimuth can be skipped, 

and completely consistent with the basic theory of SPAC and with the formulation 

of Shiraishi et al (2006).

28

The formulation given by Aki (1957) and Okada (2003) have shown that the

average over azimuth gives J0(kr) and the complex coherence function is just an

interim quantity that does not have a proper physical meaning.

The formulation of Shiraishi et al. (2006) and the consequence of Seismic

Interferometry (Yokoi and Margaryan 2008) showed that J0(kr) occupies a major

part of the complex coherence function. The average over azimuth is applied in

order to cancel out the unnecessary parts that are the terms of Bessel functions of

the orders higher than 2 in the formulation of Shiraishi et al. (2006). Those are the

run-off from the normalized elastodynamic Green’s function and its asymmetrical

parts in the context of Yokoi and Margaryan (2008).

Aki(1957) showed that the average over azimuth is necessary in case of plane

wave incidence from only one direction and that it can be skipped in case of

isotropic wave field. Namely, only for two extreme cases. The above discussion

implies that the necessity of the average over azimuth has to be considered

quantitatively in relation with the required accuracy of phase velocity and the

dependency of wave power on azimuth.
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Cho et al.(2008) showed a quantitative assessing for this problem.

Azimuth0 2
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Isotropic wavefield

Isosceles triangles: anisotropic wavefield

Model of microtremor field

=isotropic wave field +superimposed anisotropic wave field 

2d

N=3

Plane wave coming from one azimuth for  the discrepancy of (r,) < 0.05 times of true value 

rk<3.5, i. e., /r>1.8 (N=3), rk<0.5, i. e., /r>14 (N=1 and 2) 

For  the discrepancy of (r,) < 0.05 times of true value in the range 0<rk<20

(A very severe threshold level)

Anisotropic wave field modeled by an isosceles triangle:

d>/4 (N=3), d>3/4 N1 and 2, 

Anisotropic wave field modeled by an isosceles triangle superimposed on isotropic one where 

R denotes the spectral intensity ratio of isotropic one on anisotropic one.

R > 0.15 at d=/6, R > 0.0   at d>/3 (N=3)

R > 0.5    at d=/6, R > 0.2   at d=2/3, R > 0.0 at d>7/9 (N=1)

If anisotropic wave field has enough extent over azimuth or isotropic wave field has 

enough contribution to total wave field, the influence of anisotropic one is negligible.

0

N=2N=1
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