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1. Basic Condition

1.1 Coordinate

(1) Global Coordinate

The global coordinate is defined as the right-hand coordinate as shown in Figure 1-1-1.
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Figure 1-1-1 Global coordinate
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(2) Local Coordinate

The local coordinate is defined for each element. The displacement freedoms and force freedoms are named
with subscripts indicating the coordinate direction and node name. For example, the local coordinate of a
beam element in Figure 1-2 is defined to have its x-axis in the same direction of the element axis. Also the

displacement and force freedoms of a beam element are expressed as shown in Figure 1-1-2.
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Figure 1-1-2 Local coordinate of a beam element



2. Constitutive Equation of Elements

3.1 Beam

! ! nonlinear bending springs
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Figure 2-1-1 Element model for beam

Force-displacement relationship for elastic element
The relationship between the displacement vector and force vector of the elastic element in Figure 2-1-1 is

expressed as follows:
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where, E, | ,A and I" are the modulus of elasticity, the moment of inertia of the cross-sectional area
along y-axis, the cross-sectional area and the length of the element. The rotational displacement vector of

the nonlinear bending springs is,

¢yA _ fyA O |\/IIyA
¢yB - 0 fyB M|yB (19)

where, fyA and fyB are the flexural stiffness of nonlinear bending springs at both ends of the element.

The rotational displacement vector from the shear deformation of the nonlinear shear spring is,
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where, K, is the shear stiffness of the nonlinear shear spring. Then, the displacement vector of the beam
element is obtained as the sum of the above three displacement vectors.
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o', o', 0 0 N,
where,
fyA+|—+i _I_+i 0
3EIy k,I' 6EIy k,I'
I' 1
[fs]= fg+t—-+— 0 (2-1-5)
y 3EIy Kl |
sym. _
L y EA |

[f5] is the flexural stiffness matrix of the beam element. By taking the inverse matrix of [f;], the

constitutive equation of the beam element is obtained as,

M IyA H'yA elyA
My = [fB]_l 0= [kB] 0 (2-1-6)
N' o'y o'y

where, [Kg] is the stiffness matrix of the beam element.

Including rigid parts and node movement

Including rigid parts and node movement as shown in Figure 2-1-2, the rotational displacement vector is,

(0] [ou 7] bamattu)-buvirs)

0w |0s-7 I
1 1 1 1 Uz
9yA +—|U2A +1A6yA__.uzB +ZB(9yB - - 1+AA ZVB u
_ | | _| 1 I ® (2-1-7)
- 1 1 11 1 2]
eyB +FuZA +}LA<9yA _FUZB +/1E,6?yB I_ _F A 1+ 44 6’yA
yB



Figure 2-1-2 Including rigid parts and node movement

From node axial displacements, relative axial displacement is,

é“x = 5)(8 - 5XA (2-1-8)
Therefore
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Combining Equations (2-1-7) and (2-1-9),
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Out of plane deformation of beam
If we consider out-of-plane deformation of beam in case of flexible floor, as shown in Figure 2-1-4, the
rotational displacement vector is,
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From global node displacement to element node displacement
Transformation from global node displacements to element node displacements is,
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The component of the transformation matrix, [T, ], is discussed in Chapter 4 (Freedom Vector).
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From global node displacement to element face displacement

Transformation from the global node displacement to the element face displacement is,

' u, u,
e.yA U, u,
0 vB [ — [nB ][AB ][TixB ] - (= [TxB . (2-1-12)
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In case of Y-direction beam
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Figure 2-1-3 Relation between local coordinate and global coordinate

In case of Y-direction beam, the axial direction of the beam element coincides to the Y-axis in the global

coordinate, transformation of the sign of the vector components of the element coordinate is,

X 0 1 0X
y —|-1 0 ofy (2-1-13)
Y —Beam 0 O 1 Z Global
Therefore
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Transformation from the global node displacement to the element node displacement is,
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Transformation from the global node displacement to the element face displacement is,
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Constitutive equation

Finally, the constitutive equation of the X-beam is,

P u, u,
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For Y-beam,
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Transformation matrix for nonlinear spring displacement

The nonlinear spring displacement vector is obtained from the element face displacement as,
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3.2 Column

Element model for column is defined as a line element with nonlinear bending springs at both ends and two

nonlinear shear springs in the middle of the element in x and y directions as shown in Figure 2-2-1.

X-Z plane Y-Z plane

M I><B

Figure 2-2-1 Element model for column

Force-displacement relationship for elastic element
In the same way as the beam element, the relationship between the displacement vector and force vector of
the elastic element is,

o I
7 3EI,  6El, |[M'
AL = I'y . y A in X-Z plane (2-2-1)
(s M
i 6El y 3El y
I' 3 I'
' M!
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1 | | '
T xB [ - M xB
| 6El,  3El,
The axial displacement is,
o', = é N, (2-2-3)
The torsion angle by torque force is,
o - 10 (2-2-4)

* G,

where, G and |, are the shear modulus and the pole moment of inertia of the cross-sectional area.

14



Force-displacement relationship for nonlinear bending springs

Nonlinear interactionM, — M y ~ N, is considered in the nonlinear bending springs,

Dyn My
Gon v = [pr]< M',+ atendA (2-2-5) -
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yB ! yB
Do M'ys
s ¢ = [pr]< M'z atendB (2-2-6)
€n N5
where, [f,] and [f;] are the flexural
stiffness matrices of the nonlinear bending springs.
Therefore, the force-displacement relationship of
nonlinear bending springs is,
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¢yB 0 [pr] M yB
b M’ Figure 2-2-2 Nonlinear bending springs
ng N lzB

Rearrange the order of the components of the displacement vector and change the node axial displacements

into the relative axial displacement,
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but=10 1 0 0 0 Of *l=|n ]} (2-2-8)
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The force-displacement relationship in Equation (2-2-7) is then expressed as,

¢yA M|yA |\/|'yA

¢yB [f ] 0 M'yB M|yB

b =[np{ s }H M=l f M (2:2:9)
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Force-displacement relationship for nonlinear shear springs

The rotational displacement vector from the shear deformation of the nonlinear shear spring is,

77yA —
77yB

{UXA} —
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where,

The displacement vector of the column element is obtained as the sum of the displacement vectors of

1

K,

1
1
k|
1

k|

k, and

L
kol
1]

1

ke l'

sy

K|y
LMy

ky,I' [[M'4
M IxB

in X-Z plane

in Y-Z plane

elastic element, nonlinear shear springs and nonlinear bending springs,

(2
0
O'sa
O'se

1
T’
1

TyB

elastic element

Pyn
Do
Dn
D
¢,

0

The flexural matrix [f.] is;

[fc]=

sym.
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0

bending spring
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shear spring

Z _lelestic element

k., are the shear stiffness of the nonlinear shear springs.
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(2-2-10)

(2-2-11)

(2-2-12)
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By taking the inverse matrix of [f.], the constitutive equation of the column element is obtained as,
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Including rigid parts and node movement

Change relative axial displacement and torsion displacement into node displacement,
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Including rigid parts and node movement,
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Figure 2-2-3 Including rigid parts and node movement
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From global node displacement to element node displacement

Transformation from global node displacement to element node displacement is;

c
= <
w >
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s 09
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(2-2-17)

The component of the transformation matrix, [T,.], is discussed in Chapter 4 (Freedom Vector).

From global node displacement to element face displacement

Transformation from the global node displacement to the element face displacement is,

H'VA

elyB Uy Uy

o' u u

Q.XA = [nc ][Ac ][Tic ;2 = [Tc N
XB :

5'2 un un

0'2

Constitutive equation

Finally, the constitutive equation of the column is;

P u

kg

P, u.n
where,

(2-2-18)

(2-2-19)

(2-2-20)

19



Transformation matrix for nonlinear spring displacement

The nonlinear spring displacement vector is obtained from Equations (2-2-7), (2-2-10) and (2-2-11),
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¢XB
ng
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0
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0

0
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0
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0
1
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0

0
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M’
N
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M’
N’

yB

xB

B

Furthermore, in the same way as Equation (2-2-8),

M\
M 'xA
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(2-2-21)

(2-2-22)

Therefore, the nonlinear spring displacement vector is obtained from the element face displacement as,
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2.3 Wall

Element model for wall is defined as a line element with nonlinear bending springs at both ends and three
nonlinear shear springs; one is in the middle of the wall panel and others are in the side columns as shown
in Figure 2-3-1.

Figure 2-3-1 Element model for wall

Force-displacement relationship for elastic element
In the same way as the beam element, the relationship between the displacement vector and force vector of
the elastic element is,

Cor I'
7' B M
{ 'VAC} = 3E||'C 6|E c { ,y“} in wall panel (2-3-1)
T yBc o - M yBc
| 6El,  3EI
Cor o r
T M!
{ 'XM} = 3E||,1 6||,E|1 { IXM} in side column 1 (2-3-2)
T xp1 _ M’ g,
| 6EI,  3El
I' |
T M’
{ "‘AZ} = 3E||,2 6II,E|2 { IXAZ} in side column 2 (2-3-3)
T x82 _ M’ g,
6EI, 3EI,
The axial displacement is,
0= I_ N Izc (2-3-4)

zC EA
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Force-displacement relationship for nonlinear bending springs

Nonlinear interactionM, — M y ~ N, is considered in the nonlinear bending springs,

&

leBc’ zBc
AM'VBC’% ﬂ Y’
xB2 ' ¥xB2
B 0 .

M IxBl ! ¢xBl ﬂ

................ A
M IXAZL ! ¢XA1 M IXA2 ! ¢XA2
M yAc ! ¢yAc
Ac

N &

ZAc? “z

Figure 2-3-2 Nonlinear bending springs

¢yAc M IyAc
M 1
P = [pr AL atend A (2-3-5)
Penz M,
Enc N nc
¢yBc M IyBc
M 1
Pier = [pr B atend B (2-3-6)
P2 Mg,
Eme N,

where, [f ] and [f ] are the flexural stiffness matrices of the nonlinear bending springs. Therefore,
the force-displacement relationship of nonlinear bending springs is,
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Rearrange the order of the components of the displacement vector and change the node axial displacements

M IyAc
M I><A1
M I><A2

i e

yBc
M IXBZL
M 'xBZ
N 'ch

into the relative axial displacement,

Pyac
Pyee
P
¢xBl
¢XA2
¢XB 2

&

zC

The force-displacement relationship in Equation (2-3-7) is then expressed as,

Dyac
Do
P
¢xBl
¢xA2
¢XB 2

&

zC

Force-displacement relationship for nonlinear shear springs

-1 1
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M e

M
= [np{[fopA] [fo ﬂ[np]T M1
" M2
M'se2
N'ZC

Dyac
P
Peaz
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EZBC

[t}

_ [np} Enc

¢yAC
¢><Al
¢XA2

¢yBc
¢xBl
¢x82

&

zBc

M
M6
M

M’ g1
M2
M.
NIZC

XAL

(2-3-7)

(2-3-8)

(2-3-9)

The rotational displacement vector from the shear deformation of the nonlinear shear spring is,

77yAc
77yBC

S

}: k' kgl {M'yAC}
11 My
Kl kI
11

{nm}: kgl kI {M'm}
Mxe1 i i Mg,

ksll ' ksll I
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in wall panel

in side column 1

(2-3-10)

(2-3-11)



{UXAZ} _ K,l'
77><BZ i

where, k

The displacement vector of the column element is obtained as the sum of the displacement vectors of

Ky

sc’

1

m M I><A2
1 M IxBZ

in side column 2

elastic element, nonlinear shear springs and nonlinear bending springs,

The flexural matrix [f,,] is;
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Dyne
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P
+1 e
¢XA2
¢XBZ
elasticelement L 2
I
_ ﬁ
I
3EI,
1
3EI,
sym.
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P77 Ibending spring

Myac
yae
My
TNve1
Mxn2

Nyg2
0

shear spring

+

bending spring

I 1
6EI,
I 1
3El,
I 1
3El,

+
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and K., are the shear stiffness of the nonlinear shear springs.

M IyAc
M IyBc
M
M6
M2
M2
N 'ZC

elestic element

(2-3-12)

(2-3-13)
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0

Ishear spring

(2-3-14)

By taking the inverse matrix of [f,, ], the constitutive equation of the column element is obtained as,

M 'yAc
M 'yBc
M IxAl
M lXBl
M I><A2
M IxBZ
lec

Including rigid parts and node movement

Change relative axial displacement and torsion displacement into node displacement,

0[
HlyBc
Hlel

yAc

0 XA2
1
H xB2

zC

H'

yAc

yBc

elel
[kW ]< elel

xA2

1
9 xB2

<

zC

Including rigid parts and node movement,
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9le1
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eleZ
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zBc
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From global node displacement to element node displacement

Transformation from the center displacements to the node displacements is,
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Transformation from the global node displacements to the element node displacements is;

=
B

SRy
=

ZA2

c

xB1

zB1

SRS

N

B2 ul

E
|
=

=

(2-3-19)
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xB1
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cC

yB2

>
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>

xB2

The component of the transformation matrix, [T, ], is discussed in Chapter 4 (Freedom Vector).

From global node displacement to element face displacement

Transformation from the global node displacement to the element face displacement is,

elyAc
6!

|yBC ul ul
_ u u

' 2 2
0 = [ [Aw IO [T K2 b =T K (2-3-20)
o' '

'xA2 un u )
9 xB2
5IZC

In case of Y-direction wall
Z Z
y X
X Y
Local coordinate of Y-wall Global coordinate

Figure 2-3-4 Relation between local coordinate and global coordinate
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In case of Y-direction wall, the wall panel direction coincides to the Y-axis in the global coordinate,

transformation of the sign of the vector components of the element coordinate is,

X 0 1 0[(X

y =|-1 0 ofy (2-3-21)

z Y -Wall O O 1 Z Global

Therefore

Uy 1 1[uym Uyn

Om 1 Om O

5ZA2 1 5ZA2 §ZA2

Uygy 1 Uygy Uygy

O 1 051 O

0 2 1 82 252

Uy -1 U, U,y

Uim - -1 Usgy =lew] Ug

exAl 1 gyAl ayAl

Ore1 1 eyBl 0 yB1

Uy, -1 Uyno Uy

Uysy -1 Usgo U,gs

HXAZ 1 gyAZ eyAZ

Ose2 yowall L 1] 93’32 Global esz Global
(2-3-22)

Transformation from the global node displacement to the element node displacement is;

u yAL

é‘ZAl

§ZA2

u yB1

5281

5282 l’Il

:j*: [T UEZ (2-3-23)

eyAl un

eyBl

uxA2

u xB2

Oy

Oye;
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Transformation from the global node displacement to the element face displacement is,

Uy Uy

O (= [nw ][Aw ][Dw ][gw ][TixW

= [TyW u:2
H' XA2 ‘

u

n

Constitutive equation

Finally, the constitutive equation of the wall is;

P Uy
P u
:2 = [KXW ] :2
Pn un
where,
[wa ] = [wa ]T [kw ][wa ]
For Y-wall,
Pl ul
P u
:2 _ [K » :2
Pn un
where,

[y J= T T L T

Transformation matrix for nonlinear spring displacement

(2-3-24)

(2-3-25)

(2-3-26)

(2-3-27)

(2-3-28)

The nonlinear spring displacement vector is obtained from Equations (2-3-7), (2-3-10)~(2-3-12),
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¢yAc [f p/-\] 0
¢ 1 1
¢XA1 M yAc M yAc
gXAZ M |XA1 M |XA1
ZAc 1 1
s 0 [f.,] M’ a2 M’ a2
yBc p: 1 1
¢ — N ZAC — [f :|< N ZAc
¢XB]. M lyBC pw M |yBC
gXBZ 1 1 M 61 M 61
T;B‘: kI’ K Ve M’
” 1 1 N |ZBC N |ZBC
T k' keI
77x2 1 1
L Keol' keI’ i
(2-3-29)
Furthermore, in the same way as Equation (2-3-8),
M IyAc M ] A
M 1 YAC
|)(Al M |yBc
M XA2 1
1 M XAl
N | _ [n ]T M (2-3-30)
M 1 5 p xB1
7 M I><A2
M |XB]. 1
M 1 M xB2
'XBZ N |ZC
N zBc

Therefore, the nonlinear spring displacement vector is obtained from the element face displacement as,

Dync

b

Prn2 M) 0 e O e
€onc M 'yBc o' yBc elyBc
Dyec M O v 'y
Prer (= [f pw Inp ]T Mg = [f pw Inp ]T [kw ] 01 (= [pr ]< 01 (2-3-31)
D2 M a2 02 02
€Be M'se, 0' s> 0' g2
Nye N, o', o',
Ma

Mx2
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2.4 External Spring

Figure 2-4-1 Element model for external spring

Force-displacement relationship for the element
The relationship between the displacement vector and force vector of the elastic element in Figure 4-1-1 is

expressed as follows:
N =[ke o, } (2-4-1)

From global node displacement to element node displacement

Transformation from the global node displacement to the element node displacement is,
{o.p=[reh (2-4-2)

The component of the transformation matrix, [T¢], is discussed in Chapter 4 (Freedom Vector).

Constitutive equation

The constitutive equation of the external spring is;

P u,
P2l [Ke uf (2-4-3)
P, u.n

where,

[Ke]=[Te] ke ITe ] (2-4-4)
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2.5 Base Isolation

5 | .

uxB

| e
X
A Uyg
Y
i ]
52A

Figure 2-5-1 Element model for base isolation

Force-displacement relationship for the element

The relationship between the displacement vector and force vector of the element is expressed as follows:

Q' o',
{Q'y} — ks ]{5,y} (2-5-1)

Including the axial stiffness,

QIX [k pBl ] 0 5‘)( 5')(
QY= 0 EA o'y = [k s KOy (2-5-2)
s, I ls, S5

From node displacements, relative displacements are;

5Ix =U;g — U

0y =Ugyg —Uy, (2-5-3)
5Iz = 528 - 5ZA
Therefore
uxA uxA
u u
é‘lx _ 1 1 xB xB
1 u yA u yA
&y = -11 = [nBI ]< (2-5-4)
5| _ 1 1 u yB u yB
5zA 5ZA
05 Os
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From global node displacement to element node displacement

Transformation from the global node displacement to the element node displacement is,

Uya

Usg Uy

E:: = [TiBI ] Usz (2-5-5)
Om u

O

The component of the transformation matrix, [T,g, ], is discussed in Chapter 4 (Freedom Vector).

From global node displacement to element face displacement

Transformation from the global node displacement to the element face displacement is,

1 ul ul
% u u
5'y = [nBI ][TiBI S [TBI ;2 (2-5-6)
o', '
u u

Constitutive equation

The constitutive equation of the Base isolation is;

Pl U,
2 u,
: = [KBI ] : (2_5_7)
Pn un
where,
[KBI ]: [TBI ]T [kBI ][TBI ] (2-5-8)
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2.6 Masonry Wall

Element model for Masonry wall is defined as a line element with a nonlinear shear spring and a vertical

spring in the middle of the wall panel as shown in Figure 2-6-1.

Figure 2-6-1 Element model for masonry wall

Force-displacement relationship
The relationship between the shear deformation and shear force of the nonlinear shear spring is,

Q'xc = ksxylxc (2-6-1)
For axial spring,
N Izl = kzglzl ’ N I22 = kzg'ZZ (2_6-2)
In a matrix form,
Qe Ke 0 0|7 V'
N,t=l0 k, 0fke,r=[kyke, (2-6-3)
N I22 0 0 kz ‘9'22 8'22

Including node movement
The shear angle of the frame with four nodes, Al, A2, B1, B2, is defined as,

s 00, N au, (2-6-4)
ox o1
where,
a5z ~ E 5zA2 — 5ZA1 + 5z32 — 5zBl (2-6-5)
ox 2 w w
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— Uy

+ Ug, —Uyar

auz ~£ uxBl
oz 2

The shear deformation, »',., is then,

1
_5z81)+_(ux31 — Uy t Uy _uxAZ)

j (2-6-6)

7'xc =7l= ﬂ(ngZ - 52Al + 5282 2 (2-6-7)
The axial deformation, &', €',,, is,
En=0m — O €,;5=0,8— Oy (2-6-8)
In a matrix form,
u><A1 u><A1
5ZA1 5ZA1
s 1 |-05 051 -05 05~ 05 -05- 05 05| Harz
xe w w w WIS,,, S oo
g t=| 0 -1 0 0 0 1 0 0 #2t=[D, |}
1 u><Bl uxBl
&', 0 0 0 -1 0 0 0 1
5281 §zBl
uxBZ uxBZ
5252 5282
(2-6-9)
From global node displacement to element node displacement
Transformation from the global node displacement to the element node displacement is;
uxAl
5ZA1
uxAZ ul
o u
wh=rak (2-6-10)
uxBl .
5251 un
uxB2
5282

The component of the transformation matrix, [T, ], is discussed in Chapter 4 (Freedom Vector).

From global node displacement to element face displacement

Transformation from the global node displacement to the element face displacement is,
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Uy Uy

Y xc u u
Eup= [DN ][TixN ] ;2 = [TxN ] N (2-6-11)
glzz u.n un
In case of Y-direction wall
Z Z
y X
X Y

Local coordinate of Y-wall Global coordinate

Figure 2-6-2 Relation between local coordinate and global coordinate

In case of Y-direction wall, the wall panel direction coincides to the Y-axis in the global coordinate,

transformation of the sign of the vector components of the element coordinate is,

X 0 1 0}[X
y —|-1 0 ofy (2-6-12)
Y —Beam 0 0 1j{Z Global
Therefore
Uyt 1 1[u yAlL Uyn
O 1 Oon Owm
Uya2 1 Uyaz Uyaz
Oop2 _ 1 A2 Oz (2-6-13)
Uyps 1 Uyes Uyey
O 1 .1 .81
U,g Uygo Uys,
o B2 J y_wall L 1_ 5282 Global 52B2 Global

Transformation from the global node displacement to the element node displacement is;
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c
=

= [Tin

8%

B2

Transformation from the global node displacement to the element face displacement is,

. U U,
7 xe
S (o L P
€= IYn i A
glzz
un un

Constitutive equation

Finally, the constitutive equation of the wall is;

Pl ul
P u
;2 = [K xN :2
Pn u n
where,
[KXN ]: [TXN ]T [kN ][TXN ]
For Y-wall,
Pl ul
P u
:2 _ [K N :2
Pn u n
where,
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(2-6-15)

(2-6-16)

(2-6-17)

(2-6-18)
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2.7 Passive Damper

Element model for passive damper is defined as a line element with a nonlinear shear spring as shown in

Figure 2-7-1.
Bl mt

| |
Al I\ﬁ A2 | i
A

|

Figure 2-7-1 Element model for passive damper

Force-displacement relationship

The relationship between the shear deformation and shear force of the nonlinear shear spring is,

Q'xc = ksxylxc (2'7'1)

Including node movement
The shear angle of the frame with four nodes, Al, A2, B1, B2, is defined as,

85, ou,
o OX " 0z &2
where,
aaiz ~ %(é}m V_\I51A1 + 5z32 \Xlé‘ZBl j (2-7-3)
a;z z%(uxBll_uxAl +uxBZ I_uxAzj (2-7-4)
Z
The shear deformation, »',., is then,
. | 1
Ve=1l= ﬂ(ngz — O + 0, _5zBl)+E(uxBl — Uy +Usg, _uxAZ) (2-7-5)
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The axial deformation, &', €',,, is,
=0 O, €,,= 08— Oy (2-7-6)

In a matrix form,

uXAl u><A1
5ZA1 52A1
¥ 05 —05- —05 051 05 —05- 05 051 | Use Usaz
Xc W w w w 52A2 5zA2
g b= 0 -1 0 0 0 1 0 0 =[D, ]
1 uxBl uxBl
‘922 0 O 0 —1 0 0 O 1
5281 §zBl
uxBZ uxBZ
5282 5282
(2-7-7)

From global node displacement to element node displacement

Transformation from the global node displacement to the element node displacement is;

u XAl

52/\1

uXAZ ul

O | _ Mol ”f (2-7-8)

The component of the transformation matrix, [T,], is discussed in Chapter 4 (Freedom Vector).

From global node displacement to element face displacement

Transformation from the global node displacement to the element face displacement is,

. Uy U,
7 xe
u u
&y = [DD ][TixD ;2 = [TXD] ;2 (2-7-9)
o : :
un un
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In case of Y-direction damper

Z Z
' 4@% ?\Eﬁﬁ ’
X Y
Global coordinate

Local coordinate of Y-wall

Figure 2-7-2 Relation between local coordinate and global coordinate

In case of Y-direction damper, the damper direction coincides to the Y-axis in the global coordinate,

transformation of the sign of the vector components of the element coordinate is,

X 0 1 0(X

<
I
|
[
o
<

(2-7-10)
0 0 1|z

Y —Beam Global

Therefore

u XAl

52A1

u XxA2

%)

ZA2

e

xB1

zB1

c o

xB2

%

B2

Transformation from the global node displacement to the element node displacement is;

[

yAl

g

Al

[

yA2

g

A2

[

yB1

7

B1

c

yB2

S

B2

Y -Wall

= I:Tin

1

u yAl

5ZA1
u yA2

A2

u yB1
5281
u yB2
5ZB2
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Global

Uyp
Oom
Uynz
On2
Uygy
O
Uygo
O

2

Global

(2-7-11)

(2-7-12)



Transformation from the global node displacement to the element face displacement is,

' U Uy
Y xe
wt=Dolmo] Pt =lol
Ear=1ollliyol)y . (=Ll -
gIZZ
un un

Constitutive equation

Finally, the constitutive equation of the damper is;

R U
P u
;2 = [KXD] ?
Pn un
where,
[KXD] = [TXD ]T [kD ][TXD]
For Y-damper,
R U
P u
:2 _ [KyD :2
Pn un
where,

[Kyo)= Mo Tho I
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(2-7-15)
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Appendix ) Calculation of shear component

For “Masonry Wall” and *“Passive Damper”, the shear deformation is defined as follows:

1. Shear deformation in one direction

¥ ¥
f 3 &
Al
#
&
—

Lt

~

Shear strainist=Al/1 =6

2. Shear deformation in two directions

¥
&

Al
: _I_ Y'.‘-X

Shear strain is

ou, ou

y
If we discuss small element 7 = ayx + E > Eq. (2-6-4) and Eq. (2-7-2)
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This definition is necessary to remove rotational component. To explain this, suppose there is

only rotational (or bending) deformation,

v

v

From the above definition, shear angle will be

1= 0+(-0)=0

For example, in the upper story of the building under horizontal deformation, the bending
component is dominant and the shear component is small. Therefore, the brace damper
doesn’t work in the upper story.

L




3. In case of damper element

We define the shear angle in one direction as follows:

01

v

We adopt the average angle,
0= 1/2(0;+02) > Eq. (2-6-5) and Eq. (2-7-3)

In the same way, the shear angle in another direction is

v

0= 1/2(01+02) > Eq.(2-66) and Eq. (2-7-4)
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2.8 Floor Element

In the default setting, STERA 3D adopts “rigid floor”. However, elastic deformation of a floor diaphragm
in-plane can be considered by the option menu selecting “flexible floor”. The stiffness matrix of the floor

element is constructed using a two dimensional isoparametric element.

5
] Maode 1

g X, U
Figure 2-8-1 4-nodes isoparametric element

The stiffness matrix with 4-nodes isoparametric is expressed as,

P u
Q v,
I32 u2
Q v
2= [KF ]< ?
P3 uS
Q, Vy
P4 u,
Q, v,
F =K u (2-8-1)

The coordinate transfer function {x, y} is expressed using the interpolation functions as

follows:

x(r,s) = ihi (r,s)x; = %(1+ r@+s)x, +%(1— r@+s)x, +%(1— r@—s)x, +%(1+ r@a-s)x,

Y09 = SRS, =@y, +5 A DAY, + 2 MDA, + F W IA-5)y,

(2-8-2)
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The deformation function {u, v} is also expressed using the same interpolation functions.
- 1 1 1 1

u(r,s) = Z h,(r,s)u, = Z(1+ N+ s)u, + Z(l_ rL+s)u, + Z(l_ rNAL-su, + Z(1+ r(l—su,
i=1
2 1 1 1 1

v(r,s) = z h,(r,s)v; = Z(1+ rNL+s)v, + Z(l_ rNL+s)v, + Z(l_ rL-s)v, + 2 @L+r)@-s)v,
i=1

(2-8-3)

Stiffness matrix can be obtained from the “Principle of Virtual Work Method,” which is

expressed in the following form:

J' godv=0"F (2-8-4)

where, & is a virtual strain vector, o is a stress vector, Uis a virtual displacement vector

and /' 1is a load vector, respectively.

In case of the plane problem, the strain & vector is defined as,

o
£, OX
g, |= % (2-8-5)
7 xy ou ov
—_ + _
oy oX

Substituting equation (2-8-3) into equation (2-8-5), the strain vector is calculated from the

nodal displacement vector as,

ou - ohy
e, ox o) G
ov 4 oh,
g, 1=l — |= —v,
oy i Oy
Tw) |ou ov| | &oh  &oh
—+— —u+y vy
gy OX i1 CoF o
ul
oh oh oh oh Y1
T 2o o9 oo |y
OX OX OX OX 2
= 0 a_hl 0 a_hZ 0 % 0 % V2
oy oy oy oy | U,
oh, on oh, oh, oh, oh, oh, o, |
oy OX oy oOx oy Ox oy oX u,
v,
£ = B u (2-8-6)
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In the plane stress problem, the stress-strain relationship is expressed as,

o, 1 v 0 g

o, =i v 1 0 £, (2-8-7)
1-v 1-v

Txy 0 0 T ]/Xy

o = C £

Substituting equation (2-8-6) into equation (2-8-7),
c=CBu (2-8-8)
From the Principle of Virtual Work Method,

| (Bu) (CBu)dv = UT[ jBTCdedyJu =U'F (2-8-9)

v V(x.y)

Therefore, the stiffness equation is obtained as,

F=Ku, K=[B"CBdv (2-8-10)
v
If we assume the constant thickness of the plate (= t), using the relation dv = tdxdy ,
K=t [BTCBdxdy (2-8-11)
V(xy)

Since this integration is defined in x-y coordinate, we must transfer the coordinate into r-s

coordinate to use the numerical integration method. Introducing the Jacobian matrix,

x oy

J=|0r |- jacobian Matrix (2-8-12)
x o
0S OS

the above integration is expressed in r-s coordinate as,

0 . (%, y) B
K =t] [B(r.5)y(r)) CBI(r.5) y(r9) G 2 (2819
where

oX oy
o(xy) _ lor ar N
o(r,s) = det) = ox oy (2-8-14)
ds 05

a7



Evaluation of Jacobian Matrix

4 4
x %hixi Z%h'
=19 2{, o I (2-8-15)

4
9y Ty Ty
os  0s ~ s z Pt

Evaluation of the matrix B
o,
OX

B=| O

0 oh, 0 oh, 0 oh,
" OX X OX X OX
on, 0 oh, oy 0o — (2-8-16)

oy oy oy oy
oh, oh, oh, oh, oh, oh, oh, oh,

oy oOX oy oOX oy OX oy OX
on, o oh  oh,

The derivatives —,-- --,— are calculated as,

ox ' ox oy
a—hl=a—hlﬂ+a—hl§ 6h4:6h4g+6h4§
ox  or ox s ox "Ox  or X 35 ox
5_hl=5_hlﬂ+8_hl§ 8h4=8h4ﬂ+8h4§
dy oroy sy oy ardy os oy

In a matrix form,

oh, oh, oh, oh,\ (or as)oh, oh, oh, oh,

X X ox  ox |_|ox ox|or or or eor
oh, oh, ohy oh, or os|oh oh, oh, oh,

oy oy oy oy) \oy oyNas s os  os

o ah, ahy oy

_1-t or or or or (2-8-17

Tlan o )
os 05 0s 05

Evaluation of partial derivatives of the interpolation functions

oh, 1 oh, 1

—L==(1+s —L==(1+r

or 4( ) 0S 4( )

%iz—%(us) M _Lla_p

zahIr 1 ’ aar? ) 1 2818
S8 _Z(1-s R

or 4( ) 0S 4( )

oh, 1 oh, 1

4= (-5 A= _Z(l+s

or 4( ) 0S 4( )
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The 3 points Gauss Integration Formula is defined as:

1
[ 1 (t)dt = 0.5556 f (-0.7746) +0.8889 f (0) +0.5556  (0.7746)
-1

=a, f(t) +a, f(t,)+a; f(t;)

where, a, =0.5556, «, =0.8889, «a, =0.5556
t, =-0.7746, t, =0, t,=0.7746

£(0.7746)

f(t)

£(-0.7746)

-1-0.7746 0 +0.7746 +1

The stiffness matrix is then calculated numerically as follows:

A~
Il

t

L — L —
~
N—r

F(r,s)drds

LN

3
t ZaiajF(ri,sj)

3
i=1 j=1

where

o(x,y)

F(rs)=B(x(r,s) y(r,s)) CBIX(r.s) y(rs)) 7

a, =0.5556, «, =0.8889, «, =0.5556
rn=s =-07746, r,=s,=0, r,=s,=0.7746
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From global node displacement to element node displacement

Transformation from global node displacements to element node displacements is,

ul
Vl
u2 ul
V2 u2
~[r, ] 821
u3
VS un
u,
V4

The component of the transformation matrix, [T,-], is discussed in Chapter 4 (Freedom Vector).
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2.9 Connection Panel

1) General case
In the default setting, STERA3D assumes the rigid connection zone between column and beam. You can
consider shear deformation of the connection area (we call “connection panel”) by the *“Connection
member” menu.

v
NN

Figure 2-9-1 Connection area

Shear deformation of the connection panel, v, is defined as shown in Figure 2-9-2.

«— Uc=-0.5yah
«—-
oSy
Al LB 0s=05ra
h
‘ v | w
|

Figure 2-9-2 Definition of shear deformation

Differences of displacement at node B and C are;

Aug 0 Aug —-0.5y,h
Node B: < Avy r=<—0.5y,W;, NodeC: JAV. ;~ 0 (2-9-1)
AG, 0.5y, AG, -0.5y,
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First we consider nodal movement without shear deformation of the connection panel. As shown in Figure

2-9-3, the displacement at node B and node C will be;

Ug Uy Ug u, —6,h
Node B: Vg =V, +0,W¢, Node C: (V. = R (2-9-2)
Op 0, Oc O,

Then, we consider shear deformation of the connection as shown in Figure 2-9-4. By adding Equation

(2-9-1) to (2-9-2), the displacement at node B and node C will be;

Figure 2-9-2 Nodal movement without shear deformation of the panel

Figure 2-9-4 Nodal movement with shear deformation of the panel
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u
Ug u, 0 u, 100 O vA
Vgt 24V, +0,Wi+4{-05y,wi=4v, +0,w—057,wr=/0 1 w —05wf *
Oy 0, 0.5y, 0, +0.5y, 001 05 A
VA
(2-9-3)
Node C:
u
Ue u,-6,h] [(-05y,h] (u,-6,h-05y,h] [1 O h -05h VA
Ver=d vV, t+4 0 = v, =01 0 O HA
0, 0, ~0.5y, 0, 0.5y, 001 -05] "
A
(2-9-4)

2) Beam element

In case of rigid connection, as described in Equation (2-1-9), the nodal displacement is expressed as,

N A RREN

0w |0s-7 I
1 1 1 1 Uz
9yA+—.UzA+/1A9yA——.UzB+/139y3 - —= 1+ 4, v u
_ I ' = “l o (2-95)
1 1 1 1 o
eyB+_.uzA+/1A(9yA__.uzB+ﬂ”BgyB T /1A 1+/1E; yA
| | I | 0,5
, GyB{(/
yB eyB
uzB
Uy — Aol Z
Omem B
Agl'

Figure 2-9-5 Beam displacement with rigid connection
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If we consider shear deformation of connection panel, from Figure 2-9-6,

1
Op ++

|
|,

0y _
0

1 1
O, +FUZA + A0, _FUZB + 4505 + 0.5y, —0.54,7,, —0.54,7 5

O +0.57 5 —7

1+,

ﬂ’A

As  05-054,

1+4, -051, 05-054,

Upp + Aa1'(6,4 —0.57,,)

~0.54,

1
Uy + 220, —FUZB + g0, +0.57,5 —0.54,7,, —0.5457 5

[

ZA

c

B

O,

)

yB

7/yA

7/yB

N
L/

[

54

{eyA +05p,, - r} T: (U — 2516, =057, )~ (e + 2,1'(6,0 —0.57.,))

(2-9-6)

Figure 2-9-6 Beam displacement with shear deformation of connection panel



The transformation matrices for beam element are;

Including connection panel and node movement

uzA

11 7|

0] |3 -7 1+A A 05-05%, —05% 0,,
Pwl_|L L 144 —05i, 05-054, O
5XA I I 1 j/yA
O 1 7ye
- - 5XA

5XB

From global node displacement to element node displacement

Usa
U
Oy Uy
eyB = [TixB
Vyn
7y u,
Oy
Oy

From global node displacement to element face displacement

Transformation from the global node displacement to the element face displacement is,

. Uy Uy
9. "’ U, U,
0 yB [nB ][AB ][TixB ] (7 [TxB :
o', .

uﬂ uﬂ
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[As ]

Uza
Uz
O,
[
Vyn
VyB
Oy
O,

(2-9-10)

(2-9-11)

(2-9-12)




In case of Y-direction beam

X 0 1 0f(X

y =|-1 0 oY (2-9-13)
Y —Beam 0 O 1 Z Global

Uja 1 (U Uz

U,g 1 Uz Uz

0, -1 Osn O

O - -1 O = [ss ] O (2-9-14)

Y ya -1 7 xa 7 xa

7B -1 7 x8 7 xB

5XA 1 5YA 5)//'\

O Y-Beam L 1] 53"3 Global 5VB Global

Transformation from the global node displacement to the element node displacement is,

uzA
u B
HxA u1
0, u

Y= [Tin N (2-9-15)
7/xA .
7XB un
5yA
5yB

Transformation from the global node displacement to the element face displacement is,

, u, u,
o u u

1 2 2
0 vB (= [nB ][AB ][SB ][Tin - (7 [TyB . (2-9-16)
o' ' '

" u, u,
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3) Column element

In case of rigid connection, as described in Equation (2-2-16), the nodal displacement in X-Z plane is
expressed as,

{e'yA} _ {eyA —r} ] (Ups = 2100 )~ (Uss + 251"0,5 )

H'yB HyB -7 I'
1 1 11 Ui
eyA——|UxA+ﬂA0yA +_.UXB +iBI9yB - = 1+1A /IB u
_ I I | I ® (2-9-17)
B 1 1 111 2]
gyB U +/1A9yA + 5 Uss +/159y5 T /IA 1"‘/15 yA
| | " gyB
Agl'
I' 7
X
/1A|'__ -

Figure 2-9-7 Column displacement with rigid connection (X-Z plane)
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If we consider shear deformation of connection panel, from Figure 2-9-8,

{Q'YA} _ {eyA ~05y,, —r} T: Uy = 241'(0,0 + 057, )~ Uy + 2o1'(6,5 +0.57 )
0| |0,s-057, -7 I

1 1
) O, _FUXA + An0, +FUXB + 4505 —0.57,, +0.94,7,, +0.5457 5
1

1
O _FUXA + 40, +FUXB + 4505 —0.57 5 +0.54,7,0 +0.5457 5
uxA
1 1 uXB
-— = 1+4, 4, -05+0.521, 0.54; 0
_rr yA 2-9-18)
=l 1 1 0 (
-—— = Ay 1+ 0.54, -0.5+0.54; || B
I I ]/yA
7/yB

gl

Upp = Aal"(0)n +0.57,4)

A,

A uXA

Figure 2-9-8 Column displacement with shear deformation of connection panel (X-Z plane)
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In the same manner, assuming rigid connection, the nodal displacement of column in Y-Z plane is
expressed as,

Opg—7 I

{e'm} _ {exA —r} _ (U = 2u1'05 )~ (U +2,1'6,,)
HIXB ’

u
1 1 1 1 yA
HXA +FUyA +AAHXA_FuyB +/IBHX,3 F —F 1+2A ﬂ’B Ug
= 1 1 =11 1 Y (2-9-19)
O T U + 4000 —— U + A50,4 - o A 1+4 O
I | | | O
B
Agl'
Agl'0 g
Il
Z
A6,
—4— X
Al
T Y

Figure 2-9-9 Column displacement with rigid connection (Y-Z plane)
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If we consider shear deformation of connection panel, from Figure 2-9-10,

0 _ O —0.57,, — 7 _ (uyB _ﬂBI'(HxB +0.57,5 ))_ (uyA + /IAI'(exA + 0-57XA))
0w) |0e-05ye-7) I
1 1
0,4 +FuyA + 1,0, _FuyB + 50,5 —0.5y,, +0.54, 7., +0.54,7,5

0.5 +%uyA + 4,04 —%uyB + 50,5 —0.5y,5 +0.54,7,, +0.54;7

uyA
1 1 e
= -= 1+4, 4, -05+054, 0.5, 0
XA
=I1 I1 (2-9-20)
-2 4. 144, 051,  -05+054||%
o
7/xA
j/xB
A5l
II
2,

Figure 2-9-10 Column displacement with shear deformation of connection panel (Y-Z plane)
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The transformation matrices for column element are;

Including connection panel and node movement

T
3
=== r
==
~
| =
N

1]
N
- —
N
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N
w

N~

+ N
N‘U?’

(2-9-21)




From global node displacement to element node displacement

(2-9-22)

From global node displacement to element face displacement

Transformation from the global node displacement to the element face displacement is,

0'\n
0 s u, u,
O a
0y
o', u, u,
o'

z

~[eIacTre k' p=re ) @929
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4) Force-displacement relationship for the connection

\,
|7
\

h
\
1
\
\
\
t \
\ 1
\7/y 1 '|
\ \ -
\ 2
\ =~
v T
= \

Figure 2-9-11 Shear deformation of connection area

The relationship between the displacement vector and force vector of the element is expressed as follows
M Px | _ kPx 0 7/x
Mg,

(2-9-24)
0 ke ||7,
where, initial stiffness of connection area is,
Kp, =Kp, =GV (2-9-25)
where, G is the shear modulus and V is the volume of the connection.
From global node displacement to element node displacement
Transformation from the global node displacement to the element node displacement is,
ul
V4 u
=[T k2 (2-9-26)
7y :
un

The component of the transformation matrix, [T, ], is discussed in Chapter 4 (Freedom Vector).

Constitutive equation

The constitutive equation of the external spring is;

P u,
F:Z =[K, u:2 (2-9-27)
Pn un
[K P ] = [TP ]T [kP ][TP ] (2-9-28)
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3. Hysteresis model of nonlinear springs

Notation

a, : Area of rebar in the tension side of the section

A : Total area of rebar in the section

o, : Strength of rebar

Og : Compression strength of concrete

Oy : Strength of shear reinforcement

D Depth of the section

d : Effective depth of the section.

b Width of the beam

J ; Distance between the centers of stress in the section (= (7/8)d ).
Z, : Section modulus including the slab effect.

n : Ratio of Young’s modulus (=E, / E,)

P : Tensile reinforcement ratio

P, : Shear reinforcement ratio

I, : Moment of inertia of section considering the slab effect

M., : Crack moment

M, : Yield moment

M/(QD) : Shear span-to-depth ratio

A Crack rotation of the beam end

Hy Yield rotation of the beam end

P, Crack rotation of the nonlinear bending spring

¢y Yield rotation of the nonlinear bending spring

K, Initial stiffness

ky Tangential stiffness at the yield point

ky2 Stiffness after the yield point in the nonlinear bending spring
Kys Stiffness after the ultimate point in the nonlinear shear spring
a, Stiffness degradation factor at the yield point

Q. Crack shear force

Q, Yield shear force

Q, Ultimate shear force

Xq Distance between the corner springs in the Multi-spring model
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Yu

Crack shear deformation
Yield shear deformation

Ultimate shear deformation
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3.1 Beam

a) Section properties

. o as
R |
t] oo e e e ldl oo oliFweaioo o |d
e o
al =~ (177 i
D
1 o
T o — =] [
b8 |
B : Width of beam,
D : Height of beam,
S . Effective width of slab,
t : Thickness of slab
dl : Distance to the center of upper main rebars,
d2 : Distance to the center of bottom main rebars,
al : Area of upper main rebars,
a2 : Area of bottom main rebars
as : Area of rebars in slab
Figure 3-1-1 Beam Section
Area of section to calculate axial deformation
Ay =BD+(S-B)+(n; —1)a, +a, +ag) (3-1-1)
where,
ne =E,/E, : Ratio of Young’s modulus between steel (Es) and concrete (E)

Area of section to calculate shear deformation
A; =BD (3-1-2)
Moment of inertia around the center of the section

BD® (S-B)t? ( DJZ ( t jz
I, = + +BDjg——| +(S-Bf|D———- +
¢ 12 12 g 2 ( )t 2 i

2
(ne ~Jay(dy - g)* +(ne ~La,(D-d, - g)* +(ne _1)35([)_%_9) (3-1-3)

where, g is the center of beam section calculated by
g BD?/2+(S-B)t(D-t/2)+(ng —1)a,d, +a,(D—-d,)+ag(D-t/2))
= A

(3-1-4)
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b) Nonlinear bending spring

| nonlinear bending springs

O, Ta Pn Un Ta
M  EEECLTT S . M
Os (1 =17e ¢ +1%e (T 17s \ A Q /-5/77:—8 B

nonlinear shear springs

Figure 3-1-2 Element model for beam

Hysteresis model of a nonlinear bending spring is defined as the moment-rotation relationship under the
anti-symmetry loading in Figure 3-1-3. The initial stiffness of the nonlinear spring is supposed to be infinite,

however, in numerical calculation, a large enough value is used for the stiffness.

M . M M
/I /O
6EI  _
M. | % ko = e - * M.,
kh“ ko NKpmo
A 0, 0 4 9. 9, ¢
Elastic element Nonlinear bending spring

Figure 3-1-3 Moment — rotation relationship at bending spring
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Crack moment force

For reinforced concrete elements, the crack moment, M _ is calculated as,

M, =056\0gZ,, Z,=1./0 when tension in bottom main rebars ~ (3-1-5)
M., =056,05Z,,, Z,=1,/(D-g) when tension in upper main rebars (3-1-6)
where,

Og : Compression strength of concrete (N/mm?)

2y, Ly, - Section modulus

Yield moment force

The yield moment, M is calculated as,
M, =09a,0,(D-d,) when tension in bottom main rebars  (3-1-7)

M, =09a,0,(D-d,)+0.9as0,(D—t/2) when tension in upper main rebars ~ (3-1-8)

where,

o : Strength of rebar (N/mm?)

Yield rotation

The tangential stiffness at the yield point, ky , iIs obtained from the following equation,:

_BEI,

ky=a,ky, ko= (3-1-9)

where,

a, is the stiffness degradation factor at the yield point, which is obtained from the following

empirical formulas:

a, =(0.043+1.63np, +0.043a/D)d/D)*, (a/D<2) (3-1-10)
a, =(-0.0836+0.159a/D)d /D)*, (a/D>2) (3-1-11)
where,
P, : Tensile reinforcement ratio
p: = a;/(BD) (when tension in bottom main rebars)
p: = (a;+as)/(BD) (when tension in upper main rebars)
a/D ; = Shear span-to-depth ratio (=1/(2D) )
d : effective depth
d =D-d1 (when tension in bottom main rebars)
d =D-d2 (when tension in upper main rebars)
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a, is modified in case of tension in upper main rebars as

o
ay'=a, = (3-1-12)
e

_ BD?
12

where 1, the moment of inertia of square section without slab

Ultimate rotation

The stiffness after the yield point, ku , is assumed to be almost zero and positive as,

k, =0.01 ky (3-1-13)

We define the ultimate rotation, Qu , Where the skeleton curve becomes negative. In the default setting, the

ultimate rotation, €, , and the stiffness after the point, K, are assumed to be,

6, =0.02 (=1/50), k, =k, (>0) (3-1-14)
M
M y /
M, |
kh Kk
0
0. 0, 6,

Figure 3-1-4 Ultimate rotation point

Crack rotation of nonlinear spring
From Figure 3-1-2, the crack rotation of the nonlinear bending beam, ¢, , is supposed to be zero value,

however, in STERA_3D program, it is assumed as,
¢.=0.001¢, (3-1-15)

Yield rotation of nonlinear spring
The yield rotation of the nonlinear bending beam, ¢y , is obtained from,

M 1 M
-0 —— Y = ) — 3-1-16
#=0 (a J ko (3-1-16)

y

Ultimate rotation of nonlinear spring
The ultimate rotation of the nonlinear bending beam, ¢, , is obtained from,

M
p=0——— (3-1-17)
kO
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Slab effect
In case the size of slab is not specified, slab effect is approximately considered using the factor, o, =1.2

as follows:
2 bD? - :
l,=a1,, 1,= 0o : Moment of inertia of section (3-1-18)
3/2 bD? .
Z,=(e,)"?2,, 2,= : Section modulus (3-1-19)
A =aA, A, =bD : Section (3-1-20)

Hysteresis model
To consider the difference of the flexural capacity between positive and negative side of the beam, a
degrading tri-linear model is developed based on the Takeda Model for the hysteresis model of the bending

springs of the beam.

M M
ku
kr
¢

P, &
@ B

e, =00t| M| g o[ M) ks=[ M j¢_v

¢y ¢y ¢m ¢m_¢x ¢m

Figure 3-1-5 Degrading Tri-linear Model
(0=0.5 and =0 as default values)
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The strength degradation under cyclic loading is considered by elongating the target displacement, ¢,,, to

be @', asshown in the following Figure:

M
k
M., |\/|y . — '....'._,V_. .........
kr
¢
¢y ¢m ¢lm
¢Im = [14—]/ y ]¢m

Figure 3-1-6 Introducing strength degradation
(y=0.0 as default value)

The negative stiffness after the ultimate point is considered by moving the target displacement, ¢, , along
the negative envelope. The stiffness after the target displacement is kept positive to assure the stability of

calculation.

Figure 3-1-7 Introducing negative envelop
(& =0.01 as default value)

In total, there are five parameters to control the hysteresis model:
o parameter for returning stiffness K, (default value is 0.5)
B: parameter for slip stiffness k. (default value is 0.0)
v: parameter for strength degradation  (default value is 0.0)
&: parameter for negative stiffness k, (default value is 0.01)

6, : the ultimate rotation (default value is 1/50)

71



¢) Nonlinear shear spring
Hysteresis model of nonlinear shear spring is defined as the shear force — shear rotation relationship using

an origin-oriented poly-linear model as shown in Figure 3-1-4.

nonlinear shear springs

Q
ky3 = 0.001k,
Q
y ky3
Qu —T ]/
QC ..... :
ki =GA
K,
Ve Yy Yu Y
Figure 3-1-8 Force—deformation relationship of shear spring
Yield shear force
The yield shear force, Qy is calculated as,
0.068p,”* (og +18) .
= +0.85 Oy (D 3-1-21
Q { M /(QD)+ 0.12 VPu Oy (07 (3-1-21)
where,
[oX : Tensile reinforcement ratio
Op : Compression strength of concrete
P, ; Shear reinforcement ratio
Oy : Strength of shear reinforcement
J ; Distance between the centers of stress in the section (= (7/8)d ).
Crack shear force
The crack shear force is, Q,, is assumed as,
Q.= & (3-1-22)

3
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Ultimate shear force

The crack shear force is, Q,, is assumed as,

Q, =Q, (3-1-23)
Crack shear deformation

The crack shear deformation is obtained as,

Q.
== 3-1-24
e =G ( )
Yield shear displacement
The yield shear deformation is assumed as,
1
=— 3-1-25
Yy =56 ( )
Ultimate shear displacement
The ultimate shear deformation is assumed as,
1
- 3-1-26
=100 ( )
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d) Modification of initial stiffness of nonlinear springs

In numerical calculation, a large dummy value is used for the initial stiffness of the nonlinear spring to
represent rigid condition. This large stiffness may cause an error for estimating the force from the
displacement. One possible way to solve the problem is to reduce the initial stiffness of the nonlinear spring
to be a certain value reasonable for calculation, and on the other hand, increase the stiffness of the elastic
element so that the total initial stiffness of the beam element does not change from the original one. This

idea is proposed by K-N Li (2004) for MS model, and can be used for nonlinear spring model also.

M
M
M C
¢ 4, ¢
Elastic element Nonlinear bending spring
Increase @ Reduce @
stiffness stiffness
M M
M y
+
M C
4 9 ¢
Elastic element Nonlinear bending spring

Figure 3-1-9 Modification of moment — rotation relationship

The idea is realized using flexibility reduction factors, 7, (<0), 7, (<0), in the relationship between the

displacement vector and force vector of the elastic element in Equation (2-1-1) as,
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I' I' |
71 -
' 3EI 6El .
Tyn I y I.y M
r'yB - 5El V2 3EI 0 kM 'yB (3-1-27)
5Ix y | le
0 0 —
L EA |
It must be | > | or >0.5 and r > | or >0.5
“zE, Tem, O T T g Tem, O

Also the initial flexibility matrix of the nonlinear spring can be expressed as follows, introducing the
parameters, p,, p, to increase the initial flexibility.

PRI

When p, -0, p, =0, it represents the infinite stiffness for rigid condition. Accordingly, the crack and

(3-1-28)

yield rotation will be modified as,

. M. . 1 M, . M
=p,—, =|—=y |, =0, -y, — 3-1-29
¢c pl EI ¢y (ay 7/1] ko ¢u u 7/1 ko ( )
Making the modified flexibility matrix to be identical to the original one,
o I ] [ p I’ I ]
B B3 " 6El
3El, 6El, y y
I' P, I'
0 = —=+y,— 0 3-1-30
3EI, el 72 3El (3150
I' I'
sym. — sym. —
L EA_ original L EA_ mod ified
This gives the flexivility reduction factors as:
3 3
7n=1=-=p, 7,=1-%p, (3-1-31)

I I
From the conditions y, >0.5 and y, >0.5,

<—, <—
Py 6 P 6

K-N Li (2004) calls these parameters, p,, p,, as “plastic zones” and recommends to be p, = p, = E

Them the reduction factors will be y, =, =0.7.
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3.2 Column

a) Section properties

I
y

B : Width of beam,

D : Height of beam,

d1l : Distance to the center of x-direction main rebars,
d2 : Distance to the center of y-direction main rebars,
al : Area of x-side main rebars,

a2 : Area of y-side main rebars,

ac : Area of corner main rebars

Figure 3-2-1 Column Section

Area of section to calculate axial deformation

Ay =BD+(ng —1)a, +a, +a,)
Area of section to calculate shear deformation
A; =BD/x, k=12

Moment of inertia around the center of the section

DB? B ?
l, = +(ng —1)(ac+a1)(5—dlj

12

BD? D 2
| = T +(ng —1)a, +a2)[?—d2j
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b) Nonlinear bending spring

To consider nonlinear interaction among M, — M y ~ N, , the nonlinear bending spring at the member
end is constructed from the nonlinear vertical springs arranged in the member section as shown in Figure
3-2-2.

o A Node B
\/%\ xB ! ¢xB
M yB?! ¢yB
/4): ¢y
¢X 82 8i g XI .
Vi Lo ZI >
/ Node A
y
X 1
» X
M yA? ¢yA yi ggéy_/
4/ &i 2 i
XA’ ¢xA ¢X
ZA’ y v

Figure 3-2-2 Nonlinear bending springs

1) AtnodeB

v
X

Figure 3-2-3 Nonlinear bending spring at Node B
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Displacement of the i-th nonlinear axial spring is,

& =&, —Vif + %9y

Equilibrium condition in the nonlinear section is,

M’ = Zkigixi = Zki (&, — Yid + X8,)%
M, = _Zkigi Yi = _Zki (&, = Vid + Xi8,) Y,
N, =D ke =D ke, - Vidh + %i4,)

In a matrix form

2
M'y Zi:kixi _Zkixiyi Zkixi ¢y ¢y
M= Zkiyiz _Zkiyi P, ¢ = [kp é,
N, sym. Yk, g, £

Therefore
¢y . M 'y M ly
¢x :[kpB]7 M'x :[pr Mlx
& N N'

z z

2) Atnode A
We define the z-axis to be tension of nonlinear vertical springs.

(3-2-5)

(3-2-6)

(3-2-7)

(3-2-8)

v
x

YW, Y
ﬁ* e / j 'kigi

z
z M yA? ¢yA

M XA ¢XA

NzA’ ng

Figure 3-2-4 Nonlinear bending spring at Node A
Displacement of the i-th nonlinear axial spring is,

& =&+ yi¢x _Xi¢y
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Equilibrium condition in the nonlinear section is,
M’ = —Z ke X = —Z ki(e, + Vib, — X8, )X;

M'X:Zi:kigiyi :Z‘ki (&, +Yib — Xi8,)Y, (3-2-10)
N', = Zkigi = Z‘ki (&, + Yid, — Xi8,)

In a matrix form

M _Zkixf =2 kixy, —Zkixi_ 4,

M = ZI ki yi2 ZI Kiyi |34 (3-2-11)
N Ja | sym. | IZki €)a

Since the sign of z-coordinate of Node A is opposite to Global coordinate, we transform the coordinate as,

X 1 0 0|[X
yb =lo 1 ol (3-2-12)
Z)a 0 0 -1j{Z Global
Therefore
¢y 1 0 O ¢y |\/|'y 1 0 O |\/|'y
o, =0 1 0 |59, and M’ =0 1 0 KM, (3-2-13)
&) 0 0 -1fle, Global N, Global 0 0 —1J(N, A
Then,
M’ 1 O_Zkixiz _Zkixiyi _Zkixi 10 0]fg,
M’ =0 0 Z‘,kiyi2 zkiyi 0 1 0o
N, Global 0 0 -1 sym. | IZki 0 0 -1jle, Global
Zi:kixiz _izkixiyi _Zkixi 10 0 8,
= _zkixiyi Z‘,kiYi2 Zkiyi 01 0}
lekixi _IZ:kiyi _Izki 00 =118 o
Zi:kixiz _ZkiXiYi Zi:kixi ¢y
= _Zkixiyi Zkiyiz _Zkiyi ¢x
Zkixi _Zkiyi Zki €2 clobal
(3-2-14)
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Actually, this formation is the same as that of Node B.

Therefore
¢y M 'y M 'y
¢x :[kpA]71 M'x :[pr M'x (3-2-15)
gZ N IZ N |Z
For both ends
¢yA M IyA
¢XA M 'xA
ng — |:[pr] 0 i| NIZA (3-2-16)
¢yB 0 [pr] M IyB
¢XB M 'XB
ng N IzB
Note that the displacement of the i-th nonlinear axial spring is,
?,
& =&, yi¢x + Xi¢y = [Xi —Yi 1]< ¢x for Node B
gZ
¢y 1 0 O ¢y
s=6+Yib—xd, =[x v her =[x vy )0 1 0fg,
&) a 0 0 -1l Global
2
= [— XY, —1] @, = —(gz -v.9, + Xi¢y) for Node A
&

z
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Hysteresis model of nonlinear bending spring is defined as the moment-rotation relationship under the
anti-symmetry loading in Figure 3-2-5. The initial stiffness of the nonlinear spring is supposed to be infinite,

however, in numerical calculation, a large enough value is used for the stiffness.

7B —7
r )9
0
0
P\ T
A Y
U Moment distribution
M
M . M M
M y / —9 M y — 7
6EI  _
M, |/ ko = T - + M,
Kk, \k;, =ak \kpzoo
6, 6, @ 4 ¢ ¢ 9
Elastic element Nonlinear bending spring

Figure 3-2-5 Moment — rotation relationship at bending spring

For reinforced concrete elements, the crack moment, M _ is calculated as,

M, =0.56,/0,Z, +% (3-2-17)

c

The yield moment, M is calculated from the following formula under the balance axial force, Nb ,

y

N
M, =0.8a,0,D + 0.5NbD(1— : J (3-2-18)
bDo
B
N, = 0.4bDo, (3-2-19)
Note that the balance axial force, N, is used instead of actual axial force, N, in this formula since the
characteristics of nonlinear vertical springs in a section are determined later from the equilibrium condition

under the balance axial force.
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The tangential stiffness at the yield point, ky , Is obtained from the following equation,:

_eEl

k=a,K, K, |

(3-2-20)

a, is the stiffness degradation factor at the yield point, which is obtained from the following

y
empirical formulas:

a, =(0.043+1.63np, +0.043a/ D +0.3257, )d /D)*, (a/D<2) (3-2-21)
a, =(-0.0836 +0.159a/ D +0.1697, d / D)*, (a/D>2) (3-2-22)
where,
P : Tensile reinforcement ratio
p: = (ac+a1)/(2BD) (when tension in x-main rebars)
p: = (a.+az)/(2BD) (when tension in y-main rebars)
a/D : =~ Shear span-to-depth ratio (=1/(2D) )
d : effective depth
d =D-d1 (when tension in bottom main rebars)
d =D-d2 (when tension in upper main rebars)

The yield rotation of the nonlinear bending beam, ¢y , is then obtained from,

1 M
= —-1]-= 3-2-23
oo - 6229
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b) Nonlinear vertical springs
The nonlinear bending spring is constructed from the nonlinear vertical springs arranged in the member
section as shown in Figure 3-2-3. This model is called “Multi-spring model” proposed by S. S. Lai, G. T.
Will and S. Otani (1984) and modified by K-N. Li (1988). The section is devided in 5 areas; where 4 corner
areas have steel springs and concrete springs and the center area has one concrete spring.

The strength and the location of nonlinear springs are obtained from the equilibrium condition under

the balance axial force, Ny, in Equation (3-2-8).

A —1 2
L ® ®
> X P > X
j ®© 1 ®
3 4 (O Concrete spring
® Steel spring
v v
y y
(a) Original column section (b) Multi-spring model
f (tension) (tension)

(compression) (compression)

(c) Hysteresis of steel spring (d) Hysteresis of concrete spring

Figure 3-2-6 Nonlinear vertical springs
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Strength of steel spring
The strength of the steel spring is one-forth of total strength of rebars in the section, i.e.,

f, - As:‘ y (3-2-24)
where,

A : Total area of rebar in the section

o : Strength of rebar

y

Strength of concrete spring
As shown in Figure 3-2-7, the strength of the corner concrete spring is obtained from the equilibrium

condition in the vertical direction under the balance axial force, N, ~—-0.4bDo, thatis,

N
cf= Tb =0.2bDoy, (3-2-25)
Therefore, the area of the corner concrete, A, is,
A Ty (3-2-26)
(0.850%)
—N,
S fy +cfyl M y
s Fy+.f
> X
y

Figure 3-2-7 Equilibrium condition in the column section

The area of the center concrete, A, is the rest of the area of the section,
A, =bD-4A (>0) (3-2-27)

The strength of the center concrete spring is then obtained as,
. fy2 =0.85ko; A, (3-2-28)

where, k is the confined effect (k =1.3) of the concrete.
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Location of vertical springs
The distance between the corner springs, X, is obtained from the equilibrium condition regarding the

moment force in Figure 3-2-7,

M, =x,(2,f,+f,)=x(2.f, +05N,) (3-2-29)

c

Therefore,

My
Xe=—7""T"— -2-
> 2,f, +05N, (3-2-30)

Note that M is calculated from Equation (3-2-18) for the balance axial force, Nj .
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Example)

To verify the efficiency of the Multi-Spring model for the column element, the M-N relationship is

compared between MS-model and Theory using one column element. The column section is shown in the
Figure below:

Column Editor B|
COLUMN

Size (mm)
Type

B — N=1000kN
N~ [500 of b
cz2
03 D . ] L] \) 1
C4 [E—
cs | | =0 B FL T
C6
g g Vertical Reiforcement
Co CORNER 4 - |D22 ¥
c10 SD (N/mm2) 300cm
g]; OTHERS |4 ~ |- |D22 ~ 295
C13 )
C14 Shear Reinforcement
C15 sD (mem2)

2 x]-|p6 z|-@|50 -] [295
Copy

Concrete (N/mm2)

ADD oK |
Figure 3-2-8

Theoretical results of the M-N relationship are obtained from the equilibrium condition as,
if(O<N<N,)

M, = 0.8atayD+0.5ND[1— N j (3-2-31)

Op
If(N, <N<N,.)

M, =(0.8a,0,D +0.12bD%0, {MJ (3-2-32)
- b

max

where, N, is the balance axial force,
N, = 0.4bDo, (3-2-33)

and N, isthe maximum axial force,

N, ~#bDog + Ao, (3-2-34)
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Firstly, the strengths and locations of vertical springs are calculated from Equations (3-2-11), (3-2-12),
(3-2-15) and (3-2-17).

a, =15.484 (cm?) o, =1.1f, =32.45(kN/cm?) op =2.4(kN/cm?)

N, =0.4bDoy = 2400 (kN) Nox =bDog + Ajo, = 6502 (kN)

s f, =251.2 (kN)

f,, =1200 (kN) f,, =390 (kN) x, =30 (cm)

c c

Inthe range (0 <N < N,), the Multi-Spring model gives

M, =(2,f, +0.5N Jx,

M-N relationship

6000

Theory
5000 Multi-Spring |-
4000

N (kN)

3000 >
2000

Under-estim%
1000 /
0 L L

0 10000 20000 30000 40000 50000 60000
M (kN*cm)

Figure 3-2-9 Comparison of M-N relationship

The results of Multi-Spring model give smaller values than theoretical results in the range 0 < N < Nb.
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K-N. Li (1988) proposed to use the following formulation for deciding the location of vertical springs

instead of Equation (3-2-30), as follows:

Mo
Xg=— 2 (3-2-35)
2,f, +0.5N,

where, N, is the axial force from the dead loads and the live loads acting on the column (N, < N,),

and M, is the yield moment under the axial force N, that is:

N
M, =0.8a,0,D +0.5N, D[l— 0 J (3-2-36)
bDoyg

For the example column, assuming N, = 1000 (kN),

X, =35.8(cm)

M-N relationship

6000
Theory
5000 |- Multi-Spring
4000 |
=
< 3000
2000 /
1000 |
0
0 20000 40000 60000 80000

M (kN*cm)

Figure 3-2-10 Comparison of M-N relationship

It improves the results of Multi-Spring model in the range 0 < N < Nb.
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Yield displacement of vertical spring

—2f, f\ M., Compression

v

Figure 3-2-11 Equilibrium condition under the axial force N

From the equilibrium condition under the axial force N, as shown in the above Figure, the yield

displacement of the tension side steel spring, .d y» Is obtained as follows:

sdy +dc :¢yxs

f
d, =——F—d
S R P
‘¢ Ny +2,f,
c T, (3-2-37)
L X
s Ny +2,f,

B ——
2.f, +2.1,

The yield displacement of concrete spring, .d y+ IS assumed to be the same as that of the steel spring,

cdy=.d, (3-2-38)
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¢) Nonlinear shear spring
There are two nonlinear shear springs in x and y directions. Hysteresis model of the nonlinear shear springs

is the same as that in the beam element.

Yield shear force

The yield shear force, Qy is calculated as,

0.23

Q, = {0'?\;33/?(5[))(3338) +0.85,/p, -0, +0.10, }b C (3-2-39)
where,

[oX : Tensile reinforcement ratio

Op : Compression strength of concrete

M/(QD) : =~ Shear span-to-depth ratio (=1/(2D) )

P, : Shear reinforcement ratio

Oy : Strength of shear reinforcement

o, ; Axial stress of the column

J : Distance between the centers of stress in the section (= (7/8)d ).
Crack shear force

The crack shear force is, Q. , is assumed as,

Q. = & (3-2-40)
3

Ultimate shear force

The crack shear force is, Q,, is assumed as,
Q, =Q, (3-2-41)

Crack shear deformation

The crack shear deformation is obtained as,

c
= _1 3-2-42

Yield shear displacement
The yield shear deformation is assumed as,

1
=— 3-2-43
7y 250 ( )
Ultimate shear displacement
The ultimate shear deformation is assumed as,
1
=— 3-2-44
Y 100 ( )
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Figure 3-2-12 Nonlinear shear springs in column
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¢) Modification of initial stiffness of nonlinear springs
The same modification can be done for the nonlinear springs of column element as described for those of

beam element by reducing the initial stiffness of the nonlinear spring and increasing the stiffness of the

elastic element as shown in the following figure:

A

7B —7
)9
0
0
AR
AN
u Moment distribution
M
M , M M
M, /- M, [
6EI  _
/ o= = +
M. |+ 24 ko = | M,
ki ek Ko r
o, 0, 0 4 9. 9, ¢
Elastic element Nonlinear bending spring
Increase @ Reduce @
stiffness stiffness
M M
/Il M y
/:’ +
1 MC
4 9 ¢
Elastic element Nonlinear bending spring

Figure 3-2-13 Modification of moment — rotation relationship
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Introducint the concept of “plastic zones”, the initial stiffness of the i-th multi-spring can be expressed as,

ko = % (3-2-45)

where E; : the material young’s modulus, A; : the spring governed area, and p, : the length of assumed

plastic zone. When p, — 0, it represents the infinite stiffness for rigid condition.

From Equation (3-2-7), when we consider the flexural flexibility in x-z plane, the flexibility matrix for the

nonlinear MS section is,

z

{%}: ]/Zk(i’xiz ° {M'y}: pZ/ZEiAiXiZ ° {M'y} (3-2-46)

€ 0 kag N, 0 pZ/ZEiA N,

Also, introducing the flexibility reduction factors, 7, (< 0), 7, (<0), 7, (< 0), the flexibility matrix of

the elastic element is,

L I
3B BRI

I' I'
f.l=| - 3-2-47
[f.] = 23 (3-2-47)

705_

Making the modified flexibility matrix to be identical to the original one,

] 1 T le I' II
I I >+ - 0
31, 6Bl ZEiAixi 3El, 6EI,
I' p I'
0 = 24 0
3EI, SEAX 23El
|' i
sym. —_— Pa P2, I
. sym. + + ¥y —
L EA_orlglnaI Yy ZEiA ZEiA Yo EA
L i i Jmodified
(3-2-48)
This gives the flexivility reduction factors as:
3 3 1
71=1="Pu 72 =170 70 =1-5(pa + Py) (3-2-49)

Adopting p,, = P,, = 10 as discussed for beam element, the reduction factors will be:

71=%,=07, y,=08 (3-2-50)
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d) Tri-linear hysteresis for nonlinear springs

The original hysteresis models used for steel and concrete springs are bi-linear types as shown in Figure

3-2-6. To control both the initial stiffness and yield displacement, it is convenient to define tri-linear type
hysteresis.

For the steel spring, the maximum-oriented model is adopted for the hysteresis before yielding, and the
tri-linear model is adopted after yielding as shown in Figure 3-2-14.

(a) before yielding point (b) after yielding point
S fy
sty ..... [ E A
k(l) — 1 1
: P.
dy

Figure 3-2-14 Normal tri-linear model for steel spring

The hysteresis of steel spring has the degradation point at the forces, sty and ¢ f , where v and ¢

v
are the arbitrary parameters (v <l ¢< 1). The STERA_3D Program adopts the values as:

v=1/3, ¢=05 (3-2-51)

Then, the yield deformation, Sd;, may be obtained by Equations (3-2-27) and (3-2-23) considering the
reduction factor y .

X
sy, = % (3-2-52)
y N +2,f,
+7
2.f, +2.1,
I T a2 3-2-53
d, (ay y] k. ( )
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The hysteresis of concrete spring is also defined as tri-linear hysteresis model as shown in Figure 3-2-9.
After compression yielding, strength degradation is considered by reducing the strength of the target point

in reloading stage.

dc

fc

fy

(a) hysteresis rule after compression crack point

dc

e )

(c) strength degradation rule

Figure 3-2-15 Tri-linear hysteresis model for concrete spring
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3.3 Wall

a) Section properties

wl
IW
Iw2
t
q l X > i L
. L[] L[] L[] OT L[] L[] L[] L[] L[] -0—0—0—0—’. L] L[] L[] L[] . . . .
v
y
I R S : Width of wall,
t : Depth of wall,
C1,C2 : Side columns,
aw : Area of rebars in a wall panel

Figure 3-3-1 Wall Section

Area of section to calculate axial deformation

Ay = Aver + Ay, L, +(ne —1)a,) (3-3-1)
where,

Ayc Avco : Area of section of side columns for axial deformation

ne =E,/E, : Ratio of Young’s modulus between steel (Es) and concrete (E)

Area of section to calculate shear deformation

Ag =Ag o+ A, +tl, Tk, k=12 (3-3-2)

where,

A A : Area of section of side columns for shear deformation

Moment of inertia around the center of the section

2 2
l, t° I I
Io=1, g+l et o+ Ay 2| +A o & (3-3-3)
y y,C1 y,C2 12 N,C1 2 N,C2 2
where,
lyci lyeo : Moment of inertia of side columns
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b) Nonlinear bending spring

To consider nonlinear interaction among M, — M y ~ N, , the nonlinear bending spring at the member
end is constructed from the nonlinear vertical springs arranged in the member section as shown in Figure
3-3-2.

y
Figure 3-3-2 Nonlinear bending springs

Displacement of the i-th nonlinear axial spring is,

& =&, + %Py, in a wall panel
& =&y —Yifa + X0y in a side column 1 (3-3-4)
& = &, — YVitho + X Py in a side column 2
N IZC 1 gZC
M 'yc ’ ¢yc
................. B

Figure 3-3-3 Equilibrium condition in the wall panel direction
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In the wall panel direction, all vertical springs in the nonlinear section are assumed to work against the

moment and the axial force. The equilibrium conditions are,

Nc N1 N2
M 'yc = Z:kigixi +Z:kigixi +Z:kigixi

= zc:ki (€, + Xi¢yc)xi +Zki (& = Yifa + Xi¢yc)xi +Zki (& —Yibyo + Xi¢yc)xi

Dy

Nec+N1+N 2 N1 N2 Nc+N1+N 2 ¢y
:{ Z‘,kixi2 _Zkixiyi _Zkixiyi Zkixij| ¢Xl
i i i i X2

&

zC

(3-3-5)

= zc ki (gzc + Xi¢yc) + z ki(‘c"zc - yi¢xl + Xi¢yc) + Z ki (gzc - yi¢x2 + Xi¢yc)

Pye

Nc+N1+N 2 N1 N2 Nc+N1+N 2 ¢il
:{ Zkixi _Zkiyi _Zkiyi Zki} ¢
i i i i X2

&

zC

(3-3-6)
where, Nc, N1 and N2 are the number of vertical springs in a wall panel, side column 1 and side column 2,

respectively.

Q M'\s . by

side column 1 side column 2

Figure 3-3-4 Equilibrium condition in the out of wall direction
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In the out of wall direction, we establish the equilibrium condition for each side column independently. The
equilibrium condition for the side column 1 is,

N1
M, = _Z kigi Y,

= _Z ki (gzc - yi¢x1 + Xi¢yc)yi

Py
N1 N1 N1 ¢
{—Zkixiyi 2 kiyl 0 —Zkiyi} y
i i i ¢x2
gZC
(3-3-7)
Also, for the side column 2,
N2
MIXZZ_Zkigiyi
N2 |
= _Zki (gzc - yi¢x1 + Xi¢yc)yi
Py
N2 N2 N2 ¢
{—Zkixiyi 0 X kiyf —Zkiyi} y
i i i ¢x2
gZC
(3-3-8)
In a matrix form
[ Ne+N1+N2 N1 N2 Nc+N1+N2 ]
Zkixi2 _zkixiyi _Zkixiyi Zkixi
M' NI N1 I NI 7/ @
yc 2 yc yc
M " Z i |y| Z |y| Z |y| ¢xl ¢x1

= :[k
M _szkixiyi 0 NZZ:kiyi2 _sz:kiyi Py2 *7 d.,

i i
Nc+N1+N2 Nc+N1+N2

Zkixi _ikiyi _Nziz:kiYi Zki

zC

(3-3-9)

Therefore

¢yc M 'yc M 'yc

M' M

P | _ e JIM e Lo M (3:3-10)

¢x2 M I><2 M 'x2

gZC N IZC N lZC
For both ends
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Pyac M')ac
b M’
Dun M a2
Cae | _ Upr] 0 } N nc (3-3-11)
Dyae 0 [f pB ] M’ e
b1 M1
D2 M6z
€me N,

For the out of wall direction, each side columns behave independently in the same way as the column
element. Therefore, we discuss here only the hysteresis model in the wall panel direction. Hysteresis model
of nonlinear bending spring is defined as the moment-rotation relationship under the symmetry loading in
Figure 3-3-5. The initial stiffness of the nonlinear spring is supposed to be infinite, however, in numerical

calculation, a large enough value is used for the stiffness.

Moment distribution

M , M M
M y / —9 M y /o
2Bl _
M, |/ Ko = B - * M,
,’?ak =0€yk \kpzoo
o, 6, 0 ¢ 4 9
Elastic element Nonlinear bending spring

Figure 3-3-5 Moment — rotation relationship at bending spring
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The yield moment, M is obtained from the equilibrium condition in Figure 3-3-6 as,

y

M, =aol, +0.5a,0,I, +0.5NI, (3-3-12)
where,

a, Total area of rebar in the side column

o, Strength of rebar in the side column

a, Total area of vertical rebar in the wall panel

Oy Strength of rebar in the wall panel

N Axial load from the dead load

N
—
N

Figure 3-3-6 Equilibrium condition under yielding moment

The crack moment, M _ is assumed to be,

C

M, =0.3M, (3-3-13)

The tangential stiffness at the yield point, ky , is obtained from the following equation,:

k,=0.2K, (3-3-14)

The yield rotation of the nonlinear bending beam, ¢y , is then obtained from,

1 M
¢,= (— - 1JK—OV (3-3-15)

Ay

where, the stiffness degradation factor, «,, is assumed as,

a, =0.02 (3-3-16)
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b) Nonlinear vertical springs

The nonlinear bending spring is constructed from the nonlinear vertical springs arranged in the member
section as shown in Figure 3-3-6. This model is based on the concept of “Multi-spring model” and
modified for the wall element by Saito et.al. The vertical springs in the side columns are determined

independently in the same way as the Multi-spring models of columns. The wall panel section is devided in

5 areas, and a steel springs and a concrete spring are arranged at the center of each area.

» i L X » i L
» L | » L |
v
y
(a) Original column section
1 2 6 7
L@ ®©.®
-B70 ® ® X ® - :0:10
® 11 12 1 14 15 © @
3 4 8 9
y (O Concrete spring

® Steel spring

(b) Multi-spring model

f (tension)

(compression)

(c) Hysteresis of steel spring

(tension)

(compression)

(d) Hysteresis of concrete spring

Figure 3-3-7 Nonlinear vertical springs
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Strength of steel spring in wall panel
The strength of the steel spring in the wall panel is one-fifth of total strength of rebars in the section,

_a,0,

fy = c (3-3-17)
where,

a, Total area of vertical rebar in the wall panel

Oy : Strength of rebar in the wall panel

Strength of concrete spring in wall panel
The strength of the concrete spring in the wall panel is one-fifth of total strength of concrete in the section,

0.85A,0%
fy=—r— (3-3-18)
where,
Ap : Total area of wall panel section
Og : Compression strength of concrete

Yield displacement of vertical spring in wall panel
The yield displacements of steel and concrete springs in the wall panel are assumed to be the same as those

of the springs in the side columns.

¢) Nonlinear shear spring
There are three nonlinear shear springs in x direction in wall panel and y direction in side columns.

Hysteresis model of the nonlinear shear springs is the same as that in the beam element in Figure 3-1-4.

Yield shear force

The yield shear force, Qy is calculated as,

0.23

Q, = {O'(:\i?’/?(‘m)(j%z;s) +0.85,/p, -0, +0.10, }b ] (3-3-19)
where,

P : Tensile reinforcement ratio

Opg : Compression strength of concrete

M/(QD) : =~ Shear span-to-depth ratio (=1/(2D) )

P, ; Shear reinforcement ratio

Oy : Strength of shear reinforcement

o, ; Axial stress of the column

i ; Distance between the centers of stress in the section (= (7/8)d ).
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Crack shear force

The crack shear force is, Q,, is assumed as,

Q. =

Q

3

Ultimate shear force

The crack shear force is, Q,, is assumed as,

Q,

=Q,

Crack shear deformation

The crack shear deformation is obtained as,

e

_Q
GA

Yield shear displacement

The yield shear deformation is assumed as,

7y

_ 1
250

Ultimate shear displacement

The ultimate shear deformation is assumed as,

Yu

_ 1
100

_le _Qxc

Figure 3-3-8 Nonlinear shear springs in the wall
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¢) Modification of initial stiffness of nonlinear springs

The same modification can be done for the nonlinear springs of wall element as described for those of
beam and column elements by reducing the initial stiffness of the nonlinear spring and increasing the

stiffness of the elastic element as shown in the following figure:

Moment distribution

M , M M
S0 —
M y / M y
2Bl _
/ s = +
M, / Ko = | M,
,’gak =0!yk \kpzoo
g, 6, 0 ¢ 9 ¢
Elastic element Nonlinear bending spring
Increase @ Reduce @
stiffness stiffness
M M
! M,
+
1 M .
Elastic element Nonlinear bending spring

Figure 3-3-9 Modification of moment — rotation relationship
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Introducint the concept of “plastic zones”, the initial stiffness of the i-th multi-spring can be expressed as,
ki _ Ei AI
b =———

(3-3-25)
P,

where E; : the material young’s modulus, A; : the spring governed area, and p;, : the length of assumed
plastic zone. When p, — 0, it represents the infinite stiffness for rigid condition.

In the same manner of beam and column elements, introducing the flexibility reduction factors,
7, (<0), 7, (<0), 7, (< 0), the flexibility matrix of the elastic element is,

- . )
"3EI. T eEI
I|
72 3E1,
o
"U3E1, T 6El,
II
[ ] 72 (3-3-26)
3EI
o
"3E1, T 6El,
Il
sym.
Yy 7/23E|2
Il
I VOEAC_

Also, adopting p, =

— as discussed for beam and column elements, the reduction factors will be:
y,=v,=07, y,=038

(3-3-27)
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3.4 External Spring

Figure 3-4-1 Element model for external spring

A) Nonlinear vertical spring

In STERA _3D, the external spring is attached at the base of the building to express the stiffness and
strength of the foundation of the building. In such a case, hysteresis model of the nonlinear vertical spring
is defined as the axial force — displacement relationship as shown in Figure 3-4-2; where, bilinear skeleton

is defined only in compression side, and the spring has zero stiffness in the tension side assuming that the

building detaches from the ground.

(tension)

|

(compression)

Figure 3-4-2 Hysteresis model of the external spring

Initial stiffness

The initial stiffness of the vertical stiffness can be obtained from the following equation:

kK, =a; A (3-4-1)
where,

ag : Dynamic ground coefficient (kN/m?)

A : Area of foundation under column or wall element (m?)
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3.5 Base Isolation
The element model of base isolation consists of shear springs arranged in x-y plane changing its direction

with equal angle interval as shown in Figure 3-5-1. This model is called MSS (Multi-Shear Spring) model

developed by Wada et al.

X /pzx / g, U,
,ﬂy - < %@9) X
| ‘ >

y

Figure 3-5-1 Element model of base isolation

A) Nonlinear shear spring

The hysteresis model of each nonlinear shear spring is defined as a bi-linear model as shown in Figure

3-5-2. The force and displacement vectors of i-th shear spring are expressed as,

Qi | cos o, 351
0. [~ |sing, |® (3-5-1)

u
u, =[cosd, sing, ]{ux} (3-5-2)

y

From the relationship, g; = K;U;, the constitutive equation of i-th shear spring is,

i cosd, u 2 0. sing, |[u
i —k| T coso, sing} *l=| _6' cos'alzsmel " (3-5-3)
iy sin g, u, cosé, sin 6, sin“ g, uy

oF
fy ky iy oF
/Y ) A= o
8

Figure 3-5-2 Hysteresis model of the shear spring
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From the sum of all nonlinear shear springs in the element, the constitutive equation of the base isolation

element is,

Q, N cos’d,  cos@ sing, ||[u,
= 2k ! L (3-5-4)
Q) (= '|cos@ssing  sin?, u,
where, N is the number of shear springs in an element. In STERA_3D, N=6 is selected.

First and second stiffness
We assume that all nonlinear shear springs in an element have the same stiffness and strength. The initial
stiffness of the base isolation element, K, , is obtained from Equation (3-5-4) by substituting

u,=4u, =0.

N
K, = (Z cos? 6, jko (3-5-5)
i=1

Therefore, the initial stiffness of each shear spring is,

K
Ky = —>— (3-5-6)
D cos? 6,
i=1
The same relationship is established for the second stiffness after yielding,
K y
ky = (3-5-7)
D cos? 6,
i=1

where, Ky and ky are the second stiffness after yielding for the base isolation element and the

nonlinear shear spring, respectively.

Yield shear force
The yield shear force of the base isolation element, Qy , is obtained assuming that all the nonlinear shear
springs reach their yielding points except the spring perpendicular to the loading direction, and the increase

of the force after yielding is negligible (Figure 3-5-3). That is,

N
Q= (Z|COS 9i|j fy (3-5-8)
i=1
Therefore, the yield shear force of each shear spring is,
9
y — N
> |cosé,|

i=1

f (3-5-9)
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y

Figure 3-5-3 Assumption of yield shear force
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3.6 Masonry Wall

Figure 3-6-1 Element model for masonry wall

A) Nonlinear shear spring

Hysteresis model of the nonlinear shear spring is defined as the poly-linear slip model as shown in Figure

3-6-2.
Q
S S
Q,
ol

Qc 0 - a ]/
o/

[0}

Yo ¥, Y y

Figure 3-6-2 Hysteresis model of the nonlinear shear spring

The characteristic values, Q.,Q,,Q,are obtained based on the formulation described in the reference

(Paulay and Priestley, 1992).

The procedure to obtain the shear strength is shown below:
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(1) Compression strength of masonry prism

The compression strength of the masonry prism ( ') is determined by the following equation (Paulay and

Priestley, 1992),

' (Fptaf'y)

- ' : (3-6-1)
" U u ( f th +of cb )
j
o= 3-6-2
4.1h, ( )
where,
' : Compressive strength of the brick
'y : Tensile strength of the brick (= 0.1 ')
f; : Compressive strength of the mortar
j : Mortar joint thickness
h, : Height of masonry unit
U, Stress non-uniformity coefficient (=1.5)
(2) Shear strength by sliding shear failure
There are two types of shear failure; one is sliding shear failure which is determined by,
I
= Tolm (3-6-3)
(11— utan@)
where,
T : Cohesive capacity of the mortar beds (=0.04 f',) (Paulay and Priestly, 1992)
y7, : Sliding friction coefficient along the bed joint
1=0.654+0.000515f"; (Chen et.al, 2003)
o : Angle subtended by diagonal strut to horizontal plane
(3) Shear strength by diagonal compression failure
V, = Ztf ', cos@ (3-6-4)

where,
Z : Equivalent strut width
Z =0.25d,,,d, is diagonal length (Paulay and Priestley, 1992)

t : Thickness of masonry wall
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(4) Characteristic values of nonlinear skeleton

The shear resistance, Q,, is calculated to be the minimum value between the shear strength by sliding

shear failure, V;, and the shear strength of diagonal compression failure, V_, that is,

Q, =min(V,V,) (3-6-5)

The shear displacement at the maximum resistance, y,, is obtained as (Madan et al.,1997),

8Im d m
- 3-6-6
"y T cos0 (3-6-6)
where,
& : Compression strain at the maximum compression stress
(&', =0.0018, Hossein and Kabeyasawa, 2004)
Initial elastic stiffness is assumed as (Madan et al., 1997)
ko =2Q, /7, (3-6-7)
From Figure 3-6-2, the shear resistance at crack, Q,, is obtained as,
Q, —akyy
Q =" (3-6-8)
l-«
where, « is the stiffness ratio of the second stiffness and assumed to be 0.2.
Shear displacement at crack is then obtained as,
Ve = Qc /ko (3'6'9)

Shear resistance and displacement at the ultimate stage are assumed as (Hossein & Kabeyasawa, 2004)
Q, =0.3Q, (3-6-10)
7y =3.5(0.01h;, —7,) (3-6-11)

where, h,, is the height of masonry wall.
References:

1) T. Pauley, M.J.N. Priestley, 1992, Seismic Design of Reinforced Concrete and Masonry building, JOHN
WILEY & SONS, INC.

2) Hossein Mostafaei, Toshimi Kabeyasawa, 2004, Effect of Infill Walls on the Seismic Response of
Reinforced Concrete Buildings Subjected to the 2003 Bam Earthquake Strong Motion : A Case Study of
Bam Telephone Centre, Bulletin Earthquake Research Institute, The university of Tokyo

3) A. Madan,A.M. Reinhorn, ,J. B. Mandar, R.E. Valles, 1997, Modeling of Masonry Infill Panels for
Structural Analysis, Journal of Structural Division, ASCE, Vol.114, No.8, pp.1827-1849
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B) Vertical springs

For the moment, the vertical springs of the element model in Figure 3-6-1 are assumed to be elastic springs.

N',,=k,&',, N',,=k,&,, (3-6-12)
k,=E,(l,)/2 (3-6-13)
where,

E, Modulus of elasticity of masonry prism (=550 ', , FEMA 356, 2000)

t X Thickness of masonry wall

Width of masonry wall
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3.7 Passive Damper

A) Hysteresis damper

Hysteresis damper is modeled as a shear spring as shown in Figure 3-7-1.

ale 0wl

Wy |

Xxc ! XC

Al I\ﬁ A2| 1
A
|

Figure 3-7-1 Element model for passive damper

Three types of hysteresis model are prepared for the force-deformation relationship of the spring.

0 ‘ g ) g y
f y
y fy o . LI — =
//' /C/ ..... ky f. L 1
Lj ’ L ko Ui Z ko
(a) Bi-linear (b) Normal-trilinear (c) Degrading-trilinear

Figure 3-7-2 Hysteresis model of the shear spring

116



B) Viscous damper

Viscous damper is modeled as a shear spring as shown in Figure 3-7-3.

ale 0wl

= H
Al ; ! p2| o |
|

Figure 3-7-3 Element model for passive damper

(1) Algorithm for oil damper devise

Figure 3-7-4 shows the Maxwell model with an elastic spring with stiffness, K,, and a dashpot with

damping coefficient, C.

Ky c
Node i Node j
Fky Uk FC! u.
Figure 3-7-4 Maxwell model
Since the elastic spring and the dashpot are connected in a series,

where, F, : force of the elastic spring
F, : force of the dashpot

F; : force between i-j nodes
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The force of the elastic spring, F,, is obtained as,
where, u, : relative displacement of the elastic spring
u, : relative displacement of the dashpot

uj; : relative displacement between i-j nodes

For an oil damper, the force-velocity relationship of the dashpot is defined as shown in Figure 3-7-5.

Fe

~

relief point

.'::I\‘I = l:IC
Figure 3-7-5 Dashpot element
The force of the dashpot after the relief point is,
F.=C,u, +Q, (3-7-3)
Substituting Equations (3-7-2) and (3-7-3) into (3-7-1)
When the time interval At is small enough, the velocity at time t can be expressed as,
Au(t)
u(t)=—=— 3-7-5
(=4 (3-7-5)
Au (t) =u, (t) —u, (t — At) (3-7-6)
Substituting above equations into Equation (3-7-4),
Kglu;i (t) —u, (t—At) )-
Au,(t) = oy 0 —u (- a)-Q. (3-7-7)
C2
At

The algorithm to obtain the force F; (t) from uy (t) is as follows:
1) Evaluate Au.(t) from Equation (3-7-7)
2) Evaluate u,(t) from Equation (3-7-6)
3) Evaluate F;(t) from Equation (3-7-2)
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Before the relief point of the dashpot, Equation (3-7-7) will be obtained by changing C, - C,, Q,=0

as
Au, (t) = Kq (uij g) —Uc(t- At))
L 4K,
At

(3-7-8)

When the velocity of the dashpot is over the negative relief point, Equation (3-7-7) will be obtained by

changing Q, - —Q.,

K (U (©) —u  (t— A1)+ Q,
&-i- Kyq
At

Aug(t) =

In case there is no elastic spring,

Node i

FC! uc

Figure 3-7-6 Dashpot element without elastic spring

u; (t) =u, (t)
I:uj = Fc = Czuc +Qc

Au,(t) B Au;; ®)
At At

U (t) =

Therefore,
Au ()

Fij (t) = Cz At

+Q,

Before the relief point of the dashpot,

Auij (t)
Fij (t) = Cl At
When the velocity of the dashpot is over the negative relief point,
Aus (1)
— i
Ry =C,— = -Q,
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Fij, Uij

(3-7-10)

(3-7-11)
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(2) Algorithm for viscous damper devise

Figure 3-7-7 shows the Maxwell model with an elastic spring with stiffness, K;, and a dashpot with

damping coefficient, C.

Ka C  —

Node i Node j

Fkv uk FC! uc

Figure 3-7-7 Maxwell model

Since the elastic spring and the dashpot are connected in a series,
F=F=F (3-7-13)
where, F. : force of the elastic spring
F. : force of the dashpot

F; : force between i-j nodes

The force of the elastic spring, F,, is obtained as,
Fie = Kguy = Kq (U —uc) (3-7-14)
where, u, : relative displacement of the elastic spring
u, : relative displacement of the dashpot

u;; : relative displacement between i-j nodes

For a viscous damper, the force-velocity relationship of the dashpot is defined as shown in Figure 3-7-8,

Fo 03

Figure 3-7-8 Dashpot element
That is,
F. =Csgn(u. (®))u, (1) (3-7-15)
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From Equations (3-7-13) and (3-7-14)
F; (1)

d

+u, (t) = uy (1) (3-7-16)

Taking time differential and substituting Equation (3-7-15) give

lla
R () F; () .
é—+sgn(Fij (t){‘ JC ‘J =1y (t) (3-7-17)

d

The numerical integration method, Runge-Kutta Method, can be used to solve the Equation (3-7-17).

In general, the solution of the differential equation, y(t) = f(y,t), is obtained by Rungu-Kuttta Method as

follows:
Y = Yn "'%(ko + 2k, + 2k, +ky) (3-7-18)

ko = f(y,.t,)At

ky=f(y, +ko/2,t, + At/ 2)At
k, = f(y, +k /2,t, + At/ 2)At
ks = f(y, +k,,t, + At)At

Equation (3-7-17) can be written as

la
- . |y )
B0 =| 050 -son(Fy ) = | |Kq (3-7-19)
Applying Runge-Kutta Method gives the following algorithm,
1

Fij (ta) = Fy (t5) +€(ko (t) + 2Ky (t,) + 2K, (t,) +Ka (t,)) (3-7-20)

‘F (t ) la
ko =] Uj (t,) —sgn(Fij (tn){ ian ] K, At

la
|Fy (t) +k /2

ky =| Uy (t, + At/ 2) —sgn(F; (t,) + Ko /2 e L

Ky =| Uy (t, +At/2) —sgn(F (t,) + K, /2

Py (t) + K, /2\}”“
BT kg

‘Fij(tn)Jsz‘ )
kg = Uy (t, + A —sgn(Fy (t,) +k, S| [Kaat
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In this algorithm, it is assumed as,
U (t,) + U (t, + At)
2
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4, Freedom Vector

4.1 Node freedom

Each node has six degrees of freedom and the freedom number is defined as shown in Figure 4-1-1.

Z 3 7.
A
6 1
X 1 Vi) > X
4
5 5 R 8
Y Y Y
2
(a) lateral and rotational displacement (b) shear deformation of connection

Figure 4-1-1 Global coordinate

4.2 Freedom vector

The freedom vector is defined to indicate the number of all freedoms of the structure, where the restrained
freedom is set to be zero. For the structure in Figure 4-2-1, the freedom vector has zero components for the
fixed nodes (Nodes 1-4) and eight components for other nodes (Nodes 5-8). Therefore, the total number of

freedom of the structure is 8x4 = 32.
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5 6
77 AV
7 8
17 K
2
ST
3 4
Y24 Y24
V’)w) shear deformation of connection

Figure 4-2-1 Example of the freedom vector
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4.3 Dependent freedom
(1) Rigid floor assumption
In the default setting, the floor diaphragm is assumed to be rigid for the in-plane deformation. Therefore,

the in-plane freedoms at the nodes in a floor are represented by the freedoms at the center of gravity of the
same floor.

6
/\5_,1 5’8@@;)4,7

(a) In-place freedoms (b) Out-of-plane freedoms

2

Figure 4-3-1 In-plane and out-of-plane freedom

For example, the in-plane freedoms at the node, A, in Figure 4-3-2 are expressed by the in-plane freedoms
at the center of gravity, G, as follows:

Uya 10 IyA Uy
Uar=10 1 —L,}ue (4-3-1)
0,, 0 0 1 |6,

G: center of gravity

G >
IxA

la

A ezA

u
yA
Figure 4-3-2 Rigid floor assumption

For the structure in Figure 4-3-2, in addition to the original nodes, a new node for the center of gravity is
added to the each floor. Also, the freedom vector has zero components for the in-plane freedoms at the

nodes except the center of gravity. Therefore, the total number of freedom is 23.
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Node 1-5

Node 6

Node 7

Node 8

OOHOCOXWIHNOOUHROWNHO OO O

Node 9

\/D shear deformation of connection

Node 10

2
0
0

Freedom vector

Figure 4-3-2 Example of the freedom vector with rigid floor assumption
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(2) Including wall element

The wall element model has rigid beams at the top and bottom of the wall, therefore, as shown in Figure

4-3-3, the rotation angles in the wall panel plane, Hyl and & are dependent to the vertical

y2
displacements, &,, and J,,. Also, the horizontal displacement in the wall panel plane, Uu,,, is

dependent to the displacement, U, . The connection is assumed to be rigid.

0

y2
4
A

0,

) 0. =60 = 522 _521
b yl = Yy2 — W

521 U 522
................ x1 uxz uxl = UXZ
B " ’ e " :
w

Figure 4-3-3 Relationship between node displacements for a wall element (X-wall)

In a matrix form;
1 0 0 [[uy,

uxl
0,r=|0 -1l/w 1/wikd, (4-3-2)
0,, 0 -1/w 1/w||o,,

In case of Y-direction wall, the relationship can be written as;

1 0 0 |fu,
0,r=10 U/w -1/wid, (4-3-3)
0., 0 l/w -1/w||o,,

Figure 4-3-4 Relationship between node displacements for a wall element (Y-wall)
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For example, for the structure in Figure 4-3-4, the total number of freedom is 17.

0
Node 1-5 :
0
0
0
1
2
Node 6 0
0
0
0
0
0
3
Node 7 4
0
0
0
0
0
0
5
Node 8 6
7
0
8
9
0
0
10
Node 9 11
12
0
13
14
15
16
0
Node 10 8
17
0
0

Freedom vector

105
8 9
7] @
1 2
777 - /e
3 7 4

\/j shear deformation of connection

Figure 4-3-5 Example of the freedom vector with a wall element
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(3) Series of walls

In case several walls are joined together in series, it is assumed that all walls are connected by rigid beams
at the top and bottom. Therefore, as shown in Figure 4-3-6, the rotation angles in the wall panel plane, ‘9y1
and 6, , are dependent to the vertical displacements, J,, and J,,. Also, the horizontal displacement in

the wall panel plane, U,,, is dependent to the displacement, U, . The connection is assumed to be rigid.

O
/ﬁf

yl
A
0,
T uxl
' -
Wl
5ZN _521 S
0, =0,,==0, = L:I(Zwi
=1

uxl :uxz :'“:uxN

Figure 4-3-6 Series of wall connected by a rigid beam (X-wall)

In a matrix form;

5
0, =[-1/L 1 L]{ “} (4-3-4)
O

s, =f-L/L L /L]{?l} (4-3-5)

ZN
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In case of Y-direction wall, the relationship can be written as;

exl

uylzuyz :...:uyN

Figure 4-3-7 Series of wall connected by a rigid beam (Y-wall)

In a matrix form;

0, =/ -1/ L]{?l} (4-3-6)

ZN

s, =f-L/L L /L]{?l} (4-3-7)

ZN
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(4) Transformation matrix for dependent freedom

In case of rigid floor assumption, Equation (4-3-1) expresses the relationship between dependent freedom

and independent freedom, that is;

Uya 10 IyA Uy
Upp=|0 1 —ls Uye
0, 0 0 1 O,
Dependent freedom Independent freedom

It can be arranged into the transformation matrix between the freedom vectors of all nodes;

k7 m
1 uxA T ) ! A
Uyn 0 1 -1,
§ZA _ U,s k
7N Ug| 1
HYA 526
0, 0 0 1 O,
. 0,6
Oc| m
- — —
Dependent freedom [T] Independent freedom

Since the most components of the transformation matrix, [T,], are zero, the components of [T,] are

remembered using two matrices, [N,] and [F,].

[N| ]= 7 Koo B4 Matrix for independent freedom numbers

[FI ]: 1 1|yA0 .. ; Matrix for transformation components from independent freedoms
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It will reduce the memory size dramatically.
In the same way, for the case of including wall elements, Equation (4-3-2) expresses the relationship

between dependent freedom and independent freedom, that is;

u,, 1 0 0 ||u,,
Hyl =0 -1/w 1l/w 5y1
49y2 0 -1/w 1/w 5y2
Dependent freedom Independent freedom

It can be arranged into the transformation matrix between the freedom vectors of all nodes;

p q r

Uy 0 | )
J 6’y1 - H-w 0 1-fw 5y1 p
0,, -1/w ) 1fw U, | ¢
Opo|

Ui _ _ T

Dependent freedom [T] Independent freedom

The components of two matrices, [N,] and [F,] will be;

[N, ]= jif-pokOf- : Matrix for independent freedom numbers

[FI ]: J4—T TS Q-5 Matrix for transformation components from independent freedoms
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Initial conditions of [N,] and [F,] are:

IN,]= iti—0-0+4; [F ]=i+1—0-0

4.4 Formulation of independent displacement of the element

In Figure 4-4-1 (rigid connection), the element node displacement vector of the beam element between
Node 8 and Node 9 is,

0,0 Oi5 Of (4-4-1)

{UZS u29 HyB y
Those displacements correspond to the location numbers in the freedom vector as;

0,, O, 0o =45 51 47 53 43 49} (4-4-2)

{U z8 uzg 0y8 y

Node 1-5

u28 u29

gl

0,0

Node 6 33

Node 7 39

Node 8 45

S
(@]
OOV WJOOOHUIIRODOODWNHRHOOO O

Node 9 511 10 1 Z

Node 10 58| 0 v

60| 15 (rigid connection)

Freedom vector

Figure 4-4-1 Example of location matrix for beam element
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From rigid floor assumption, the components of independent matrices, [N,] and [F,] will be;

43155 60 O 4311 |y8 0
45145 0 O 4511 0 O
47147 0 O 4711 0 O
[NI]= ) [FI]: (4-4-3)
49155 60 O 49 |1 |yg 0
51151 0 O 5111 0 O
53|53 0 O 53|11 0 O

From the matrix, [N,], the freedoms of (43) and (49) are replaced to the independent freedoms (55) and

(60). Therefore, the independent location numbers and freedom numbers of the beam element are:

y8 Hyg 5)(8 §x9}T

= {45 51 47 53 43 49}

= {45 51 47 53 55 60} ; independent location number
= u28 uzg 9y8 9y9 uxlO 9210}T

={5 8 7 10 11 13}"; freedom number

{uzs u29 9

(4-4-4)
The transformation from independent displacements (= global node displacements) to element node
displacements is obtained from the matrix, [F, ], as follows:

qu 1 O qu qu

uzg 1 u29 uzg

0 1 17 0

QVB - . gys =[T.s] eys (4-4-5)
y9 y9 y9

5)(8 1 |y8 uxlo leo

5)(9 _0 11 y9 | 0210 0210
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The constitutive equation of the beam element and formulation of global stiffness matrix from element
stiffness matrix are shown below:

U .T

9
y8
y9

10

<o

710

5 7 10 11 13
5 _k5,5 s Ks7 Kego  Ksyy  Ksyg | Uz
8 Kes Ks7 Keso  Kein  Keas || Usg
7 o k rss | O
10 10,10 kl(‘),u\ k10,13 0y9
11 sym. Ki111 \\K%l,13 Usao
13| klﬁ,‘b’z\ .10
J\ Locate element stiffness
Element stiffness matrix t

\\ according to the freedom number

12345 6 7 8 9 10 11 12 13

n \\\\ ;
2

3

4 \

5 Kss Ks7  Ksg k\?,lo Ks 11 Ks 1
3] v

7 . S
8 8,8 Keio  Keus Kg 1
9

10 Kioso  Kions K101
11 sym. k11,11 kll,lS
12
13| k13,13_

Global stiffness matrix

Figure 4-4-2 Formulation of global stiffness matrix

In general, the transformation from independent displacements (= global node displacements) to element
node displacements for the X-beam is described as Equation (2-1-10).

[T}

Uy

(2-1-10)

u

n
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And the constitutive equation of the X-beam is also described in Equation (2-1-16).

Pl ul

P. u

:2 =[K,s] ;2 (2-1-16)
Pn un

Using the same procedure in Figure 4-4-2, the element stiffness matrix is added into the global stiffness
matrix.
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5. Equation of motion

5.1 Mass matrix

In the default setting, the mass at each node is identical and equally distributed as

M-le

i floor
floor

(5-1-1)

. total number of nodes in the

where, M, : mass at the node i, M, : total mass of the floor, N, :

floor *

floor.

However, you can change the mass at each node depending on the place of the node by setting “proportion
to influence area” in Option Menu. In this case, the mass at each node is determined from the following

equation:

M, =LM

= A (5-1-1)

floor
floor

where, A, : influence area of node i, A, : total area of the floor. Influence area of the node is different

floor

depending on the place of the node as shown in Figure 5-1-1.

» X TM' yy > X
I
Air Mi A, M liy
Gy
< > ) Is
k Iix MG
Ak, Mg
v v G : center of gravity of the floor
Y Y
(1) Influence area of the node (2) Mass and radius of gyration at G

Figure 5-1-1 Mass and radius of gyration at the node

The process to determine the mass based on influence area is as follows:
Step 1. Calculate the slab area (block with cross mark).

Step 2. The are of the block is divided equally to the corner nodes. (Figure 5-1-2.)

Step 3. If there is no corner node, the area is divided equally to the all nodes in a floor. (Figure 5-1-3)
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Figure 5-1-2. Influence area of the node (red)

Figure 5-1-3. Distribution of the rest area

Example)  Floor weight = 700kN

700kN/8 50kN+12.5
= 87.5kN 87.5kN — 62 5KN 112.5kN

5kN 112.5kN
87 87.5kN

62.5kN

87.5kN 87 5kN 62.5kN

112.5kN

87.5kN 87.5kN 62.5kN 112.5kN
(a) Same for all nodes (b) Proportional to influence area

Figure 5-1-4 Example of mass distribution
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In case of rigid floor assumption, in-plane freedoms at the nodes are dependent to the freedoms at the
center of gravity of the floor. Therefore, the mass at the center of gravity, M, is,

M G~ M floor (5-1-2)

The radius of gyration at the center of gravity, Ig, is obtained from the following equation:

N
o => M, (12 +17) (5-1-3)

where, N is the total number of the nodes at the floor. The radius of gyrations at other nodes are,
l.=0, i=1---,N (5-1-4)

The mass matrix is obtained as,

.0 0 :
0 :
uxi Ivli Mi
U, M; M;
[M]_é‘zi MI Mi
_gxi I = I (5-1-5)
0, 1, I
ezi II Ii
0 .
_0 O ' - — -

Since the mass matrix has only diagonal components, those components are saved in one-dimension vector.

For example, the mass vector of the structure in Figure 5-1-5 will be as follows:

Ms
Node 6 0
M,
Node 7 0
M, L\
0 6 ! I@
Node 8 0 105
M, 8 9
0 D NP
Node 9 0 1 2
M 77777 v/
M 10 3 7 4
Node 10 I, /e e

Figure 5-1-5 Example of mass vector
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5.2 Stiffness matrix

As shown in Figure 4-4-2, the global stiffness matrix [K] is formulated from element stiffness matrices

U .T

9
y8
y9

10

<o

710

5 7 10 11 13
5 k5,5 5.8 Ks 7 5,10 k5,11 k5,13 Usg
ks,s k8,7 Kg 10 ks,n k8,13 U,g
k7,7 \k7,11 k7,13 Hyg Example of beam element
10 10,10 kl(‘),u k10,13 0y9
11 sym. K111 \\‘K11,13 Usio
13| k1£,‘12\_ .10
«.  Locate element stiffness
Element stiffness matrix N .
', according to the freedom number
12345 6 7 8 9 10 11 12 13
1] ]
2
3 “.
4
S Ks 5 Ks; Ksg 510 k5,11 k5,13
6 v
7 o K Ca Ko
8 8,8 ks,lo ka,n ks,13
9
10 k10,10 k10,11 k10,13
11 sym. 1141 k11,13
12
13 | k13,13 |

Global stiffness matrix

Figure 5-2-1 Formulation of global stiffness matrix
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5.3 Damping matrix
In STERA 3D program, the damping matrix is formulated in the following way:

1) Proportional damping to initial stiffness matrix

The damping matrix is defined from the following equation:

2h
[c]==[K,] (5-3-1)
@,
where, h: damping factor, «; : circular frequency of the first natural mode, [KO]: the initial stiffness.

2) Proportional damping to spontaneous stiffness matrix

The damping matrix is defined from the following equation:

[c]= 2—; [k b ] (5-3-2)

where, h: damping factor, @,: circular frequency of the first natural mode, [KpJ: the spontaneous

stiffness changing according to the nonlinearity of structural elements.

3) Damping matrix of a base isolation building
In an actual design practice for the base isolation buildings, it is common to assume zero viscous damping

for the base isolation floor. In this case, the damping matrix is defined as:

2h
[C] = E [Kupper ] (5-3-3)

where, [K J: the stiffness matrix consisted with upper structures without base isolation elements.

upper

4) Damping matrix from viscous damper devices
If there are some viscous damper devices in a structure, in addition to the proportional damping matrix, the

global damping matrix formulated from element damping matrices are considered as:

[c]=[c,.]+[c.] (5-3-4)

where, [CpmJ: the proportional damping matrix, [Cv]: the global damping matrix formulated from

element damping matrices in the same manner of the global stiffness matrix.
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5.4 Input ground acceleration

Earthquake ground motions are defined as three components acceleration; XO, Y'O and ZO, inX,YandZ

directions. The inertia forces at node i are defined as,

_Mi(uxi+xo) l‘jxi 100 Xi
—Mi((uyi+Y'0)) U, 0 1 0] U, p
M6, +Z,)| 5, 00 1], 5, .
) __[M]éxi -MIy 0 o ; __[M}éxi ~[M]u] ; (5-4-1)
—|i§yi 0, 000" [@i °
~1,6 000 Z

i~z

For example, the components of the matrix [U ] of the structure in Figure 5-4-1 will be as follows:

XOYOZO
0 0 1]
Node 6 0 0O
001
Node 7 0 0O
0 0 1 L\
00 0 5 W) 7I@
Node8 |0 0 O 105
0 01 8 / 9
000 J N
Node 9 0 0O 1 2
100 77/77“5 /e
010 3 # A
Node10 |0 0 0 e 777

Figure 5-4-1 Components of the matrix [U ]
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5.5 Equation of motion

Equilibrium condition of the structure under earthquake ground motion is:

X,
[Cha}+ [k Juj=-[Mfaj-MJU R Y,

—_—

Z,
. /
Damping force - — _

Restoring force Inertia force

Finally the equation of motion is obtained as:
X,
M faj+[Cla+ [Kfuj=—[MJUR Yo = {P)

Z,
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6. Structural Analysis

Two numerical integration methods are prepared; one is the Newmark-B method with incremental
formulation using a step-by-step stiffness matrix, and another one is the Force correction method using a
step-by-step stiffness and a force vector together. In case it is difficult to define the step-by-step stiffness of
the element such as the case of using a viscous damper element, automatically the Force correction method
is selected.

6.1 Newmark-f method

The incremental formulation for the equation of motion of a structural system is,
[M Jiaa,j+[Clav,j+ K iad, - {af } = {ap;} (6-1-1)

where, [M], [C] and [K] are the mass, damping and stiffness matrices. {Ad,}, {Av,}, {Aa,} and
{Api} are the increments of the displacement, velocity, acceleration and external force vectors, that is,

ad f=1d, 0-{d ) {avii={via - Baf=ta.f-{a ) {apf={p.j-1n) 612

{Af } is the unbalanced force vector in the previous step. Using the Newmark-p method,

{Av,}={a, J(At)+ {Aa H(At) (6-1-3)
{Ad, }=1{v, }(At)+ { HAt) + p{Aa, J(At)? (6-1-4)
From Equation (6-1-4), we obtain

1 1 1
{Aa, }= 3 {ad; - M{Vi }- 25 fa} (6-1-5)
Substituting Equation (6-1-4) into Equation (6-1-3) gives

1 1 1
(6= e 0= b1 ) 619

Equations (6-1-5) and (6-1-6) are substituted into the equation of motion, Equation (6-1-2), and we obtain

1 1
) Al bl ]

(6-1-7)
1 1 1
- e sl e - o)
The equation can be rewritten as,
K |- {ad, } = {ap; ) (6-1-8)

where,
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[R]:[K]+ : [c]+ . [M] (6-1-9)

{A@}:{Api}+[M(ﬁM){vi}%{ai}}[c%{w%— ]{ai}w)}{m 6110

6.2 Force correction method

The equation of motion of a structural system is,

M R j+ [Clivi.s j+ (o § = taf -+ [K K} - {d, ) = {Prs) (6-2-1)

where, [M], [C] and [K] are the mass, damping and stiffness matrices. {d,,}, {v,,} and {a,,}
are the displacement, velocity and acceleration vector at time step (n+1). {fn} is the restoring force
vector corresponding to {dn } and {Af} is the unbalanced force vector in the previous step. {Pn+1} is
the external force vector.

Using the average acceleration method,

(B} = 1)+ v, 00+ fa, }+ ana at) 622)

) = 4 (2 + A0 629

Substituting Equations (6-2-2) and (6-2-3) into (6-2-1),

M ]{an+l}+[c({vn}+1<{an}+{aml})(m)}{fn}—mf}+

2

K a0+ 5o+ fo, o) |- )

(6-2-4)
Solving for {an+1},

[L)a,.,}=[F.] (6-2-5)
where

[L1= M+ 2 [eKat)+; [k ey (6-26)

[F,]- —[C({vn}Jr%{an }(At)j—{fn}Jr{Af }—[K({vn a0+ fa }(At)2j+{Pn+1} 6-27)
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[M ]{an+l}+ [C ]{Vn+1}+ {fn+1} = {Pn+1}

from the following Figure,

{nat={fo}+ (K dpa - do ) - faf }

A 4
~
QD
——
<
had
—_——
o

>
haad
——
—h
>
——
—
A
e
——
0
[N
N——
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7. Energy
7. 1 Equation of energy

As it was mentioned in Equation (5-5-2), the equation of motion is obtained as:
M Jia}+[Cluj+[KJuj=—M]U Y, = {P] (7-1-1)

For example, in case of a structure with a rigid floor in Figure 7-1-1, the displacement vector, {u} consists
of 15 components (see RED numbers in Figure 7-1-1.)

ul
{uf= u:2 (7-1-2)
u15
1 4
17 10S 4" B 10 J7
> 13
S ] = 8 I's RGN
g 9 4’ 14 197
1 2
7777 s 7777 T
3 7 4 7
/e /e /e /e

Node number Freedom number

Figure 7-1-1 Example of the freedom vector of a structure with a rigid floor

The equation of energy is derived by multiplying the velocity vector, {L] }T , and integrating by the time
range [0-t]:
t

J " I Bkt + fay et + [0} [< e =] o} (Pl 1)

0
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WML, Frap oo B oy o (14

2 2 5
W, +W, +W, =W, (7-1-5)
where,
W, = M : Kinematic energy
2

t
W, = J'{u {'[Clujdt  :Damping energy
0

W, = M . Potential energy
2
t
W, = —J‘ {L'I }T {P}dt : Input energy
0

If the system is nonlinear, the equation of motion can be expressed as:
M J{i}+[Cla}+Qlu.u)=-[MJU Y, = {P] (7-1-6)

where, Q(u, U) is the nonlinear restoring force vector. Then, the equation of energy can be derived as;

W, +W, +W, =W, (7-1-7)
where,
AT

W, = {u} [2/| ]{u} : Kinematic energy

t
W, = j{u }T [C ]{u }dt : Damping energy

: (7-1-8)
W, = .[{u }T Q(u, L])dt : Potential energy

0
W, = _j {u }T {p }dt : Input energy
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7. 2 Decomposition of potential energy
We can decompose the restoring force vector into the restoring force of each member as,
Q(u,u)=q,(u,u)+q,(u,u)+---+q,(u,u); n:number of members (7-1-9)

Therefore, the potential energy can be decomposed as,

w, = [y ook - [of Saeop -3 [ auor|-Sw,, a0

{L] }T of (u, U)it ;  potential energy of i-th member (7-1-11)

P

=
Il
O t—
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8. Nonlinear Static Push-Over Analysis

8. 1 Lateral distribution of earthquake force

The static lateral load representing the earthquake force is applied at the center of gravity in each floor.
There are several formulas to define the load distribution along the height of the building. In “STERA 3D”
program, the following distributions are prepared:

1.Ai 2. Triangular 3. Uniform 4.UBC 5. Mode

(1) Ai distribution
In the “Building Standard Law” in Japan, the design shear force of i-th story, Qi, is defined as,

n
Q =CY>.w, C, =ZRAC, (8-1-1)

j=i
where,

Ci: design shear coefficient of i-th story,

w; weight of i-th story,

Z seismic zone factor,

R:: vibration characteristic factor taking into consideration of soil condition,

Ai: lateral distribution of shear force coefficient,

Co: design base shear coefficient (Co=0.2 for serviceability limit, Co=1.0 for safety limit)

If we set, Z=1.0 (Tokyo), R=1.0 (stiff soil, a short story building), Co=1.0 (safety design), the design shear

force distribution is simplified as,

Q =A ij (8-1-2)
j=i

“A;” distribution is defined as,

A =1+[L-aij 2T (81-3)
Jo, 1+3T

where,

n n
a; =) W, / W, W= ZW ; * the ratio of weight upper than i-th story,
j=i =L

T: the first natural period of a building (=0.02A, A : the building height)

As shown in Figure 8-1-1, the static lateral load is obtained as,

F.=Q,, F=Q -Qy (i :1""’n_1) (8-1-4)
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] 6= Ce W
_ 5= Cs (W5 + We)

|::> Ws Qi =CiZn;Wj

= W, ' C. =ZR.AC,
(G .
F1=Q1-Q2 E> Ls

ﬁ Q.:=C; (W1+W2+ "'+W6)

Figure 8-1-1 Ai distribution

(2) Triangular distribution

Triangular distribution is defined as:

n
F = QB[hi Zhjj
j=1
where,
@B °  Dbase shear force
hi: the height of the i-th story from the ground

\:l;‘ E hG

b hy
‘\: Thl

Figure 8-1-2 Triangular distribution
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(3) Uniform distribution
Uniform distribution is defined as:

F :QB( n)

I

1T

l

Figure 8-1-3  Uniform distribution

(4) UBC distribution

(8-1-6)

The UBC (Uniform Building Code, 1997) gives the following formula for the calculation of lateral force

distribution:
Fi =(QB - Ft{wihi ijth

. _ 0.07TQ, ,if T >0.7sec
v 0 ,if T<0.7sec

\ | he

o h,
) Thl

Figure 8-1-4 UBC distribution
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(4) Mode distribution

Mode distribution is defined as:

F =QB£Wi¢l,i/.Zn:Wj¢l,jJ (8-1-9)

where,

¢1,i : component of the first mode distribution in the i-th story

Figure 8-1-5 Mode distribution
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8. 2 Capacity Curve

The Capacity Spectrum Method was proposed by Freeman [1978] as an approximate way to estimate the
maximum response of a structure under an earthquake ground motion. The concept was modified by
Kuramoto et.al [2000] to adopt the distribution of nonlinear story displacement as the first mode shape in
each calculation step. The method was adopted as one of the evaluation procedures in the Building

Standard Law, Japan.

The key concept of the Capacity Spectrum Method is to find out the intersection between the Demand
Spectra (= relationship between Sd (displacement spectra) and Sa (acceleration spectra)) and the Capacity

Curve (= nonlinear push-over curve of an equivalent single-degree-of-freedom system).

1400

Demand Spectra
SA-SD(h=0.05)

1200 |

1000 |

Demand Spectra
800 SA-SD(h=0.14)

Capacity Curve
600 |/ = === —

Sa (cm/sec?)

400 +

200 |

0 10 20
Sd (cm)

Figure 8-2-1 Schematic example of the concept of Capacity Spectrum Method

“STERA 3D” provides the menu in the static analysis to show the Capacity Curve based on the following
formula (Kuramoto et.al [2000]):

n

Zn: m.o? > mst
i=1l

Sy=">—— (8.2.1)

n

Si=Q——,
(Zmié'ij Z_I:mi5i

where,
m; : lumped mass in the i-th story
i component of the distribution of nonlinear story displacement in the i-th story
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Nonlinear static push-over analysis Capacity Curve of SDOF system

Figure 8-2-2 Capacity Curve of the equivalent SDOF system

As schematically shown in Figure 8-2-2, the step-by-step results of nonlinear push-over analysis is used to

obtain the Capacity Curve of the equivalent SDOF system using Equation (8-2-1).
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9. Decomposition of shear and flexural deformation
9.1 Equivalent plane for each floor

The equivalent plane (Z = ax + by + ¢ )is obtained from the vertical displacement distribution by the least

square method:
Z=ax+by+c

e / -

il v X

Figure 9-1-1 Equivalent plane

Minimize L= Z(Zi —(ax; +by, +¢))’

where, i : node number in the floor

a, b, ¢ : parameters of equivalent plane

Thus, 8L =0, oL =0, oL

—=0
aa ab oc

Parameters, a, b, ¢ are obtained by solving the following linear equation:

zzixi zxiz zxi Yi zxi
2T |= 2y 2vi|b (9-1-1)
>z, sym. n |c

where,

n: the number of nodes in a floor
9.2 Decomposition of shear and flexural deformation
Astory drift, D, can be divided into shear and flexural components as,

D = Ds (shear) + D (flexure) (9-2-1)
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Assuming the distribution of floor deformation is expressed by an equivalent plane (z = ax + by + ¢ ), the

flexural deformation, D, can be expressed as,

De=-aH : x-direction (9-2-2)
De=bH . y-direction (9-2-3)

Note that the coefficient ‘a’ is the negative angle in x-direction.

Then, the shear deformation can be obtained as,

Ds=D - D¢ (9-2-4)

1n x-direction

in y-direction

Z

Figure 9-2-1 Decomposition of shear and flexural deformation

In STERA 3D, the flexural deformation is calculated taking the average of the bottom floor angle and top
floor angle.

—(a, +a,
Dy, = % H, : x-direction (9-2-5)

b +b
D = % H, : y-direction (9-2-6)
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10. P-D effect

Following formulation in is suggested in the book:

James F. Doyle, “Static and Dynamic Analysis of Structures”, Kluwer Academic Publishers, 1991

10.1 Equilibrium of the beam with an axial load

We consider equilibrium of the beam with a slight displacement with an axial load.

) S 7} o M KH :
............................... ' 9 _—
........... N /:> ] -

Figure 10-1-1 Equilibrium of small beam segment slightly deformed

Assuming small deflection, the balance of moment on the small segment “Ax” gives

AM +V (Ax)-F,(Av)=0 (10-1-1)

Therefore

d_M +V - F, ﬂ =0 (10-1-2)
dx dx

_— d?v o . . . .
From the relationship, M = ElI d—z the governing differential equation for the deflection shape is
X

Id“v_

div _d’v_
dx*

E _
dx?

F, 0 (10-1-3)

The general solutions are,
for compression loading (F, < 0):

v(X) =c, coskx +c, sinkx+c,x+c,, k®=-F,/El, (10-1-4)
for tensile loading (F, > 0):

V(X) = ¢, coshkx +c, sinhkx +c,x+c¢,, k*=F,/El (10-1-5)

158



10.2 Geometric stiffness matrix of the beam with an axial load

We assume that the axial force is constant and compressive. From the general solution, Eq. (10-1-4),
at x=0

()

v(0) =v, =c¢, +¢,, = ¢, =kc, +¢, (10-2-1)

Consequently, the deflected shape is
v(x) = ¢, (coskx —1)+ ¢, (sin kx — kx) + v, + ¢,x (10-2-2)

Similarly at the end of other node,

v(L) =v, =¢,(coskL —1)+c, (sinkL —KL) + v, + ¢, L (10-2-3)
% = ¢, = —kc, sinkL + kc, coskL + ¢, (10-2-4)
X

Then, the coefficients, C,, C,, can be arranged as,

[(1—C) (£-9) }[Cl} _ |:V1 +oL —Vz} (10-2-5)

&S S(1-C) e, hl—o,L
where,
C =coskL, S =sinkL, &=KkL (10-2-6)

Solving this equation by Cramer’s rule gives

¢, =[Vié(1-C)+ 4 L(S - &C) —v,£(1-C)+ g, L(E-S)]/ A (10-2-7)
C, =[-V, &S +4LU-C-&8)+Vv, & +¢,L(C-D]/A (10-2-8)
where

A=E(2-2C - &) (10-2-9)

Now we can rewrite the deflection function in terms of the nodal degrees of freedom. The moment and

shear force distributions can be obtained as
d?v

M (x) = El e El[-k2c, coskx — k’c, sinkx] (10-2-10)
d’v dv
V(x)z—Eld?+ Foaz—Elkz[@—kcz] (10-2-11)
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Calculating nodal loads, V (0) =-V,, M(0) =-M,,V (L) =V,, M (L) = M, the stiffness matrix is

\A g’ 4@-0) -&*s &lL-C) | v
M. _ E_:e‘_z -L*(£C-S) -4@-C) L(-9) |4 (10-2-12)
V, | LA £%S -4(@-C) |v,
M, sym. ~L*(¢C-9) | 4

10.3 Approximation of geometric stiffness matrix

We simplify the geometric stiffness matrix to be linear in the loading F.

Using the series expansion for the sine and cosine terms, the determinant is,

A=§(2-2C )
~E2-2-£2 12484 124-£5 17204+ C - E(E- 216+ £5/120—)]  (103-1)
~ & l-£7 115+ ]/12

also

1 12 )

—="—N+&°/15+-- 10-3-2
LA ] (10:3:2)

We now do the expansion on the stiffness terms. For example,

El &2 El 12 El
S I DT | o T S L R T
L° A L & L
(10-3-3)
Substituting £* = k*L* = —F,L/El ,
El F, |12
k,, =—[12]+-2| = 10-3-4
n =512l LM (10-3-4)
In the same manner, we can expand for all the stiffness terms to get the stiffness matrix as
12 6L -12 6L 36 3L -36 3L
4> -6L 2L° 42 -3L -L°
[k]= E_3| L (10-3-5)
L 12 -6L| 30L 36 —-3L
sym. 41° sym. 41°
We can write as
[k]=[ke ]+ [ke ] (10-3-6)

where, [kE ]: the element elastic stiffness, [kG ]: the element geometric stiffness
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10.4 Implementation for beam element

TA —____——‘——— TB
St 0,
Ug «
l'IA
A B v
L |
[ ]
Figure 10-4-1 Including node movement
For beam element,
M 2 1 4% 217
a|_ 2Bl Ta :E_: Fa (10-4-1)
Mg L |1 2|zg| L’|2L% 412 |7,
Including node movement,
__uA
T : 1 -1 Ol o
{ A}: 1 ] A (10-4-2)
Tg 20 —= 1lYs
L L 1 6,
. (1 1]
Qs LoLl 1, 1
M| EI| 1 o [42 22t ¢ 9o
Q| | L _Ljar a2t 4, L ]y
M, | _ 0L 1L_ L L 0
6L 6L 1 1 U, 12 6L -12 6L |u,
= S-S e A ] a* -eL 21 |6,
L’ -6L —-6L l 0 _i 1| Ye L® 12 —6L || u,
217 47 L 0, sym. 417 | 6,
From (10-3-5), the geometric stiffness matrix will be
36 3L -36 3L
F 42 -3L -L°
kg ]= =2 (10-4-3)
30L 36 -3L
sym. 417
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10.5 Implementation for column element

A"

Al

Note that the matrix for node movement in X-Z plane is different from that of beam element. The

O,n
u xB
05 |

Uya

O,

U

0XB

412 212
212 412

412 217
212 412

in X-Z plane

in Y-Z plane

force-deformation relationship in X-Z plane is then,

TyA

TyB_

2-xA

| Tx8 |
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in X-Z plane

in Y-Z plane

(10-5-1)

(10-5-2)

(10-5-3)

(10-5-4)



[ 1

QXA -
L

MyA _ﬂ 1
QxB I—3 l
M 5 L
-6L -6L
_El 41> 212
| 6L 6L
2L 417

1
i u
1 1 2
L 2
0 {40 2LT Lo 0o,
1 2 2
= 217 4L _% 0 % 1 Ye
1 Oy
1 1 U 12 |-6L| —-12 [-6L| u,,
T Y= 412 212 | 6,
Lo Log|ue| U 12 [6L |ue
L L 7 sym. 4% | 0y
(10-5-5)

Considering the difference of sign of stiffness matrix in X-Z plane, the geometric stiffness matrix will be

36 -36
F 4L’ -
[kXG]_3O_0L 26 in X-Z plane
| sym. 417 |
36 3L -36 3L
F, 412 3L —L2|
[kyG]:3O_L 6 —3L in Y-Z plane
| sym. 41

(10-5-6)

(10-5-7)

Therefore, changing the order of vector component, the force-deformation relationship of column will be

Qa
Qe
M.
Mg
Qya
Qs
M a

xB
ZA
B

ZA

= =z =L

B

uxA
uxB

O,n
05

Uya

36 -36 -3L -3L O 0
-3 36 3L 3L O 0
-3L 3L 4L -L* o0 0
-3L 3L -L* 4 o0 0

0 0 0 0 36 -36

.\ F, | O 0 0 0 -36 36
30L| O 0 0 0 3L -3L
0 0 0 0 3L -3L

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

|0 0 0 0 0 0
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3L
-3L
412
— 12
0

0
0
0

o O O o

3L
-3L
— 12
412
0

O O O O O OO O o o o o
O O O OO OO o oo o o
O O O OO OO o o o o o

0
0
0

O O O O O O O O o o o o

e

XA

e

xB

)

yA

Q & & QO
x <
> [os]

S D
5 0%

D >
>




uXA

uXB

O,

HVB

UyA

K]+ [K T e (10-5-8)

GXA

O

O

5ZB

ezA

O

where,
36 -36 -3L -3L O 0 0 0 0 0 0 O]
-36 36 3L 3L 0 0 0 0 0 00O
-3L 3L 4L -L? 0 0 0 0 0 00O
-3L 3L -L* 42 0 0 0 0 0 00O
0 0 0 0 36 -36 3L 3L 0 0 0 O
F 0 0 0 0 -36 36 -3L -3L 0 0 0 O
[Ke]=22 ) , (10-5-9)

30L| O 0 0 0 3L -3L 4L -L° 0 0 0 O
0 0 0 0 3L -3L -L* 4 0 0 0 O
0 0 0 0 0 0 0 0O 00 O0O
0 0 0 0 0 0 0 0 0 00O
0 0 0 0 0 0 0 0 0 00O
0o 0 0 0 0 0 0 0 00 0 0]

Then, applying translation of Equation (2-2-17), the constitutive equation of the column is;

P, u,

F:Z =[K] u:2 (10-5-10)
P, u.n

where,

[Ke J=[Te [ ke ITe ]+ [Tie ' [Ke I ] (10-5-11)
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