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Chapter 1

Vector Algebra

1.1 Scalar, Vector and Tensor

Physical quantities are classified into the following three groups.
i) Scalar quantities are specified by their magnitudes only.

# Examples — mass m, length [, time ¢, temperature 7', energy F
ii) Vector quantities are specified by their magnitudes and directions.
# Examples — displacement u, velocity v, acceleration a, force f, momentum P

A vector quantities are denoted by a directed line segment as:

A

A vector quantities are also denoted by their components as:

iii) Tensor quantities of order 2 or higher
# Examples —— stress tensor o= o;;, strain tensor e= ¢;; (order 2)
elastic constant tensor Cyjx (order 4)



1.2 Vector Algebra

1.2.1 Vector Algebra in 2-D and 3-D space
(0) Length of Vector

We denote the length of vector a as |a|.

* Unit vector n: |n| =1
* Zero vector 0: 0] =0

(1) Addition of Vectors

Y

* Nature of Addition of Vectors
Commutative law: a + b =b + a
Associative law: a+ (b+c)=(a+b ) +c

b a+b

(2) Subtraction of Vectors
a-b is defined by a+(—b)




(3) Multiplication of a Vector by a Scalar
Given a vector a and a scalar m, vector ma is defined as:
|ma| = |m||a| and the direction is the same as a for m > 0
unspecified a for m =0
the opposite to a for m < 0

ma (m<0) ma (m>0)

* Nature of Multiplication of a Vector by a Scalar
Associative law:  m(na) = (mn)a
Distributive law: (m + n)a = ma + na

m(a+b) =ma+ mb

(4) Inner Product of Two Vectors
We denote inner product of two vectors a and b as a-b or (a,b), which is defined
as:

a-b = |a] |b| cosb,

where 6 is the angle between a and b.

b
® 9
)
a > a >

* Nature of Inner Product
Commutative law: a-b=b-a
Associative law: (ma) -b = m(a-b)
Distributive law: a- (b+c)=a-b+a-c

*a-a=|al?

*a-b=0<«|a|]=0or |b|=0or aisperpendicular to b

(5) Exterior Product of Vectors (defined only for 3-D space)
We denote exterior product of two vectors a and b as a x b, which is defined as:

ax b= (|a] |b| sinf) n,

where n is the unit normal vector of the plane defined by a and b, and (a b n) is a right
handed system.
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* Not commutative: a x b= —b x a
(Associative law and distribute law still hold.)

*axa=0

*axb=0&a=0orb=0or aisparallel to b

1.2.2 Vector Algebra in n-Dimensional Complex Space
Vectors in n-Dimensional Complex Space

Vectors in n-dimensional complex space:

ai
a2
a= ,
Qp,
where aq, as, - - -, a, are complex numbers.

* Length (norm) of vector |a| is defined as

la) = /|aa]? + [aa]? + - + |an ]

* Equality of two vectors a and b:

a=b<sa =b, aa=0by, -+, a,_1=0b,_1, and a, = b,

Vector Algebra

(1) Addition of Vectors
ap + bl

as + b
a+b= 2.2

an + by,



(2) Multiplication of a Vector by Scalar

maq
masg

man,

(3) Subtraction of Vectors
a; — bl
a9 — b2

a, — by,
(4) Inner Product of Two Vectors
(a,b) = a1b] + agb; + - -+ a,bj,

n
=1

= a;b; (summation convention for subscripts),

where 0} is the complex conjugate of b;.
*If x and y satisfy (x,y) = 0, we say x and y are orthogonal.

* Nature of inner product

(1)
(v,%) = (x,y)°

(ex,y) =c(xy), (x,cy)=c"(xy)

(x1 +%2,y) = (x1,¥) + (X2,¥)
(x,y1 +y2) = (X,y1) + (X, ¥2)



Problems

Problem 1.1
ay b,
Givena=| a, | and b= | b, | are real vectors and 6 is the angle between a and b.
a, b,
Confirm
la| |b| cosf = azb, + a,b, + ab,.
Problem 1.2
Qg b,
Givena= | a, | and b= | b, | are real vectors, c =a x b is given as
a, b,
ayb, — azb,
c= | ayb, —ayb, |.
azb, — a,b,
Confirm

(i) ¢ is orthogonal both to a and b, and
(ii) |c| = |a]|b| siné.

Problem 1.3
Show that
(1) *
(v,x) = (x,y)
(2)
(ex,y) =c(xy), (xcy)=c"(xy)
(3)
(Xl + X27Y) - (X17Y) + (X27 Y)
(X, y1+y2) = (x,y1) + (%, ¥2)
Problem 1.4
Show that

(l)ax(b+c)=axb+axc
(2)ax (bxc)=(a-c)b—(a-b)c

Problem 1.5

Show that
(1) (a—b) - (a+b) = [al* — b’
(2) (a—b)x (a+b)=2axb
B)ax(bxc)+bx(cxa)+cx(axb)=0



Chapter 2

Matrix Algebra

2.1 Notation of Matrix, Types of Matrix

Matrix is a set of numbers (real or complex) which are arranged in rows and columns.
Notation

We denote matrix as follows:

a;ix Qa2 aiz -+ Qin
ag1 Q22 Q23 -+ Q2p
A=(a;)=| @1 a3 ap - a3
Am1 Am2 Qm3 - Amp

We call a;; as the (i, j)-th element of matrix A,
If a matrix has m rows and n columns, we say this matrix is order “m by n”, which
we denote as (m,n).

Transpose Matrix

Transpose matrix is the (n,m) matrix obtained by interchanging the rows and
columns of an (m,n) matrix A = (a;;). We denote the transpose matrix of A as

AT,
(ai)" = (aj:)

Adjoint Matrix

Transpose matrix is the (n,m) matrix obtained by converting each element to its
complex conjugate and interchanging the rows and columns of an (m,n) matrix
A = (a;;). We denote the adjoint matrix of A as A*.

(ai)" = (aji)



Zero Matrix

Zero matrix is a matrix whose elements are all zero.

ex)
0 0 0 0 000 0
0 0 0 0 000 0
0 0 0 0

Square, Diagonal and Unit Matrix
Square matrix is a matrix which has equal number of rows and columns. If square
matrix has n rows and columns, we say it is order n square matrix.

@11 Q12 @13 - Qi
Q21 Q22 Q23 *-° Q2
A =(a;)=| @1 asz az - a3
Ap1 Ap2 QAp3z - App

We call elements a; (1 <7 <n) as diagonal elements.

trace of A = a1 +ag+as+ -+ ap,
n
- Y
i=1
= ay (summation conventions)

Diagonal matrix is a matrix whose elements other than diagonal elements are all

Z€ro.
di 0 0 0
0 dy 0 0
D=| 0 0 d 0
0 0 0 d,

Unit matrix is a diagonal matrix whose diagonal elements are all 1. We usually
denote unit matrix as I.

O =
— O
o O
o O



Symmetric, Skew-symmetric and Hermite Matrix

Symmetric matrix is a square matrix which satisfies
AT = A or aj;; = Qgj.
Skew-symmetric matrix is a square matrix which satisfies
AT =—A or aj;; = —Qyjy.

Clearly a;; = 0 for all ¢ in a skew-symmetric matrix.
Hermite matrix is a square matrix which satisfies

* *
A"=A  oraj;=ay.

ex)
Symmetric Matrix =~ Skew-symmetric Matrix
1 2 0 0 -1 2
S=12 0 -1 T = 1 0 -3
0 -1 =2 -2 3 0

* Arbitrary matrix can be decomposed to symmetric matrix and skew-symmetric
matrix.

2.2 Matrix Algebra

2.2.1 Addition snd Subtraction

Addition and subtraction of matrices A and B are defined as:
A + B = (CLZ'j + bl])
A — B = (a; — by)

Commutative law: A+ B =B + A
Associative law: A+ (B+C)=(A+B)+C

2.2.2 Scalar Multiplication

Scalar multiplication of matrix A is defined as:
mA = (ma;)
Distributive laws:

m(A +B) =mA +mB
(ml +m2)A = m1A+m2A



2.2.3 Multiplication of Matrices

We can define the multiplication of matrices A and B only when the number of columns
of A and the number of rows of B are equal. The multiplication of (m,n) matrix A and
(n,]) matrix B are defined as:

AB

Il
/~
NE
S
Bl
g
~—
—
AN
A
3
—_
AN
(N
VAN

The order of AB is (m,l).

ex)

(1)

4 2 -1 2 _23 g
3 -7 1 -8 U
2 4 -3 1 s

4x2)—2x3)—(1x1)+(2x3) 4x3)+(2x0)—(Ix5)+(2x1)
Bx2)+(Tx3)+(1x1)—(8x3) (3x3)—(7Tx0)+(1x5)—(8x1)
((2><2)—(4><3)—(3><1)+(1><3) (2><3)+(4><0)—(3><5)+(1><1)>

7 9
= 4 6
-8 =8
2 10 4 -6
-1 |(52 -3)=|-5 -2 3
4 20 8§ —12
ai; Q12 a3 1 1171 + a12%2 + a1373
Qo1 G2 Q23 Ty | = | G2121 1+ G2%2 + Q233
as Gz 0as3 T3 a31%1 + A32%2 + 43373

Thus the system of linear algebraic equation

a11T1 + a12T2 + A1323 Y1
A21T1 + A22T2 + A23T3 | = | Yo

311 + a32T2 + A3373 Ys

can be expressed as the following matrix equation:

Ax =y

(4)

(%) 655 5) (G2)(5 4)-(57)



Thus commutative law does not hold for matrix multiplications.

1 11 3 4 2 0 00
2 2 2 -2 -1 -1 |=10200
5 5 5 -1 -3 -1 0 00

Thus AB = 0 does not necessarily imply A =0 or B = 0.

5 6 7 0 00
-2 -1 -3 |=1000
-3 =5 —4 0 00
Compareing examples (5) and (6), we can see AB = AC does not necessarily imply
B=C.
10 a b\ [a b 10\
01 cd) \ecd 01)
0
0
1

100 ay a2 a3 a2 a3 1
10 Q21 A22 A3 = Q21 A22 A3 0
0 01 as; asy ass as; Az ass 0

In general, IA = AT = A.

(5)

(6)

(7)

[es}
— O

o

* Nature of Matrix Multiplication

Distributive law: A(B+ C) = AB+ AC
(A+B)C=AC+BC
Associative law:  A(BC) = (AB)C

2.3 Determinant of Square Matrix
We write the determinant of square Matrix A as |A|. Determinant is defined using

permutation.

2.3.1 Permutation

Permutation is one to one mapping of a set of elements {1,2,3,---,n}.
When o is the permutation such as

o(1) =1y, 0(2) =iy, 0(3) =13 ---0(n) =1,

we write



* equal permutations:

ex)

VR

DN =
O = W N
W N = W
N~ ~—
I I
/N 7 N
— W N
W N = W
DO =
~—

* even (odd) permutation:
permutation which can be expressed by even (odd) times simple transactions of
adjacent elements

2.3.2 Definition of Determinant

ailz a2 @13 - Qip
ag1 Qg2 Q23 -+ QA2pn
= Z sgn(a)ala(l)a2o(2) ©* Opg(n)
O'GSTL
&nl &n2 “ .. .. ann

Sy set of permutations for n elements

sgn(c) = 1 o is even permutation
J | =1 o is odd permutation

* Determinant of (1,1) matrix
o€ S sgn(o) sgn(o)aisa

( 1 ) even +a1

Thus

‘a11| = a1

* Determinant of (2,2) matrix
og€S8y  sgn(o) sgn(o)aie1)aae(e)

1 2 n
1 2 even 110922
1 2
( 9 1 ) odd —Q12G9]
Thus
11 Aa12

= Q11G22 — Q12G21
Q21 A22




* Determinant of (3,3) matrix

o€ S sgn(o)  sgn(0)a1,(1)20(2)030(3)
1 2 3 n
1 2 3 even a11Q9220433
1 2 3

< 13 2 ) odd —a11023032
1 2 3

( 2 1 3 ) odd —a12021033
1 2 3 n
2 3 1 even 120930431
1 2 3 n
3 1 2 even 1309210432
1 2 3

< 3 92 1 ) odd —a130a22031

Thus

a1; a2 as
(21 Q22 Q23 | = (11022033 + Q12023031 + Q13021032
az1 a3z 0ags

—011023032 — A12021033 — A13022031

2.3.3 Nature of Determinant
(1) |AT| = |A
(2) [AB| = |A] |B|

(3)

ailz a2 a1z - Qin
ag1 Q22 Q23 -+ Q2n
agr dgz -0t A3p = anCi1 + a12C2 + a13C13 + - - - + a1,Chy,
Ap1 Ap2 Ap3 - Qpp

= 91021 + a22C2% + ag3Cos + - - - + a2,Coyp,

anlcnl + an2Cn2 + an3Cn3 -+ anncnn
Ci; is (i, j)-th cofactor of A:

Cij = (=1)" M



M;; is (4, j)-th minor of A:

a1 iz - A1(-1) aig+1) v Qg

a1 929 e a2(j—1) a‘2(j+1) e Aoy,
MZ] = a(i—l)l a,(i_l)Q e a'(i—l)(j—l) a(i_l)(j+1) e a(i—l)n
a(+1)1 AG+1)2 0 QG (G-1)  AGE+DG+H) T AitDn

an1 an2 e an(j—l) a’?’L(j—i—l) e Unn,

ex) determinant of (2,2) matrix

11 Aai12

= a a —a a
oo 1t fazs] — s fa

= a11G22 — A12G21

ex) determinant of (3,3) matrix

11 diz2 A3
_ Q22 (23 21 Q23 o1 Q22
Q1 Q2 Q23 | = G171 — Q12 + a3
ag2 ass a3; ass a3; a3z
a3; dasz2 G33

= an (a22a33 - &23a32) — Q12 (a21a33 - Cl23a31)
+ay3 (ag1a32 — anaz)
= (11022033 + G12G23G31 + Q13021032 — Q11023032

—Q12G021033 — 13022031

/ "

} a; az - a(j_l) aj + aj Ajpr1 Ay ‘
/

= ‘ a] A a(]_l) aj aAj4+1 ap, ‘

"
+( a; az aG-1) a; A4 an, ‘
} ap Az - a(j_l) ca; ajy1 ot Ap ‘
‘ Az(1) Ag(2) Ag(3) " Ag(n) ‘: SQH(U)‘ a a; az -+ ap ‘

a; ay --- aj aj an‘:O



(6)//

‘al Ay A1 ai—i—caj bs VIS B aj an’

= ‘al A2 v Q-1 A Q41 @5 e an‘

2.3.4 Computation of (n,n) Matrix Determinant

(3), (6) and (6)” in the previous section are often used to compute NxN matrix determi-
nant.

ex)
3 1 2 =3 3—3x1 1 2-2x1 —-3+3x1
-2 3 =5 2 | —2-3x3 3 -5-2x3 2+3x3
5 2 -1 3 N 5—3x2 2 —1-2x2 34+3x2
1 5 4 2 1-3x5 5 4—-2x5 243x5H
0 1 0 0 1 0 0 0
-3 -1 |3 -1 -1
N -1 2 -5 9| 2 -1 -5 9
-14 5 -6 17 5 —14 -6 17
—-11 —-11 11
= -] -1 =5 9 |=-836
-14 -6 17

2.4 Adjugate Matrix

Adjugate matrix of (n,n) matrix A is defined as:

Cll C'21 031 e Cnl
012 022 032 e CTLQ
Aad-] = 013 023 . . Cn3
Oln C’2n e e C’nn
or dQi
a
Aij )= ij

where Cj; is (i, j)-th cofactor of A.



2 07
ex) A=| -1 4 5 |,
3 1 2
4 5 107 07
1 2 1 2 4 5
adj -1 5 2 7 B
A ‘3 2‘ ‘32 -1
-1 4 120 2 0
3 1 31 -1 4
3 7T =28
= 17 =17 =17
-13 -2 8

* Adjugate matrix satisfies following relation:

Addip — apadi— AT

For (3,3) matrix,

. Cn Ca Oy a1
Aad‘]A = Cia Cyn Cx 21
Ciz Coz (s 31
a11Chi + a2 Co1 + az1Cs;
= a11Ch2 + a1 Coy + a31Csp
a11C13 + a1 Coz + a31Cs3
a1; G2 ais a12
G21 Q22 Q23 22
31 a3z ass a32
a1 ai; ais a1
= G21 (21 (23 21
31 agzr ass a3
a1 G122 an a1
G21 Q22 a21 21
a31 az2 as 31
Al 0 0
= 0 |A] 0 |=|AT
0 0 |A]

2.5 Inverse Matrix

a2
22
asz2
a12011 + aCs + az2Cs;
a12C12 + a22C2 + a32C39
a12013 + a22C53 + az2Cs3

a12
@22
a32

a12
22
a32

Q12
22
32

a3
ag3
ass

ais
ag3
ass

ais
a23
ass

a12
22
a32

13
@23
a33

a1l
21
a3

11
21
a31

a2
a22
as2

ais
a23
ass

a12
22
a32

13
@23
a33

13
23
a33

13
23
33

a13C11 + a23Co + as33Cs
a13C12 + a23Cas + as3Csy
a13C13 + a23Co3 + assCss




Inverse matrix of (n,n) matrix A is defined as:

1 .
Al — _AadJ
Al

This matrix satisfies:
ATTA=AA'=1

* Nature of Inverse Matrix

2.6 Singular Matrix

For (n,n) matrix A = ( a; a, --- a, ), if a;, ag, -+, a, are linearly dependent, we
call matrix A is singular.

* Linearly Independent:
When vectors aj, as, -- -, a, satisfies

cla; +cas+---+cpa, =0

C1
C2 g .

only for [ | = 0 (we say these vectors have trivial linear relation only), we call
Cn

ai, as, - -+, a, are linearly independent.

* Linearly dependent:
When vectors aj, as, -- -, a, satisfies

cia; +cay+---+ca, =0

€1
€2 s :

for some [ | # 0 (we say these vectors have non-trivial linear relation), we call
Cn

ai, as, - -+, a, are linearly dependent.

* Determinant of a singular matrix is 0.



For a singular matrix A = ( a; ay --- a, ), we have the relation
cla; +cas+---+cpa, =0
(&1
Co
for some [ . | #0. If ¢; # 0, we have

Cn

C1 Co Cj—1 Cj+1 Cn
aj:__al__a2_"'_—aj—l_—aj+1_"'__an
Cj Cj Cj Cj Cj

Determinant of matrix A is evaluated as follows:

‘31 A2 o Aj1 A5 A1 an’
1
= __’al a - Aj1 A Ay an’
€
Ci_q
J
_—‘al A2 o A5 A1 A1 an’
€
C.
j+1
_—‘al A2 o @il A4l A1 an’
€
Cn
T ar az - a1 Ay Qg1 an’
J



Problems

Problem 2.1
(1)
1 -1 0 O 210 0
0O -2 0 0 010 O
0O 0 -2 3 001 1
0 0 1 1 00 2 -3
(2)
2 0 0 -1 00
0 -1 0 0 2 0
0 0 3 0 01
Problem 2.2
Show that

(A+B)(A-B)=A?-B?

if and only if A and B commute,

AB = BA
Problem 2.3

Given

0O 0 =1

K= - 0 0],

0O -1 0
show that

K'=1

with the proper choice of n (n # 0).

Problem 2.4
Show that
[A,[B, C]]

[Bv [Av CH - [Cv [Av B]],

where

[A,B] = AB - BA



Problems 2.5

Compute the determinant.

35 2 P
()| 2 0 1 (2)
9 3 5 10 3 6 1
2 5 4 3
Problem 2.6
Compute the inverse matrix.
30 2 —37 ? —58 _64
(1) 2 0 1 (2)
9 3 5 10 3 6 1
2 5 4 3
Problem 2.7
Show that
ag 0 - 0
0 (05} :
= 102 - - ap
0
0 0 a,
Problem 2.8
Show that
0 a b ¢
—a 0 C b o 2 72 2 2
b —c 0 a —(a b +c)
—c —=b —a 0



Chapter 3

Eigenvalue Problem

3.1 Eigenvalue and Eigenvector
If square matrix A satisfies the equation
Ax =ax

for some x # 0, we call « as eigenvalue and x as corresponding eigenvector.

3.1.1 How to Find Eigenvalues and Eigenvectors

Eigenvalues:

Ax=ax & (A—-al)x=0
& |[A—al]l=0

Solving the above equation, we can obtain eigenvalues «.

FEigenvectors:
It

A-ol=(b; by -+ b, ),
we can expect some non-trivial linear relations:
ciby + by + -+ -+ ¢,b, = 0.
&1
(&)

Then x = . is eigenvector for eigenvalue «.

Cn

Note: x is not unique for each . Sometimes we can find linearly independent eigenvectors
X1, Xg, + + +, X,, for one eigenvalue.

ex)



1. Eigenvalues and eigenvectors for A = ( L1 ) .

0 2
1 -« 1
|A—aI\—‘ 0 9-a =(1-a)2-a)
Thus
A—all =06 [a=12]
A—lI:<8 1), thusx:<(1)> is eigenvector for a = 1

-1 1

A ()

\A—aI|:}16a }:(1—04)2
Thus
A-all—0s [a=T
0 2 1Y) . .
A—lI:(0 O)’ thuSX:(()) is eigenvector for a =1

3.2 Eigenvalues of Hermite Matrix

Hermite Matrix:
* *
A=A or az; = Qij

Real Hermite Matrix = Symmetric Matrix.
AT =A or aj; = Q;j
Eigenvalues and eigenvectors of Hermite matrix have following characters:
1. Eigenvalues of Hermite matrix are all real.

2. Eigenvalues of Hermite matrix are mutually orthogonal

proof)

1. Let a and x are an eigenvalue and its corresponding eigenvector of Hermite matrix
A.
Ax =ax

Multiplying x* from left, we obtain

x"Ax = ax*x (3.1)



On the other hand, because A* = A, we obtain
A'x = ax

Taking complex conjugate of both hand sides, we obtain

x*A = a'x”
Multiplying x from right, we have

x"Ax = ax'x (3.2)
Comparing egs. (3.1) and (3.2), we obtain

a=a«

Thus eigenvectors of Hermite matrix is real.

2. This is very important theorem. But proof is difficult. Consult the references.

Problems

Problem 3.1

Find eigenvalues and corresponding eigenvectors.

-5 6 4 -1 0 2 5 0 -6

()| -7 8 4 2 -1 11 33 -1 =3

-2 2 3 -1 0 2 3 0 —4
Problem 3.2

Find eigenvales and corresponding eigenvecors for the following Hermite matrix.

0 ¢+ 1






Chapter 4

Diagonalization

4.1 Diagonalization

Diagonalization of (n,n) square matrix A is to find a non-singular matrix P such that
P~'AP is a diagonal matrix.
Note: This is not always possible.

4.1.1 How to Diagonalize a Square Matrix

Considering the case that (n,n) matrix A has n different (linearly independent) eigenvec-
tors xq, Xg, -+, X, eigenvalues. If we choose

P:(Xl Xg v xn),

A is diagonalized as:

g
o)
P AP = ’
Qp
where a1, as, - -+, o, are corresponding eigenvalues.
proof)
PP = P_l(xl Xo 0 X, )
= (P'xy P'x, - Plx, ) (4.1)
On the other hand,
P 'P=1I (4.2)

Comparing eqs. (4.1) and (4.2), we have

—1 o
P 'x; =e,



where

e, =11 1 1-th component

Thus P~'AP can be evaluated as follows:

P lAP = P_IA( X; X9 - Xp )
= P_l ( A1X1 QX9 - OpXpy )
= ( P 'x; aP'xy -0 a,Plx, )
= ( 1€ ey - ape, )
g
Qg
A
ex)
6 -3 -7
1) Diagonalization of A = | —1 2 1
5 —3 —6
2 1 1
a=1,2,—1 are eigenvalues and | 1 |, | —1 |, | O | are corresponding eigen-
1 1 1
vectors. Thus
1 0 0 2 1 1
P'AP=[02 0 |forP=|1 -1 0
00 -1 1 1 1
1 2 1
2) Diagonalization of A= | —1 4 1
2 -4 0
1 —1 -1
a = 2,2, 1 are eigenvalues and 1 |, =2 |, | —1 | arecorresponding eigen-
-1 3 2

vectors. Thus

P 'AP =

O O N
o N O
_ o O

S

=

w

I

—_

|

[\

|

—



4.2 Diagonalization of Hermite Matrix

Hermite Matrix:
* *
A"=A or aj; = Qij

Real Hermite Matrix = Symmetric Matrix:

T
A=A or Aj; = Qi

Unitary Matrix:
A*=A""1

Real Unitary Matrix = Orthogonal Matrix:

AT — A—l

* Hermite matrix can be diagonalized by Unitary Matrix.

Problems

Problem 4.1

Diagonalize the following matrices if possible.

-5 6 4 -1 0 2 5 0
(1| =7 8 4 2| -1 11 3) 3 —1
-2 2 3 -1 0 2 3 0
Problem 4.2
Diagonalize the following Hermite matrix.
0 ¢« 1
- 0 1






Chapter 5

Vector Analysis

5.1 Differentiation of Vector Functions

Suppose a = (a,, ay,a,) is a function of ¢, the differentiation of a w.r.t. ¢ is defined as
follows:

da,
dt
da _ | da,
dt dt
da,
dt
d da d¢ . .
¢ - (pa) = gba + s where ¢(t) is a scalar function.
d db da
Zla-b)=a  — + —.
c @ P =gty
d db da
. %(axb)—axajtaxb

5.2 Vector Field

Vector function a as a function of space (x,y, z): vector field a(x,y, 2).

5.3 Vector Operators

5.3.1 Gradient

For a scalar field ¢(z, vy, 2),

00
ox
00
dy
oo
0z

gradp = Vo =

* Physical interpretation
V¢ is a vector having the direction of the maximum space rate of change of ¢.



_ 09, 09
dp = Fpdut g dy

o (4)

= Vo¢/dz? + dy? cosé,

where 6 is the angle between V¢ and < Zz )
dx
For ( o ) (+0)

do
— < Vo.
\/ dx?® + dy2

Thus V¢ is the maximum space rate change of ¢.

5.3.2 Divergence

For a vector field a(z,y, 2),




* Physical Interpretation
A

(x-Ax/2, y+SA y/2)

P

(x-Ax/2,y-Avy/2)

(x+Ax/2,y+Ay/2)
R

Q

(x+Ax/2,y-Ay/2)

Consider a flux field v(z,y).

Flow out at QR:

Flow in at PS:

Flow out at SR:

Flow in at PQ:

Net flow out of PQRS:

ve(z + Ax/2,y)Ay
vy(z,y + Ay/2)Ax

U?J('r> y— Ay/2)AI

ve(x + Ax/2,y) Ay — v (x — Ax/2,y) Ay
+uy(x,y + Ay/2)Ax — vy(x,y — Ay/2)Ax
v,

— (z,y)AzAy + %
x

vy v,
%(937 y) + oy

= V-.v AzAy

Thus, V - v is a net flow out per unit volume.

5.3.3 Rotation

For a vector field a(z,y, 2),

rota=V xa=

o (z,y)ArAy
) et
Ga. _ day
oy 0z
da, B da,
0z ox
Oay _ 0aq
ozr dy



* Physical Interpretation

A

(x-Ax/2, y+SA y/2) (X+AX/R2, y+Ay/2)

P Q
(x=Ax/2,y-Ay/2) ~ (x+Ax/2,y-Ay/2)

»
Consider a flux field v(z,y, 2).
Circulation in (z,y)-plane is as follows:
circulation = / v-ds+ v-ds+ v-ds+ v - ds.
PQ QR RS sp

/QRV-dS = vz +Azx/2,y) Ay

cds = — —Azx/2,y) A
/SPV s vy — Az /2,y) Ay
/ veds = —v.(z,y+ Ay/2) Az
RS
/ veds = v(x,y—Ay/2) Ax
PQ

(5.1)
We obtain

circulation = v,(z+ Az/2,y) Ay — v, (v — Az/2,y) Ay
—v,(x,y + Ay/2) Az 4+ v, (x,y — Ay/2) Az

v, vy
- %(Jf,y) ArAy — a—y(x, y) ArAy
v, vy
<%($>y) — 6—y(x’y>> AxAy.

Thus, z-component of V X v is a circulation in (z,y)-plane per unit area.

5.3.4 Laplacian

P P P
2 _v.v_.<Y Y Y
V2=V.V ot aE o



For a scalr field ¢(x,y, 2),

Po ¢

V2p = divgrad ¢ = 922 + 0y + 9.2

For a vactor field a(z,y, z),

5.4 Formulas of Vector Analysis
V(o) = oV +4Vo

V- (¢a)=(Vo)-a+¢(V-a)

V x (pa)= (Vo) xa+¢(V xa)
V-(axb)=b-(Vxa)—a-(Vxb)
Vx(axb)=(b-V)a—b(V-a)—(a-V)b+a(V-b)
V(a-b)=(b-V)a+(a-V)b+bx (Vxa)+ax(VxDb)
V x (V¢) = rot grad ¢ = 0

o V. (Vxa)=divrota=0

V x(Vxa)=V(V-a)—Va

5.5 Potential Field

5.5.1 Scalar Potential

If the vector field f is expressed as

f=Vo,
we call ¢ is a scalar potential of f.
*FVXxEf=Vx(Vp)=0
5.5.2 Vector Potential
If the vector field g is expressed as
g=Vx,

we call 9 is a vector potential of g.

*V.g=V-(Vx¥y)=0



5.5.3 Helmholtz’s Theorem

Arbitrary vector field u (strictly speaking, the vector field u with V-u=0and Vxu =0
at infinity) can be expressed as follows:

u=Ve+Vxp.

ex)
Elastic equation of motion:

5*u

(A+2u)V(V~u)—qu(qu)—pW

=0.

Substituting the above expression, u = V¢ 4+ V X 1), we obtain
2

(A+2M)v(v2¢)—wx(VX(Vx¢))—p%(v¢+vX¢):o.

Using
V X (Vx 1) =V (V-9) - V9,

we have
¢
ot?

This reduces to the following two equations:

2 2 0"y

62
(A+2M)V2¢—pa—tf =0
82
IR ) (5.2

These equations represent P-wave and S-wave propagations, respectively.



