Formulation for the rupture distance
R: Reference point
Strike fs measured from R to L
Dip d measured from R to W
Length: l=AB=RL=UW
Width: w=CD=LU=RW
Distance from the reference point to the observation site: Drs=RS
Azimuth from the reference point to the observation site: qs
Coordinate of the vertices:
R: (xr,yr,zr): Reference point of fault
L: (xr+l sinfs, yr+l cosfs , zr )
W: (xr+w cosdcosfs, yr-wcosdsinfs , zr+wsind)
U: (xr+w cosdcosfs+lsinfs, yr-wcosdsinfs +lcosfs, zr+wsind)
S: (xr+Drssinqs, yr+Drs cosqs , 0.0 ): Observation site
Length of perpendicular SO on the fault plane: SO=x
Parameters (s,t): CO=sCD, BO=tAB
Right triangle DWAS: WS2= WA2+AS2=RW2(1-s)2+AS2
Right triangle DRAS: RS2= RA2+AS2=RW2s2+AS2
WS2- RS2= RW2(1-2s)
Then, s=1/2 – (WS2- RS2)/ 2RW2=1/2 – (WS2- RS2)/ 2w2
Right triangle DRCS: RS2= RC2+CS2=RL2(1-t)2+CS2
Right triangle DLCS: LS2= LC2+CS2=RL2t2+CS2
RS2-LS2= RL2(1-2t)
Then,
t=1/2 – (RS2-LS2)/ 2RL2=1/2 – (RS2-LS2)/
2l2
s<0, t>1 : distance from S to the vertex R
Drup=RS
s<0, 0<t<1 : distance from S to the side RL
Right triangle DLCS: CS2= LS2-LC2
Drup=CS=sqrt(LS2-LC2)=sqrt(LS2-LR2t2)= sqrt(LS2-l2t2)
s<0, t<0 : distance from S to the vertex L
Drup=LS
0<s<1, t>1: distance from S to the side RW
Right triangle DRAS: AS2= RS2-RA2
Drup= AS=sqrt(RS2-RA2) =sqrt(RS2-RW2s2) =sqrt(RS2-w2s2)
0<s<1, 0<t<1: distance from S to the fault plane
Right triangle DCOS: OS2= CS2-CO2
Right triangle DLCS: CS2= LS2-LC2
Drup=OS=sqrt(CS2-CO2)=sqrt(CS2-CD2s2)=sqrt(LS2-LC2-CD2s2)
=sqrt(LS2-LR2t2-CD2s2) =
sqrt(LS2-l2t2-w2s2)
0<s<1, t<0 : distance from S to the side LU
Right triangle DLBS: BS2= LS2-LB2
Drup= BS=sqrt(LS2-LB2) =sqrt(LS2-LU2s2) =sqrt(LS2-w2s2)
s>1, t>1: distance from S to the vertex R
Drup=WS
s>1, 0< t<1: distance from S to the side WU
Right triangle DUDS: DS2= US2-UD2
Drup= DS=sqrt(US2-UD2) =sqrt(US2-WU2t2) =sqrt(US2-l2t2)
s>1, t<0: distance from S to the vertex U
Drup=US