TSUNAMI SIMULATIONS FOR A PROTOTYPE OF TSUNAMI DATABASE IN SOUTHWESTERN SUMATRA

By Sugeng Pribadi (Tsunami Course, 2006)

BMG (Meteorological and Geophysical Agency), Jakarta, Indonesia

1. Fault Parameters of Tsunami Sources

SUB FAULTS		Fault Center		Top Left Corner				WIDTH
		Long	Lat	Long	Lat	(m)	(km)	
		(E)	(S)	(E)	(S)		(KIII)	(KIII)
	Α	99.0	-2.9	98.4	-3.5	9	30	174
3 Segments	в	99.3	-3.3	98.8	-4.0	11	70	174
	С	100.0	-4.2	100.0	-5.2	18	180	124

Table 1. Three subfaults parameters of real case of the 1833 Bengkulu earthquake (Mw 8.9).

Table 2. Fault parameter models with different magnitudes and depths.

MAG	DEPTH AT TOP LEFT CORNER (TLC)	DEPTH AT CENTER OF FAULT (DCF)	SLIP (m)	LENGTH (km)	WIDTH (km)	STRIKE (deg)	DIP (deg)	SLIP (deg)
8.5	0	39.6	7.1	224	112	325	45	90
8.5	10	49.6	7.1	224	112	325	45	90
8.0	0	22.3	4.0	126	63	325	45	90
8.0	10	32.3	4.0	126	63	325	45	90
7.5	0	12.5	2.2	71	35	325	45	90
7.5	10	22.5	2.2	71	35	325	45	90
7.0	0	7.0	1.3	40	20	325	45	90

SOURCE POINT	LONGITUDE (E)	LATITUDE (S)		
REAL	100.900	-3.500		
A	100.000	-2.000		
В	99.000	-2.500		
С	99.500	-2.500		
D	100.000	-2.500		
E	100.500	-2.500		
F	99.000	-3.000		
G	99.500	-3.000		
Н	100.000	-3.000		
I	100.500	-3.000		
J	99.000	-3.500		
K	99.500	-3.500		
L	100.000	-3.500		
M	100.500	-3.500		
N	101.000	-3.500		
0	99.000	-4.000		
Р	99.500	-4.000		
Q	100.000	-4.000		
R	100.500	-4.000		
S	101.000	-4.000		
Т	101.500	-4.000		
U	99.500	-4.500		
V	100.000	-4.500		
W	100.500	-4.500		
Х	101.000	-4.500		
Y	101.500	-4.500		
Z	100.000	-5.000		
ZA	100.500	-5.000		
ZB	101.000	-5.000		
ZC	99.000	-2.000		
ZD	99.500	-2.000		
ZE	100.500	-2.000		
ZF	101.000	-3.000		
ZG	101.600	-3.500		

Table 3. Location of source points.

Figure 1. The source points (green dots) location covering the crustal deformation area Refer to Borero (2006). Red triangles denote the cities; The red contour is uplift area; The blue contour is subsidence area.

2. Forecast Points and Coastal Points

Figure 2A. The 526 output points along the coast of Sumatra and Java islands. Red dots are coastal points; Blue dots are forecast points; Green lines box as the site study.

Figure 2B. Bathymetry grid contour map of Padang. Blue circles : forecast points; pale red circles: coastal points.

Figure 2C. Bathymetry grid contour map of Muarabunga. Blue circles : forecast points; pale red circles: coastal points.

Figure 2D. Bathymetry grid contour map of Bengkulu. Blue circles : forecast points; pale red circles : coastal points.

STATION	C0/	ASTAL P	OINT	FORECAST POINT			
OBSERVATION	LONG	LAT	WATER	LONG	LAT	WATER	
Observation -	(E)	(S)	DEPTH (m)	(E)	(S)	DEPTH (m)	
Padang-1	100.383	-1.017	1	100.317	-1.183	53	
Padang-2	100.333	-0.950	1	100.300	-1.233	60	
Padang-3	100.333	-0.883	1	100.317	-1.100	60	
Padang-4	100.233	-0.767	1	100.383	-1.333	55	
Padang-5	100.150	-0.683	1	102.050	-3.683	50	
Padang-6	100.400	-1.050	6	100.833	-2.317	55	
Padang-7	100.367	-1.100	1	100.983	-2.517	37	
Padang-8	100.367	-1.183	1	100.900	-2.417	30	
Padang-9	100.383	-1.233	1	100.367	-1.283	33	
Padang-10	100.450	-1.283	1	101.683	-3.583	46	
Padang-11	100.550	-1.333	1	102.233	-4.033	40	
Padang-12	100.567	-1.383	5	102.483	-4.250	55	
Muarabunga-1	101.050	-2.517	13	102.400	-4.183	44	
Muarabunga-2	100.967	-2.417	1	101.800	-3.583	44	
Muarabunga-3	100.883	-2.317	1	102.117	-3.767	43	
Muarabunga-4	100.833	-2.200	19	100.800	-2.017	52	
Muarabunga-5	100.817	-2.133	22	101.167	-2.767	52	
Muarabunga-6	100.867	-2.017	1	101.883	-3.633	48	
Muarabunga-7	101.100	-2.600	10	101.050	-2.600	49	
Muarabunga-8	101.233	-2.683	1	102.150	-3.850	55	
Muarabunga-9	101.317	-2.767	1	101.967	-3.667	49	
Bengkulu-1	102.250	-3.767	1	102.300	-4.117	48	
Bengkulu-2	102.217	-3.700	2	102.183	-3.933	42	
Bengkulu-3	102.100	-3.583	1	100.083	-0.683	49	
Bengkulu-4	102.017	-3.533	1	100.750	-2.117	49	
Bengkulu-5	101.917	-3.483	2	100.750	-2.200	48	
Bengkulu-6	101.800	-3.383	2	100.283	-1.017	46	
Bengkulu-7	102.283	-3.850	1	101.117	-2.683	49	
Bengkulu-8	102.267	-3.933	1	100.400	-1.383	50	
Bengkulu-9	102.350	-4.033	1	100.150	-0.800	46	
Bengkulu-10	102.467	-4.117	1	100.300	-1.050	49	
Bengkulu-11	102.550	-4.183	1	100.300	-0.950	47	
Bengkulu-12	102.650	-4.250	1	100.300	-0.900	46	

Table 4. Coastal and forecast points location with bathymetry depth.

3. Results (Tsunami Height)

MAX TSUNAMI HEIGHT BY DIFFERENT MAGNITUDES AND DEPTHS

Figure 3. Tsunami heights according to different magnitudes and depths.

MAX TSUNAMI HEIGHT BY DIFFERENT SOURCES

Figure 4. Tsunami heights according to different source points.

Figure 5. Tsunami height of coastal point and Green's Law calculation by different sources.

TSUNAMI HEIGHT OF COASTAL AND GREEN'S LAW CALCULATION BY DIFFERENT MAGNITUDES AND DEPTHS

Figure 6. Tsunami height of coastal point and Green's Law calculation by different magnitudes and depths.

4. Conditions for Computation

Area	0°00' S - 6°00'S / 98°00'E - 105°00'E
Bathymetry data	1 arc-minute GEBCO
Δt	2.0s

Tabe 5. Region for computation and data used for simulation.