IISEE lecture for group training

Fortran programming for beginner seismologists Lesson 5

Lecturer

Tatsuhiko Hara

Array

- In numerical calculations, vectors and matrices are often used.
- In Fortran, we use Array to store values of vectors, matrices, and multi dimensional quantities.

One dimensional array (1)

• In declaration of a certain array, it is necessary to define the name, type and size of the array. The following is an example of one dimensional array:

real x(3)

where the name of the array is x, its type is real, and the size is 3. So x has 3 elements x(1), x(2)and x(3). For example, the array whose size is 3 can be used to store the values of 3 coordinates of the position, x, y, and z.

One dimensional array (2)

- The array x declared by
 real x(0:10)
 has 11 elements, x(0), x(1), x(2), ...,
 x(10).
- The array y declared by
 real y(-10:10)
 has __elements, y(-10), x(-9), x(-8), ...,
 x(10).

One dimensional array (3)

• The size can be specified by a named constant defined by *PARAMETER* statement:

parameter (nsize=10)
real x(nsize)

How can we put values to array? (1)

There are several ways to put values to an array:

- a. Direct assignment
 - x(1) = 1.0x(2) = 2.0x(3) = 3.0

b. Data statement

data (x(i)=1,3)/1., 2., 3.,/

If you initialize all of the elements of an array, you can write as:

data x/1., 2., 3.,/ In the above case, the size of x must be 3.

How can we put values to array? (2)

- c. DO loop
 do i=1, 3
 x(i) = i
 end do
- d. Read statement

do i=1, 3
 read(*,*) x(i)

end do

e. Implied Do loop

read(*,*) (x(i),i=1,3)

Sum of two vectors

```
implicit none
integer i
real a(3), b(3), sum(3)
read(*,*) (a(i),i=1,3)
read(*,*) (b(i),i=1,3)
do i=1, 3
   sum(i) = a(i)+b(i)
end do
```

write(*,*) (sum(i),i=1,3)

Calculation of summation using DO loop

How does sum change?

i	Sum (right hand)	Calculation (sum+i)	Sum (left hand)
1	0	0+1	1
2	1	1+2	3 (=1+2)
3	3	3+3	6 (=1+2+3)
4	6	6+4	10 (=1+2+3+4)

Inner product of vectors

```
implicit none
integer i
real a(3), b(3), sum(3), ainp
read(*,*) (a(i),i=1,3)
read(*,*) (b(i),i=1,3)
ainp = 0.0
do i=1, 3
   ainp = ainp + a(i)*b(i)
end do
write(*,*) ainp
```

Exercise 5-1

Make a program to calculate the followings for two vectors, $\mathbf{x} = (1,2,3)$ and $\mathbf{y} = (4,5,6)$

- Sum $(\mathbf{x} + \mathbf{y})$
- Difference (x y)
- Inner product $(\mathbf{x} \cdot \mathbf{y})$
- Angle of two vectors defined by

$$\cos \vartheta = \frac{\mathbf{x} \cdot \mathbf{y}}{|\mathbf{x}| |\mathbf{y}|}$$

Two dimensional array

The following are examples of two dimensional array:
 real a(10,10)

integer b(0:10, 0:10)

• The followings are examples of multi dimensional array:

real c(5,10,3)

integer d(-10:10,-10:10,-5:5)

Multiplication of matrix and vector

```
implicit none
integer i,j
real a(3,3), b(3), c(3)
do i=1, 3
    read(*,*) (a(i,j),j=1,3)
end do
read(*,*) (b(i), i=1,3)
do i=1, 3
    c(i) = 0.0
    do j=1, 3
       c(i) = c(i) + a(i,j)*b(j)
    end do
end do
write(*,*) (c(i),i=1,3)
```

Multiplication of matrices

```
implicit none
integer i,j,k
real a(3,3), b(3,3), c(3,3)
do i=1, 3
    read(*,*) (a(i,j),j=1,3)
end do
do i=1, 3
    read(*,*) (b(i,j),j=1,3)
end do
do i=1, 3
    do j=1, 3
        c(i,j) = 0.0
        do k=1, 3
            c(i,j) = c(i,j) + a(i,k)*b(k,j)
        end do
    end do
end do
do i=1, 3
    write(*,*) (a(i,j),j=1,3)
end do
```

end

Rotation matrix

• Rotation matrix on a plane given below is a typical example of two dimensional array:

$$\mathbf{R} = \begin{bmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{bmatrix}$$

Exercise 5-2

a. Make a program to rotate unit vectors (1,0) and (0,1) by an angle θ
b. Make a program to calculate **RR**. Then compare **R** computed for 2θ