

Responses of pSv >165 cm/s (T=1-2 s) were observed at following stations.

JMA

41333 (Nanao), 42324 (Shika)

K-NET

ISK001 (Ohya), ISK002 (Shoin), ISK003 (Wajima), ISK005 (Anamizu), ISK007 (Nanao), ISK015 (Omachi)

KiK-net

ISKH01 (Suzu), ISKH02 (Yanagida), ISKH03 (Uchiura), ISKH04 (Togi)

BRI

Summary (1)

The largest PGA was recorded at K-NET station Togi (**2827.8 cm/s²**), while the largest PGV was recorded at K-NET station Anamizu (142.7 cm/s).

PGAs of >1000 cm/s² were recorded even in the vertical component **at four NIED stations**.

Response of pSv >165 cm/s (h = 5%, T=1–2 s) were observed **at least 12 stations**.

Acknowledgments:

We used K-NET and KiK-net strong-motion data provided by the National Research Institute for Earth Science and Disaster Resilience; NIED), Japan (<u>https://www.doi.org/10.17598/NIED.0004</u>) We also used strong-motion data from the Japan Meteorological Agency (JMA) seismic intensity stations.

We used hypocenter information determined by NIED Hi-net. Response spectra were calculated using the subroutine program developed by Osaki (1994). Figures were prepared using Generic Mapping Tools (GMT: Wessel and Smith, 1998).

BRI

Details of strong ground r	motions observation
----------------------------	---------------------

Year	Month	Date	Earthquake Name	Magnitude	Data Source	Site Name	Site ID	NS/EW
2011	3	11	Tohoku	9	K-NET	Tsukidate	MYG004	NS
1995	1	17	Kobe	7.3	JMA	JMA_KOBE		NS
1995	1	17	Kobe	7.3	RTRI	Takatori		NS
2007	7	16	NiigataChuetsuOki	6.8	K-NET	Kashiwazaki	NIG018	NS
2016	4	16	Kumamoto	7.3	KiK-net	Mashiki	KMMH16	EW
2023	5	5	IshikawaNoto	6.3	K-NET	Shoin	ISK002	NS/EW
2024	1	1	Noto	7.6	K-NET	Togi	ISK006	NS/EW
2024	1	1	Noto	7.6	K-NET	Wajima	ISK003	NS/EW
2024	1	1	Noto	7.6	K-NET	Anamizu	ISK005	NS/EW
2024	1	1	Noto	7.6	K-NET	Shoin	ISK002	NS/EW

BRI

Summary (2)

- The strong ground motions observed at Anamizu (ISK005) and Shoin (ISK002) have the same or larger amplitudes in the S_a-S_d compared to strong ground motions observed in the recent earthquakes in Japan.
- From the S_a-S_d curve assuming a 15% equivalent damping ratio, the response displacement (S_d) of Anamizu (ISK005) at the period of 1 to 2 seconds was 30 to 90 cm, which was larger than Togi (ISK006), Wajima (ISK003).
- The response acceleration (S_a) of the North-South (NS) components of Anamizu (ISK005) showed large values at around the period of 1.5 second.

Acknowledgement: We used strong motion data provided by NIED(K-NET, KiK-net), JMA, and, RTRI. S_a -T and S_a - S_d were calculated using the View Wave by Kashima, BRI.