
 

 1 

Citation: Sawi, P., S. Kita (2023), Machine-learning-based phase picker: Analyzing the temporal and 

spatial changes of the October 2019 Cotabato and December 2019 Davao Del Sur earthquakes, Synopsis of 

IISEE-GRIPS Master's Thesis. 

 

MACHINE-LEARNING-BASED PHASE PICKER: 

ANALYZING THE TEMPORAL AND SPATIAL 

CHANGES OF THE OCTOBER 2019 COTABATO AND 

DECEMBER 2019 DAVAO DEL SUR EARTHQUAKES 
 

 

Paulo Pangan SAWI1                                       Supervisor: Saeko KITA2* 

MEE22704                                              

 

 

ABSTRACT 

 

A deep-neural-network-based phase picker, PhaseNet, was used to pick the arrival times of the P and S 

waves during the earthquake sequence in Cotabato and Davao del Sur, Philippines, which occurred from 

October to December 2019, involving five M~6 inland earthquakes with magnitudes MW 6.4, 6.6, 5.9, 

6.5 and 6.7. In this study, we utilized 80 days of seismic data from stations located within 200 km of the 

event area and input them into PhaseNet for analysis.  

The phase picks, the output of PhaseNet, were first associated and initially located using Rapid 

Earthquake Association and Location (REAL). Subsequently, the earthquakes were relocated using 

VELEST. The hypocenters were further refined using the relative location method called HypoDD.  

Using these methods, we successfully created an earthquake catalog comprising 5,017 

earthquakes, which is more than those on the list by the Department of Science and Technology – 

Philippine Institute of Volcanology and Seismology (DOST-PHIVOLCS) on their website. This catalog 

reveals the spatial and temporal changes in seismicity following each significant event. It also uncovers 

detailed patterns in aftershock clustering, which are likely linked to complex fault system structures that 

may have contributed to the seismic activity. 
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1. INTRODUCTION 

 
Cotabato and Davao del Sur experienced significant earthquakes in October and December 2019. The 

initial earthquake occurred on 16 October 2019, registering a moment magnitude (MW) of 6.4 with 

strike-slip faulting. Approximately 13 days later, a more substantial earthquake struck on 29 October 

2019 at 09:04 AM, with a magnitude of MW 6.6, as per Philippine Standard Time (PST). Following this 

event, another earthquake occurred less than two hours later at 10:42 AM (PST), with a magnitude of 

MW 5.9. Another notable earthquake occurred on 31 October 2019, registering a magnitude of MW 6.5. 

All of these earthquakes exhibited strike-slip faulting based on the SWIFT-CMT analysis.  

The aftershock distribution and focal mechanisms indicate that the source belongs to the 

Cotabato fault system (Perez et al., 2019). Also, on 15 December 2019, Davao del Sur was hit by MW 
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6.7 with strike-slip faulting. According to the report from the DOST-PHIVOLCS Quick Response Team 

(Perez et al., 2020), the Makilala-Malungon Fault is recognized as the fault associated with this event. 

 

Table 1: Earthquake Parameters for the M > ~6 in Cotabato and Davao del Sur from October and 

December 2019 by DOST-PHIVOLCS. 

 

Date- Time (PST) 

 

Magnitude 

 

Depth 

(km) 

 

Location 

Highest 

Intensity 

(PEIS) 

16 October 2019 – 07:37 PM (EQ1) 6.3(MS)/6.4(MW) 09 06.76°N, 125.01°E VII 

29 October 2019 –09:04 AM (EQ2a) 6.6(MS)/6.6(MW) 07 06.81°N,125.03°E VII 

29 October 2019 –10:42 AM (EQ2b) 6.1(MS)/5.9(MW) 11 06.85°N,125.02°E VI 

31 October 2019 – 09:11 AM (EQ3) 6.5(MS)/6.5(MW) 08 06.92°N,125.06°E VII 

15 December 2019–02:11 PM (EQ4) 6.9(MS)/6.7(MW) 09 06.76°N,125.13°E VII 

 

In the last twenty years, there has been a significant advancement in the field of machine 

learning, which is commonly and widely used in image processing, voice recognition, language 

understanding, and many other applications (Jordan & Mitchell, 2015). Another application of machine 

learning in the field of seismology that uses deep neural networks (DNN) is the PhaseNet (Zhu & Beroza, 

2019). PhaseNet is an automatic phase picker that picks the arrival times of P and S waves (Zhu & 

Beroza, 2019). PhaseNet was trained on a dataset encompassing over 30 years of seismic data from the 

Northern California Earthquake Data Center, which has manually picked P and S wave arrival times by 

skilled analysts. By leveraging the learned features from this training data, PhaseNet can estimate the 

arrival times of P and S waves for new data by providing probability-based predictions (Zhu & Beroza, 

2019). Many researchers used PhaseNet to make a high-precision earthquake catalog. They used these 

high-precision catalogs to provide a detailed study and insight into an area's aftershock activity, 

earthquake sequence, or series. 

This research aims to develop a precise catalog that captures the temporal and spatial variations 

of the October 2019 Cotabato earthquakes and the December 2019 Davao Del Sur earthquake. To 

achieve this, a machine-learning-based phase picker, PhaseNet, will be used in this study. Additionally, 

earthquake association and relocation techniques will be utilized to enhance the accuracy and reliability 

of the created catalog. The catalog generated in this study has the potential to provide valuable insights 

into the fault structure within the studied area. Moreover, the findings and methodologies presented here 

can be applied to analyze other earthquake sequences and series that have occurred in the Philippines. 

This study also paves the way for the utilization of machine learning techniques, specifically in phase 

picking, within the context of earthquake research in the Philippines. 

 

2. DATA 

 

This study focuses on analyzing the dataset derived from the 2019 Cotabato earthquake sequence, 

spanning from October 16 to December 31, 2019. The dataset encompasses a total of 80 days of 

earthquake waveforms. The dataset consists of seismic recordings obtained from the Philippine Seismic 

Network (PSN) operated by DOST-PHIVOLCS. Only seismic stations within a 200-kilometer (km) 

radius were selected for this study. This selection process included 18 seismic stations, comprising 14 

broadband stations and four short-period stations.  

Each station's data consists of three components: a North-South component, an East-West 

component, and an Up-down or horizontal component. The data were resampled to a uniform sampling 

rate of 100 Hz and subsequently divided into 30-second time windows to facilitate further analysis using 

PhaseNet. 
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3. METHODOLOGY 

 

The methodology of this study consists of the following steps: (1) Phase picking, (2) Earthquake 

Association, (3) Absolute location, and (4) Relative location. 

For phase picking, the P-wave and S-wave arrival times were automatically determined 

using a deep-neural network-based phase picker called PhaseNet (Zhu & Beroza, 2019). PhaseNet 

utilizes the three components of a seismogram to determine the arrival times of P and S waves, along 

with their corresponding probabilities (Park et al., 2020).  

After applying PhaseNet, the subsequent step involves associating these phase picks with 

an earthquake using Rapid Earthquake Association and Location (REAL) (Zhang et al., 2019). REAL 

associates the P and S arrival times and determines earthquake location by counting the number of 

observed picks (P and S arrival times) and calculates the travel-time residual, and the grid point with the 

highest number of picks and the smallest travel-time residual will be selected (Zhang et al., 2019). The 

IASPEI 91 reference model was employed as the velocity model to generate a theoretical travel timetable 

using TauP Toolkit (Crotwell et al., 1999). A threshold was established for the number of picks, 

requiring each event to include a minimum of four P picks and at least one S pick. 

Upon associating the phase picks and acquiring the initial earthquake locations using REAL, 

these earthquakes were relocated using VELEST (Kissling et al., 1994). VELEST was utilized twice in 

the process. In the first iteration, the earthquake locations obtained from REAL were used to derive a 

1D velocity model by utilizing Crust 1.0 (Laske et al., 2013) as the initial velocity model. After obtaining 

the updated velocity model, all the earthquakes located by REAL were used as input and processed in 

VELEST, this time utilizing the updated velocity model. To further refine the earthquake locations, 

HypoDD (Waldhauser & Ellsworth, 2000) was employed to find the relative locations. HypoDD utilizes 

the double-difference concept to relocate a cluster of earthquakes by minimizing the disparity between 

the observed travel-time differences and the calculated travel-time differences between the event pair 

and station (Zhang et al., 2022). The updated velocity model obtained from VELEST was also utilized 

in the HypoDD for improved accuracy and consistency throughout the refinement process. 

 

4. RESULTS AND DISCUSSION 

 

4.1. Hypocenter determination 

 

PhaseNet obtained 623,582 

phase picks with a probability 

of 0.4 or higher using 80 days 

of data, wherein 442,065 

corresponded to P-phases and 

181,517 picks corresponded to 

S-phases. After the final 

analysis step (HypoDD), 5,017 

earthquakes were obtained. 

This earthquake catalog 

captures a significantly higher 

number of seismic events 

(~69% increase), and the 

hypocenters are more clustered 

than the original earthquake 

count available on the DOST-

PHIVOLCS website within that 

time range (Figure 1).  

 

 

 

Figure 1. Distribution of hypocenters. Routine catalog by DOST-

PHIVOLCS (website) vs. final catalog of this study after 

applying HypoDD. 
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4.2. Updated fault structure 

 

Following the EQ1 (as depicted in 

Figure 2-a), the distribution pattern 

of aftershocks displays an NW-SE, 

corresponding to the nodal plane of 

the left-lateral focal mechanism. This 

alignment is thought to be the fault 

plane of the EQ1. Additionally, a 

secondary trend is discernible on the 

left side of the primary trend, 

indicating a NE-SW pattern. These 

trends suggest the possibility of two 

intersecting faults: one with an NW-

SE trend and another with a NE-SW 

trend. In Figure 3-a, cross-section, 

the earthquakes (represented by red 

circles) after EQ1 display a pattern 

directed towards the southwest, 

indicating an inclination of the fault 

in that direction. 

Following the occurrence of 

the EQ2a and EQ2b earthquakes, a 

consistent NW-SE becomes evident 

in the seismicity trend, resembling the pattern observed after the EQ1 (Figure 2-b). However, no visible 

secondary trend is observed on the left side. Instead, a cluster of earthquakes is apparent on the right 

side, possibly linked to the EQ3. The cross-sectional analysis (Figure 3-b), represented by cyan color 

circles, further reveals a similar orientation observed after the EQ1.  

 

 
Figure 3. Spatial and temporal changes in a cross-section view following the 

occurrence of EQ 1(red circles), EQ 2 a-b (cyan circles), EQ3(blue circles), 

and EQ4 (purple circles). 

Figure 2. Spatial and temporal changes following the 

occurrence of a significant earthquake. The beach ball 

represents the location of a large earthquake. 

[a] [b] 

[c] [d] 
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The EQ3 exhibits an interesting characteristic where foreshocks are already evident after the 

EQ2a and EQ2b events. The hypocenters of these earthquakes coincide with those after EQ3 (Figure 2-

c), suggesting a strong association between these seismic events. A distinct NE-SW trend emerges in 

Figure 2-c, potentially indicating the fault responsible for generating the EQ3.  

In the case of EQ4, a consistent NW-SE trend of earthquakes can be observed (Figure 2-d), 

similar to the main trend observed after EQ1, EQ2a, and EQ2b. Although it has a similar trend in other 

earthquakes, aftershocks of the EQ4 extended towards the southeastern region and a completely different 

trend of the aftershock’s alignment compared to the EQ3. Moreover, the cross-sectional analysis in 

Figure 3-d reveals a distinct pattern in the earthquakes after the EQ4, indicating a trend towards the east 

or northeast, different from the other EQ1 and EQ2a-b. This observation suggests that the fault 

responsible for these earthquakes may be inclined in the northeast direction.  

The seismicity extracted in this study exhibits a distinct distribution pattern characterized by 

alignments along cross-faults, known as conjugate faults. These phenomena have been documented in 

other regions, such as southern California. Notable instances include the 1987 Superstition Hills 

earthquake sequences (Hudnut et al., 1989) and the 2019 M7.1 Ridgecrest earthquake (Milliner et al., 

2022), all displaying strike-slip faulting in their focal mechanism. 

 

5. CONCLUSIONS 

 

This study used a machine learning-based phase picker, called PhaseNet, to analyze the October 

Cotabato and December 2019 Davao del Sur earthquakes. The analysis spanned 80 days, from October 

16 to December 31, 2019. The phase picks obtained from PhaseNet were associated and initially located 

using REAL. VELEST was employed to refine the hypocenter locations. Finally, HypoDD was used for 

the relocation. 

Using the abovementioned methods, we created an earthquake catalog that contains more 

earthquakes. This catalog encompasses over 69% of the earthquakes available on the DOST-PHIVOCS 

website and reveals the spatial and temporal changes that occur after each significant earthquake, 

showing the pattern of the cluster of earthquakes associated with the fault structures that may have 

contributed to these seismic events. 

While the obtained results demonstrated significant improvements in seismicity analysis 

and hypocenter quality, further trials are needed to determine the optimal parameters for each method. 

Conducting additional experiments with different parameter settings can enhance the reliability and 

accuracy of the seismic analyses. Incorporating and comparing a local velocity model with various 

velocity models can also yield valuable insights. These comparisons will help us better understand local 

seismic characteristics and help refine seismic imaging and locating processes. 

In conclusion, this study demonstrated a successful application of ML techniques for phase 

picking and other relevant approaches. These methods proved to be particularly valuable for analyzing 

the aftershocks, series, and sequences of earthquakes, offering insights into fault structures and their 

spatiotemporal evolution. 
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