
1

Fortran programming for
beginner seismologists

Lesson 3
Lecturer

Tatsuhiko Hara

IISEE lecture for group training

Reference
Introduction to FORTRAN90/95 by S. J. Chapman (New York: McGraw-Hill, 1998)

2

Let’s make a travel time table

• In Lesson 2, we have developed a program
to calculate a travel time for a given pair of
a focal depth and an epicentral distance.

• It is necessary to calculate travel times for a
given focal depth for a set of epicentral
distances to obtain a travel time table.

• In Lesson 3, we are going to extend our
program to make a travel time table.

3

How can we avoid tiring task?

• It is a quite tiring task to input a certain
value among a set of epicentral distances to
the program developed in Lesson 2, and run
the program many times in order to get a
travel time table.

• To avoid this tiring task, we use an iterative
DO loop (a counting loop).

4

The Iterative DO LOOP
• The iterative DO loop construct has the form

do index=(initial value), (final value), increment

(calculation)

end do

where the value of the variable ”index” (the loop
counter/index) changes from initial value to final value
by a step of increment.

• When you do not specify increment, “1” is used.
• It is desirable to use INTEGER type variable for index,

although REAL type variable is allowed in some compilers.

5

Example (1)
The followings are examples of DO … END DO loop:

Program 1 Program2
program ex3_1 program ex3_1a

implicit none implicit none

integer :: I integer :: i

do i=1, 10 do i=1, 10

write(*,*) i write(*,*) i

end do end do

stop stop

end program ex3_1 end program ex3_1a

Note that “write(*,*) i” is indented to make it easy to
understand the structure in Program 1. We highly recommend this
kind of indentation, although the performance of Program 1 is the
same of that of Program 2.

6

Example (2)

Example of increment
program ex3_2
implicit none
integer :: i
do i=1, 10, 2

write(*,*) i
end do

stop
end program ex3_2

Another example
program ex3_2a
implicit none
integer :: i
do i=1, 10, 3

write(*,*) i

end do
stop
end program ex3_2a

7

You can use variables for initial, final
values, and increment:
program ex3_3
implicit none
integer :: i, istart=1, iend=10, inc=3

do i=istart, iend, inc
write(*,*) i

end do
stop
end program ex3_3

Example (3)

8

Example (4)
The following program tries to
calculate square roots:

program ex3_4
implicit none
integer :: i
do i=1, 10

write(*,*) i, sqrt(i)
end do

stop
end program ex3_4

But it does not work.

This does work:

program ex3_4
implicit none
integer :: i
real :: x
do i=1, 10

x = i
write(*,*) i, sqrt(x)

end do
stop
end program ex3_4

The argument for sqrt should
be real type.

9

Execise 3-1
(a) Compile and run the programs given in the examples

(1)-(4).
(b) Modify the program for calculating a travel time to

calculate travel times for a set of numbers of epicentral
distances following the suggestions below:
- Do not change the part for z.
- Use an iterative DO loop to change the value of delta
from 0 to 100 with increment of 5.
- Use the following statement in the body of the iterative
DO loop to output the results:
write(*,*) delta, tp

10

Saving results

• Now we have made a program to print out a
travel time table. As a next step, let’s try to
plot this table.

• To do this job, first we save the travel time
table to a certain file.

11

OPEN statement
The following is an example of OPEN and CLOSE statements:

Program sample_open
implicit none
integer :: i
open (unit=11, file='dat') or open (11, file='dat')
do i=1, 10

write(11,*) i
end do

close(unit=11)
stop
end program sample_open

where
• OPEN statement opens the file ‘dat’, and attaches it to unit 11

(“11” in OPEN statement is called a unit specifier).
• WRITE statement prints out i to unit 11 (i.e., the file ‘dat’)
• CLOSE statement closes the file.

12

Exercise 3-2

• Modify the program to calculate travel
times to save the results to a file “tt.dat”
Hints:
- use OPEN and CLOSE statements
- use the following statement

write(20,*) delta, tp, ts, ts-tp

13

Let’s plot a travel time table

• Now we have obtained the file which
contains the travel time table.

• Let’s plot this table using gnuplot.

14

GNUPLOT

• Gnuplot is a portable command-line driven
interactive data and function plotting utility for
UNIX, Linux, MS Windows family, etc
(http://www.gnuplot.info/).

• Gnuplot is included in software packages of
Cygwin.

• You can start this software by the following
command:

$ gnuplot

15

Plotting travel times
Exercise 3-3

First, we use Gnuplot interactively. Try the
following commands:
Gnuplot> plot ‘tt.dat’

Gnuplot> plot ‘tt.dat’ using 1:3 with lines

Gnuplot> plot ‘tt.dat’ using 1:4

Gnuplot> plot ‘tt.dat’, ‘tt.dat’ using 1:3

16

Gnuplot commands

• Title
ｇnuplot> set title “Travel time”

• Axis
gnuplot> set xlabel “Epicentral distance (km)”

gnuplot> set ylabel “Time (sec)”

• Legend
gnuplot> plot ‘tt.dat’ title “P-wave”

gnuplot> plot ‘tt.dat’ title “P-wave”, ¥

> ‘tt.dat’ using 1:3 title “S-wave”

Automatically displayed, not to necessary to type

17

Making a command file

• It is a tiring job to type the commands in the
previous slides each time.

• Let’s create a file “plotcom” which contains
the following commands:

set title "Travel time"

set xlabel "Epicentral distane (km)"

set ylabel "Time (sec)"

plot 'tt.dat' title "P wave", ¥

'tt.dat' using 1:3 title "S wave"

18

How to use a command file? (1)

• You can “load” a file “plotcom” in the
interactive mode.

Exercise
Try the following command after starting

gnuplot:
Gnuplot> load ‘plotcom’

19

How to use a command file? (2)
• You can use a command file as an argument of gnuplot.

Exercise
Add the following two lines at the beginnig of “plotcom.”

set terminal postscript
set output “tt.ps”

Then, try the following:
$ gnuplot plotcom

$ ls

You will find that the postscript file “tt.ps” is created.

