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Chapter 1

Introduction

What is the difference between dynamic loading and static loading?
Now, imagine you are standing in a train at rest. The train then begins to raise its

speed from 0 to 100 kilometers per hour (km/h). In the train, you will probably incline
your body forward so as not to fall down to the floor. On the other hand, when the
train reduces its speed on reaching a station, you will incline yourself in the opposite way.
You know this through experience. How can this phenomenon be explained in physical
terms? In addition, you need a greater angle of inclination when the speed is changed
more rapidly. Why is this additional inclination necessary?

You will easily find many good examples such as this issue associated with problems
in dynamics in daily life. However, you will probably have some difficulty in explaining
the theoretical background of such problems.

Most of you are familiar with statics, in which the concept of time is not involved.
Hooke’s law tells us that deformation is proportional to applied force. This is true. In the
real world, however, applying a load without accompanying lapse of time is impossible.
Therefore, we frequently encounter cases in which we must take into consideration how
rapidly the action (loading) is applied. Here, we must consider a force other than the
static force. This is the force associated with time, i.e. the dynamic force.

Let us go back to the “train” example. When the above mentioned phenomenon

Fig.1.1 Human action in a train
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6 CHAPTER 1. INTRODUCTION

is considered theoretically, the issue of the change in speed, i.e. acceleration, arises.
(We always feel the acceleration of gravity toward the center of the earth, as you know.
Therefore, we feel our own weight.) In statics, we assume that the loading is done infinitely
slowly. The induced acceleration is so small that it can be neglected.

However, when the loading is applied quickly enough, the inertia force grows large
enough to be comparable to the other forces so it cannot be neglected in the equation
of force equilibrium. Therefore, the inertia force, which is caused by acceleration, must
be taken into account in dynamics. There are several more things to be considered in
dynamics, such as the damping force, etc.

This lecture note covers how to estimate the dynamic behavior of single degree of
freedom (SDOF) systems and multi-degree of freedom (MDOF) systems. The analytical
methods are mainly concerned with the deterministic and time domain procedures. The
modal analysis, that involves the response spectrum method and the square root of sum of
squares (SRSS) rule, is also included to estimate the maximum response of a structure in
a stochastic manner. In addition, the structural system properties are mainly considered
to be linearly elastic, and it is assumed that they do not change with respect to time.
The last chapter, however, briefly deals with nonlinear analysis.



Chapter 2

Single Degree of Freedom (SDOF)
Systems

Let us start from the simplest case. A building is idealized as shown in Fig.2.1. You
may not imagine that there can actually be a structure so simple that it consists of a bar
with a ball-like weight on the top or an assembly of mass, dashpot and spring. This is an
imaginary model in which the mass is allowed to move in only one direction. Therefore,
it is called a single degree of freedom (SDOF) system. We will discuss the behavior of
this simplest model at first.

We know that the weight on the moon differs from the weight on the earth. This is
because the acceleration due to gravity for the two is not the same. The weight changes
but the mass that is proportional to the weight does not change. The force caused by the
acceleration and mass is called the inertia force.

The damping force is related to velocity. Imagine a movable piston fixed into a cylinder
filled with some liquid inside. When you move the piston, you feel resistance. The quicker
you pull or push, the greater is the resistance force. This is a good example of viscous
damping.

Another force is caused by a spring when it deforms. This force is sometimes called
restoring force or elastic resistance force.
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Fig.2.1 Analytical models of single degree of freedom (SDOF) systems
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Fig.2.1.1　D’Alembert’s principle considering dynamic equilibrium

2.1 Equation of Motion

The equation of motion is most important because structural response is computed as the
solution to the equation. The equation of motion of a SDOF system can be given using
d’Alembert’s principle while considering the dynamic equilibrium (see Fig.2.1.1).

−mẍ(t)− c ẋ(t)− k x(t) + p(t) = 0

where m, c, k and x(t) represent mass, damping, stiffness and displacement of the system,
respectively, the upper dots represent differentiation with respect to time, and p(t) denotes
the applied external force.

The above equation can be written in the form

m ẍ(t) + c ẋ(t) + k x(t) = p(t) (2.1.1)

where the first, second and third terms of the left hand side are called the inertia force,
damping force and elastic force, respectively.

2.2 Free Vibration

If we let the right hand side of Eq.(2.1.1) be equal to zero, the equation of motion without
any applied forces, i.e. for free vibration, can be obtained as follows:

m ẍ(t) + c ẋ(t) + k x(t) = 0 (2.2.1)

The solution of the above equation is conventionally given as follows:

x(t) = D est (2.2.2)

ẋ(t) = sD est

ẍ(t) = s2D est

where D is an arbitrary constant. Substituting these equations into Eq.(2.2.1), we get

(ms2 + c s + k)D est = 0

The above equation must be always satisfied. D est changes with time, so that the value
inside the parentheses should be equal to zero.

ms2 + c s + k = 0 (2.2.3)
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Then, the roots of this equation are

s1,2 = − c

2m
±

√( c

2m

)2

− k

m
(2.2.4)

Therefore, the solution for Eq.(2.2.1) is of the form

x(t) = D1 es1t + D2 es2t (2.2.5a)

In case the two roots are equal, i.e. s1 = s2 = s, we have

( c

2m

)2

=
k

m

Then the solution for Eq.(2.2.1) is

x(t) = (D1 + D2 t) est (2.2.5b)

where D1 and D2 are arbitrary constants.
The application of Eqs.(2.2.5a) and (2.2.5b) will be discussed in the following sections.

(1) Undamped Free Vibration

If the system is undamped, i.e. the damping coefficient c = 0, and let us introduce
the notation

ω2
n =

k

m
(2.2.6)

We will understand that ωn is the undamped natural circular frequency [see Eq.(2.2.10)],
and Eq.(2.2.4) becomes

s1,2 = ±i ωn (2.2.7)

Then Eq.(2.2.5a) will be
x(t) = D1 ei ωnt + D2 e−i ωnt (2.2.8)

By introducing Euler’s formula, i.e.

e±i ωnt = cos ωnt± i sin ωnt (2.2.9)

and noting that D1 and D2 can be complex, let

D1 = a + i b

D2 = c + i d

Then,

x(t) = (a + i b)(cos ωnt + i sin ωnt) + (c + i d)(cos ωnt− i sin ωnt)

= {(a + c) + i(b + d)} cos ωnt + {(d− b) + i(a− c)} sin ωnt

Here, if we let

A = (a + c) + i(b + d)

B = (d− b) + i(a− c)
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Thus, Eq.(2.2.8) becomes

x(t) = A cos ωnt + B sin ωnt (2.2.10)

Note that x(t) is real. Therefore, the imaginary parts of A and B should be zero. Then,

c = a

d = −b

Therefore, the constant D2 is the complex conjugate of D1. A and B will be determined by
the initial conditions. For example, in case x(0) and ẋ(0) are already given, by substituting
these into Eq.(2.2.10) and into its derivative

ẋ(t) = −ωnA sin ωnt + ωnB cos ωnt (2.2.11)

we obtain

x(0) = A

ẋ(0) = ωnB

Thus, Eq.(2.2.10) becomes

x(t) = x(0) cos ωnt +
ẋ(0)

ωn

sin ωnt (2.2.12)

Remembering the following formula

cos(α− β) = cos α cos β + sin α sin β

and referring to the right triangle in Fig.2.2.1, Eq.(2.2.12) can be written in the form

x(t) = ρ
{x(0)

ρ
cos ωnt +

ẋ(0)/ωn

ρ
sin ωnt

}

= ρ{cos θ cos ωnt + sin θ sin ωnt}
= ρ cos(ωnt− θ) (2.2.13)

where,

ρ =

√
{x(0)}2 +

{ ẋ(0)

ωn

}2

(2.2.14a)

tan θ =
ẋ(0)

ωnx(0)
(2.2.14b)

Eq.(2.2.13) represents a simple harmonic motion (SHM) and is shown in Fig.2.2.2. It is
evident that ωn is the circular frequency or angular velocity of the motion for undamped
systems. The cyclic frequency fn, which is frequently referred to merely as the frequency
of the motion, is given by

fn =
ωn

2π
(2.2.15a)
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The reciprocal of the frequency is called the period Tn.

Tn =
1

f
=

2π

ωn

(2.2.15b)

Eq.(2.2.13) is also shown in the Argand diagram of Fig.2.2.3. The response x(t) is
given by the real part of the rotating vector and ẋ(t)/ωn by the imaginary part.

[Example 2.1]

Set up the equation of motion for the follow-
ing undamped SDOF systems without exter-
nal forces and solve for the response under
the given conditions.

a)
m = 20 ton, k = 180 kN/cm

x(0) = 1 cm, ẋ(0) = −3 cm/s

b)

w = 9, 800 kN, k = 250 kN/cm

x(0) = 5 cm, ẋ(π) = 5 cm/s

��������
��������

m

k

������
������

w = g

Fig.E2.1

[Solution]

a) The equation of motion is
20ẍ(t) + 180x(t) = 0

ωn =

√
k

m
=

√
180

20
= 3 (rad/s)

Then,

x(t) = A cos ωnt + B sin ωnt = A cos 3t + B sin 3t

ẋ(t) = −3A sin 3t + 3B cos 3t

Substituting the above conditions x(0) = 1, ẋ(0) = −3

1 = A cos 0 + B sin 0 = A

−3 = −3A sin 0 + 3B cos 0 = 3B

Therefore,
A = 1, B = −1

That is,
x(t) = cos 3t− sin 3t

b) At first, the mass is computed as w/g, where g is the acceleration due to gravity, i.e.,
980 cm/s2. Then m = 10 The equation of motion is,

10ẍ(t) + 250x(t) = 0
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ωn =

√
k

m
=

√
250

10
= 5

Then,

x(t) = A cos ωnt + B sin ωnt = A cos 5t + B sin 5t

ẋ(t) = −5A sin 5t + 5B cos 5t

Substituting the above conditions x(0) = 5, ẋ(π) = 5

5 = A cos 0 + B sin 0 = A

5 = −5A sin 5π + 5B cos 5π = −5B

Therefore,

A = 5, B = −1

That is,

x(t) = 5 cos 5t− sin 5t

(2) Damped Free Vibration

If a damping force exists, the solution is classified into three cases according to whether
the value under the square root sign in Eq.(2.2.4) is positive, negative or zero.

i) Critical Damping

In the special case where the radical in Eq.(2.2.4) vanishes, we have

( c

2 m

)2

=
k

m
= ω2

n (2.2.16a)

The latter equality is given by Eq.(2.2.6). This is the condition of critical damping and
the critical damping coefficient ccr is

ccr = 2 mωn (2.2.16b)

The solution of Eq.(2.2.3) in this case is as was already given by Eq.(2.2.5b)

x(t) = (D1 + D2 t) est

where,

s = − ccr

2m
= −ωn

Then,

x(t) = (D1 + D2 t) e−ωnt (2.2.17)

Introducing initial conditions,

x(t) = {x(0)(1 + ωnt) + ẋ(0) t} e−ωnt (2.2.18)
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Fig.2.2.4　 Free vibration response of a critically damped system

This is shown in Fig.2.2.4. We can see that the free vibration response of a critically
damped system does not oscillate, but rather returns to zero displacement, because of the
exponential factor in Eq.(2.2.18).

ii) Underdamped System

If the damping is less than critical, we have, from Eq.(2.2.16b)

c < 2 mωn

and the radical in Eq.(2.2.4) becomes negative. In this case, it is convenient to express
the damping as a ratio of the critical damping value ccr. Thus,

ζ =
c

ccr

=
c

2 mωn

< 1 (2.2.19)

where ζ is called the damping ratio or the fraction of critical damping. Substituting this
into Eq.(2.2.4) yields

s1,2 = −ζωn ±
√

(ζωn)2 − ω2
n

= −ζωn ± i ωd (2.2.20)

where,

ωd = ωn

√
1− ζ2 (2.2.21)

The value ωd is called the damped natural circular frequency. Generally, it differs very
little from the undamped natural circular frequency ωn, because the damping ratios ζ
in typical structural systems are not very large (ζ < 0.2). The relationship between the
ratio ωd/ωn and ζ is indicated by a circle, as illustrated in Fig 2.2.5. The figure shows
that ωd/ωn is close to unity when ζ < 0.2.
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The free vibration response of an underdamped system is given by substituting Eq.(2.2.20)
into Eq.(2.2.5a)

x(t) = D1 e(−ζωn+i ωd)t + D2 e(−ζωn−i ωd)t

= e−ζωnt(D1 ei ωdt + D2 e−i ωdt)

= e−ζωnt(A cos ωdt + B sin ωdt) (2.2.22a)

Introducing initial conditions, we have,

x(t) = e−ζωnt

{
x(0) cos ωdt +

ẋ(0) + ζωnx(0)

ωd

sin ωdt

}
(2.2.22b)

This above expression can be written in rotating-vector form.

x(t) = e−ζωntρ cos(ωdt− θ) (2.2.23)

where,

ρ =

√
{x(0)}2 +

{
ẋ(0) + ζωnx(0)

ωd

}2

(2.2.24)

tan θ =
{ẋ(0) + ζωnx(0)}/ωd

x(0)
(2.2.25)

The free vibration response of an underdamped system is illustrated in Fig.2.2.6. It is
noted that the system oscillates about a neutral position (the zero base line) with a
constant circular frequency ωd or with a damped period Td = 2π/ωd. The rotating vector
representation is the same as shown in Fig.2.2.3 except that the length of the vector
diminishes exponentially.

Let us consider any two successive positive peaks shown in Fig.2.2.6, i.e. xi and xi+1.
If we assume from Eq.(2.2.23)

xi = ρ e−ζωnti
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Fig.2.2.6　 Free vibration response of an underdamped system

then,

xi+1 = ρ e
−ζωn(ti+

2π
ωd

)

The ratio of the above two quantities is

xi

xi+1

= e
ζωn

2π
ωd (2.2.26a)

Hence,

ln
xi

xi+1

= 2πζ
ωn

ωd

=
2πζ√
1− ζ2

(2.2.26b)

For low damping, the above equation becomes

ln
xi

xi+1

≈ 2πζ (2.2.27)

If we consider the Taylor series expansion, ∗

xi

xi+1

= e2πζ = 1 + 2πζ +
(2πζ)2

2!
+ . . .

Therefore, for low values of ζ, we have

ζ ≈ xi − xi+1

2πxi+1

(2.2.28)

For lightly damped systems, a reliable estimate of the damping ratio can be obtained by
considering peaks which are several cycles apart. Then,

ln
xi

xi+n

= 2πnζ
ωn

ωd

(2.2.29)

∗f(z) = f(a) + f ′(a)(z − a) + f ′′(a) (z−a)2

2! + f ′′′(a) (z−a)3

3! + · · ·
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For very low damping,

ζ ≈ xi − xi+n

2πn xi+n

(2.2.30)

iii) Overdamped system

If the damping is greater than critical, it is called overdamped, although this is not
encountered in usual structural systems. In this case ζ > 1, and Eq.(2.2.4) can be written

s1,2 = −ζωn ± ωn

√
ζ2 − 1

= −ζωn ± ω′n (2.2.31)

where
ω′n = ωn

√
ζ2 − 1 (2.2.32)

Substituting Eq.(2.2.31) into Eq.(2.2.5), we have

x(t) = e−ζωnt(D1 eω′nt + D2 e−ω′nt) (2.2.33a)

If we remember the following two formulae,

sinh ζ =
eζ − e−ζ

2

cosh ζ =
eζ + e−ζ

2
Eq.(2.2.33a) becomes

x(t) = e−ζωnt(A cosh ω′nt + B sinh ω′nt) (2.2.33b)

This is very similar to the case of critical damping and is of no physical interest, but this
system will oscillate if external forces are applied.

[Example 2.2]

Determine the response of the following sys-
tem under the given initial conditions.

k = 320, c = 4, m = 5

x(0) = 1, ẋ(0) = 7.6

[Solution]

The equation of motion of the system is

5 ẍ(t) + 4 ẋ(t) + 320 x(t) = 0

The characteristic equation is

5 s2 + 4 s + 320 = 0

��������
��������

c

m

k

������
������

Fig.E2.2
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Then,

s = −0.4± 7.99 i ≈ −0.4± 8 i

Therefore,

x(t) = e−0.4t(A cos 8t + B sin 8t)

The first derivative of the above equation is

ẋ(t) = −0.4 e−0.4t(A cos 8t + B sin 8t) + e−0.4t(−8A sin 8t + 8B cos 8t)

Substituting the initial conditions x(0) and ẋ(0), we have

A = 1, B = 1

Therefore,

x(t) = e−0.4t(cos 8t + sin 8t)

or

x(t) =
√

2 e−0.4t cos(8t− π

4
)

2.3 Response to Harmonic Loading

If the system in Fig.2.1.1 is subjected to a harmonically varying load of an amplitude p0

and a circular frequency ω, the equation of motion is

mẍ(t) + c ẋ(t) + k x(t) = p0 sin ωt (2.3.1)

The general solution of the above equation is the sum of the complementary function xc(t)
and the particular integral xp(t). Then,

x(t) = xc(t) + xp(t) (2.3.2)

(1) Undamped Systems

If the system is undamped, the equation of motion becomes

m ẍ(t) + k x(t) = p0 sin ωt (2.3.3)

The complementary function is the free vibration response of Eq.(2.3.3) and it is, as
already given by Eq.(2.2.10),

xc(t) = A cos ωnt + B sin ωnt (2.3.4)

The response to the harmonic loading can be assumed to be harmonic. Thus the particular
integral is

xp(t) = G1 cos ωt + G2 sin ωt (2.3.5)
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Substituting the above equation and its derivative into Eq.(2.3.3), we have

G1 = 0 (2.3.6)

G2 =
p0

k

1

1− r2
n

(2.3.7)

where rn is the frequency ratio given by

rn =
ω

ωn

(2.3.8)

Therefore, the general solution of Eq.(2.3.3) is

x(t) = A cos ωnt + B sin ωnt +
p0

k

1

1− r2
n

sin ωt (2.3.9)

G1 = 0 indicates that the steady state response is in phase to harmonically applied load.
This is because the damping is zero.

If the system is initially at rest, i.e. x(0) = 0, ẋ(0) = 0, the above equation becomes

x(t) =
p0

k

1

1− r2
n

(sin ωt− rn sin ωnt) (2.3.10)

where p0/k is called the static displacement, because this is the value which would be
produced by the load p0 applied statically, and 1/(1− r2

n) is called the dynamic magnifi-
cation factor (Rdy), which represents the dynamic amplification effect of a harmonically
applied load.

When we derived Eq.(2.3.9), we had assumed that rn 6= 1. But if rn = 1 or ω = ωn,
the particular integral should have the form of

xp(t) = G1 t cos ωnt + G2 t sin ωnt (2.3.11)

Substituting this and its derivative into Eq.(2.3.3), we have

G1 = − p0

2mωn

G2 = 0

Then,

xp(t) = − p0

2mωn

t cos ωnt (2.3.12)

Therefore, the general solution is

x(t) = A cos ωnt + B sin ωnt− p0

2mωn

t cos ωnt (2.3.13)

Substituting the condition that the system is initially at rest (this means that the velocity
and displacement at t = 0 are both zero), we have

x(t) =
p0

2mω2
n

(sin ωnt− ωnt cos ωnt)

=
p0

2k
(sin ωnt− ωnt cos ωnt) (2.3.14)
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since

ω2
n =

k

m

Some examples of Eqs.(2.3.10) and (2.3.14) are shown in Fig.2.3.1 as a parameter of
rn = ω/ωn.

rn =
ω

ωn
= 0.866 ≈ 1

rn =
ω

ωn
= 1

rn =
ω

ωn
= 10.00 À 1

rn =
ω

ωn
= 10.00 À 1

t / T n
0 5 10 15

t / T n
0 5

Fig.2.3.1　Response of undamped systems to harmonic loading

(2) Underdamped Systems

If the system is underdamped, the complementary function xc(t) and the particular
integral xp(t) are given by

xc(t) = e−ζωnt(A cos ωdt + B sin ωdt) (2.3.15)

xp(t) = G1 cos ωt + G2 sin ωt (2.3.16)

Substituting Eq.(2.3.16) and its derivatives into Eq.(2.3.1) yields

(−ω2G1 +
c

m
ω G2 +

k

m
G1) cos ωt + (−ω2G2 − c

m
ω G1 +

k

m
G2 − p0

m
) sin ωt = 0
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From Eqs. (2.2.6) and (2.2.19),
k

m
= ω2

n and
c

m
= 2ζωn, then we have

(1− r2
n)G1 + 2ζrnG2 = 0 (2.3.17a)

−2ζrnG1 + (1− ζ2)G2 =
p0

k
(2.3.17b)

where rn is the frequency ratio (=
ω

ωn

) as already given by Eq.(2.3.8). Therefore,

G1 =
−2ζrn

(1− r2
n)

2 + (2ζrn)2

p0

k
(2.3.18a)

G2 =
1− r2

n

(1− r2
n)

2 + (2ζrn)2

p0

k
(2.3.18b)

Then, the general solution x(t) can be given by

x(t) = e−ζωnt(A cos ωdt + B sin ωdt)

+
p0

k

1

(1− r2
n)

2 + (2ζrn)2
{(1− r2

n) sin ωt− 2ζrn cos ωt} (2.3.19)

where the first and the second terms are called the transient response and steady state
response, respectively. This is because the first term will decrease exponentially and
vanish due to the damping of the system, and only the second term will remain as a
steady state response. The steady response is written in the form

xp(t) =
p0

k

1√
(1− r2

n)
2 + (2ζrn)2

sin(ωt− θ) (2.3.20)

where the factor p0/k is the static displacement as was referred to previously, and the
second factor is the dynamic magnification factor Rdy

Rdy =
1√

(1− r2
n)

2 + (2ζrn)2
(2.3.21)

There is a time shift between the input and the response due to damping and the phase
angle is

tan θ =
2ζrn

1− r2
n

(2.3.22)

Figs. 2.3.2 and 2.3.3 show the dynamic magnification factor Rdy and the phase angle
θ, respectively. It should be noted that both Rdy and θ are functions of ζ and rn.
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[Example 2.3]

Determine the response of the following sys-
tem using the applied force prescribed below.
The system is initially at rest.

m = 3, k = 51, c = 6

p(t) = 3 sin 2t for 0 ≤ t ≤ π,

p(t) = 0 for t ≥ π
��������
��������

c

m
p  t

k

������
������ ( )

Fig.E2.3　　　

[Solution]

The external load p(t) is given only when 0 ≤ t ≤ π. Then the damped free vibration
starts at t = π. The equation of motion is

3ẍ(t) + 6ẋ(t) + 51x(t) = p(t)

The characteristic equation is
3s2 + 6s + 51 = 0

Then,
s2 + 2s + 17 = 0

Therefore,
s = −1± 4i

The complementary function is

xc(t) = e−t(A cos 4t + B sin 4t)

The particular integral can be

xp(t) = C cos 2t + D sin 2t

ẋp(t) = −2C sin 2t + 2D cos 2t

ẍp(t) = −4C cos 2t− 4D sin 2t

Substituting these into the equation of motion, we have,

3(−4C cos 2t− 4D sin 2t) + 6(−2C sin 2t + 2D cos 2t) + 51(C cos 2t + D sin 2t) = 3 sin 2t

(39C + 12D) cos 2t + (−12C + 39D) sin 2t = 3 sin 2t

Then,

39C + 12D = 0

−12C + 39D = 3

Then,

C = − 4

185
, D =

13

185
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The complete solution is

x(t) = e−t(A cos 4t + B sin 4t)− 4

185
cos 2t +

13

185
sin 2t

Then,

ẋ(t) = −e−t(A cos 4t + B sin 4t) + e−t(−4A sin 4t + 4B cos 4t)

+
8

185
sin 2t +

26

185
cos 2t

The system is initially at rest, so that

x(t = 0) = 0 = A− 4

185

A =
4

185

ẋ(t = 0) = 0 = A + 4B +
26

185

B =
1

4
(− 26

185
+

4

185
) = − 11

370
Therefore, for 0 ≤ t ≤ π

x(t) =
1

185

{
e−t(4 cos 4t− 11

2
sin 4t)− 4 cos 2t + 13 sin 2t

}

ẋ(t) =
1

185

{
−e−t(4 cos 4t− 11

2
sin 4t) + e−t(−16 sin 4t− 22 cos 4t) + 8 sin 2t + 26 cos 2t

}

At t = π

x(π) =
1

185
(4e−π − 4) =

4

185
(e−π − 1)

ẋ(π) =
1

185
(−4e−π − 22e−π + 26) = − 26

185
(e−π − 1)

These are the boundary conditions for t ≥ π. The complementary function is

xc(t) = e−t(A cos 4t + B sin 4t)

ẋc(t) = −e−t(A cos 4t + B sin 4t) + e−t(−4A sin 4t + 4B cos 4t)

Substituting the boundary conditions at t = π

Ae−π =
4

185
(e−π − 1)

A =
4

185
(1− eπ)

−Ae−π + 4Be−π = − 26

185
(e−π − 1)

4Be−π = − 22

185
(e−π − 1)

B =
11

370
(eπ − 1)
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��

Fig.2.3.4　 Scheme of a seismometer

Therefore, for t ≥ π

x(t) = e−t{ 4

185
(1− eπ) cos 4t +

11

370
(eπ − 1) sin 4t}

=
(eπ − 1)

185
e−t(−4 cos 4t +

11

2
sin 4t)

(3) Accelerometer and Displacement Meter

A SDOF system mounted in a case is attached to the floor as shown in Fig.2.3.4. The
floor is subjected to the ground motion of

ẍg(t) = pa sin ωt (2.3.23)

The equation of motion is

m ẍ(t) + c ẋ(t) + k x(t) = −mpa sin ωt (2.3.24)

The solution for the steady state response of this equation is, as already given by Eq.(2.3.20)

x(t) = −mpa

k
Rdy sin(ωt− θ)

= − pa

ω2
n

Rdy sin(ωt− θ) (2.3.25)

The dynamic magnification factor Rdy is already shown in Fig.2.3.2. From this figure,
it can be seen that the dynamic magnification factor is almost unity for ζ = 0.7 and
0 < rn < 0.6. Therefore, if the system has a device to record the relative displacement of
the system, the record will be proportional to the acceleration amplitude of the ground
motions and it can be used as an accelerometer. The frequency of the excitations should
be in the range of 0 < rn < 0.6. Hence, by increasing the stiffness and/or decreasing the
mass, the applicable frequency range will be increased.

If the ground motion is given by

xg(t) = pd sin ωt (2.3.26a)
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Fig.2.3.5　Response of seismometer to harmonic base displacement

or
ẍg(t) = −ω2pd sin ωt (2.3.26b)

The equation of motion and the solution for steady state response are

m ẍ(t) + c ẋ(t) + k x(t) = mω2pd sin ωt (2.3.27)

x(t) =
mω2pd

k
Rdy sin(ωt− θ)

= r2
nRdypd sin(ωt− θ) (2.3.28)

The relations between r2
nRdy and rn are shown in Fig.2.3.5.

It is evident that r2
nRdy is almost constant for ζ = 0.5 and rn > 1. Thus the relative

displacement amplitude of the system is proportional to the excitation displacement and
the system can be used as a displacement meter. The frequency of the system should be
decreased by reducing the stiffness and/or increasing the mass.

(4) Vibration Isolation

A rotating machine produces an oscillatory force p(t) = p0 sin ωt due to unbalance in
its rotating parts. If the machine is supported by a spring-damper system, the equation
of motion of the machine and its steady state response are (See Fig.2.3.6)

m ÿ(t) + c ẏ(t) + k y(t) = p0 sin ωt (2.3.29)

y(t) =
p0

k
Rdy sin(ωt− θ) (2.3.30)

Thus the force ps from the spring to the floor is

ps = k y(t) = p0Rdy sin(ωt− θ) (2.3.31)
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Fig.2.3.6　Vibration isolation system

The relative velocity to the floor is

ẏ(t) =
p0

k
Rdy ω cos(ωt− θ) (2.3.32)

Then, the damping force pd is

pd = c ẏ(t) =
c p0

k
Rdy ω cos(ωt− θ)

= 2ζrnp0Rdy cos(ωt− θ) (2.3.33)

Therefore, the force p given to the floor by the machine is

p = ps + pd = p0Rdy

√
1 + (2ζrn)2 cos(ωt− θ − θ′) (2.3.34)

The ratio Rtr of the maximum force to the applied force amplitude is called transmissibility
and it is given by

Rtr =
pmax

p0

= Rdy

√
1 + (2ζrn)2

Let us consider the case of Rtr = 1. In this case,

1 + (2ζrn)
2 = (1− r2

n)
2 + (2ζrn)

2

r2
n(r

2
n − 2) = 0

Therefore, regardless of ζ, when rn = 0 or
√

2, Rtr = 1. A plot of Rtr is shown in Fig.2.3.7.
It is similar to Fig.2.3.2, but all the curves pass through the same point at rn =

√
2. It

can be seen that the given force is reduced for rn >
√

2 and that the damping reduces the
effectiveness of the vibration isolation for rn >

√
2. If the machine gradually increases the

frequency from rest, the machine will be in resonance before it reaches its steady state
response. This resonance may cause unfavorable vibration of the floor as well as of the
machine itself. Therefore the optimum point should be selected in order to design the
vibration isolation system.
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Fig.2.3.7　Vibration transmissibility ratio

2.4 Response to Arbitrary Loading

(1) Linear Acceleration Method

If the force applied is arbitrary, we usually use step-by-step methods to calculate the
response of a system. One of the advantages of the step-by-step method is that it is
applicable not only to elastic systems but also to inelastic systems. Here, we are going to
discuss the linear acceleration method, which is one of the step-by-step methods.

In order to study this method, let us start with the equation of motion of a SDOF
system that we have already learned, i.e.

−m ẍT (t)− c ẋ(t)− k x(t) = 0 (2.4.1)

where ẍT (t) is the absolute acceleration and it is

ẍT (t) = ẍ(t) + ẍg(t) (2.4.2)

We should note that only the inertia force is expressed by the term of absolute quantity
in Eq.(2.4.1). Substituting Eq.(2.4.2) into Eq.(2.4.1) and after some rearrangement, we
have

ẍ(t) +
c

m
ẋ(t) +

k

m
x(t) = −ẍg(t) (2.4.3)

This can be written in the form

ẍ(t) + 2ζωn ẋ(t) + ω2
nx(t) = −ẍg(t) (2.4.4)

where ζ =
c

2
√

mk
and ω2

n =
k

m
, from their definitions.

Eq.(2.4.4) must be satisfied at any time, i.e. t = t. At t = t + ∆t, Eq.(2.4.4) becomes

ẍ(t + ∆t) + 2ζωnẋ(t + ∆t) + ω2
nx(t + ∆t) = −ẍg(t + ∆t) (2.4.5)
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Then, let us remember Taylor series expansion, i.e.

f(x + h) = f(x) + f ′(x)h + f ′′(x)
h2

2!
+ f ′′′(x)

h3

3!
+ · · ·

Therefore, we can write

x(t + ∆t) = x(t) + ẋ(t)∆t + ẍ(t)
∆t2

2
+

...
x (t)

∆t3

6
+ · · · (2.4.6a)

ẋ(t + ∆t) = ẋ(t) + ẍ(t)∆t +
...
x (t)

∆t2

2
+ · · · (2.4.7a)

If acceleration changes linearly with time during ∆t, we have

...
x (t) =

ẍ(t + ∆t)− ẍ(t)

∆t
(2.4.8)

Substituting this into Eqs. (2.4.6) and (2.4.7),

x(t + ∆t) = x(t) + ẋ(t)∆t + ẍ(t)
∆t2

3
+ ẍ(t + ∆t)

∆t2

6
(2.4.6b)

ẋ(t + ∆t) = ẋ(t) + ẍ(t)
∆t

2
+ ẍ(t + ∆t)

∆t

2
(2.4.7b)

Substituting these equations into Eq.(2.4.5), we have

ẍ(t + ∆t) + 2ζωn

{
ẋ(t) + ẍ(t)

∆t

2
+ ẍ(t + ∆t)

∆t

2

}

+ ω2
n

{
x(t) + ẋ(t)∆t + ẍ(t)

∆t2

3
+ ẍ(t + ∆t)

∆t2

6

}
= −ẍg(t + ∆t)

ẍ(t + ∆t)
{

1 + ζωn∆t +
ω2

n∆t2

6

}
+ x(t)ω2

n

+ ẋ(t){2ζωn + ω2
n∆t}+ ẍ(t)

{
ζωn∆t +

ω2
n

3
∆t2

}
= −ẍg(t + ∆t)

Therefore,

ẍ(t + ∆t) = − 1

A
{ẍg(t + ∆t) + x(t)B + ẋ(t)C + ẍ(t)D} (2.4.9)

where,

A = {1 + ζωn∆t +
ω2

n

6
∆t2}, B = ω2

n, C = {2ζωn + ω2
n∆t}

and

D = {ζωn∆t +
ω2

n

3
∆t2}

and these are independent of time. Therefore we do not have to calculate these at each
step, as long as the system remains in the elastic range. In the case the system is initially
at rest, x(0) = ẋ(0) = 0, then at t = ∆t

ẍ(∆t) = − 1

A
ẍg(∆t)
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Substituting this into Eqs. (2.4.6b) and (2.4.7b), we know x(∆t) and ẋ(∆t). Then we
can calculate ẍ(2∆t) and then ẋ(2∆t) and x(2∆t), and so on. Therefore, we will know
the whole response of the system. In the case of earthquake acceleration, ∆t is usually
0.01 or 0.02 (s).

[Example 2.4]

In case you compute the response of a SDOF system to earthquake motions, you
will probably need the aid of a digital computer because there are tens of thousands of
calculations. Here we will show you an example of a computer program in FORTRAN
language for response computation of a SDOF system.

A Fortran Program for computing the response to equi-spaced earthquake motion data
for a SDOF system

C

C Program for computing the response to earthquake

C motion

C

C Description of the parameters

C A(I) - Accelerogram in gals

C DAMP - Fraction of critical damping

C PER - Natural period in second of the SDOF system

C DT - Time interval in second of accelerogram

C NN - Number of data in accelerogram

C

REAL*4 A(3000),RA(3000),RV(3000),RD(3000)

READ(5,500) DAMP,PER

500 FORMAT(2F10.5)

READ(5,501) DT,NN

501 FORMAT(F10.0,I5)

READ(5,502) (A(M),M=1,NN)

502 FORMAT(10F8.0)

C

C Computing the response

C

CALL RESP(PER,DAMP,NN,DT,A,RA,RV,RD)

C Computing the maximum of the responses

C

SA=0.

SV=0.

SD=0.

DO 100 M=1,NN

IF (SA.GT.ABS(RA)) GO TO 100

SA=ABS(RA)

TA=DT*(M-1)
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100 IF (SV.GT.ABS(RV)) GO TO 200

SV=ABS(RV)

TV=DT*(M-1)

200 IF (SD.GT.ABS(RD)) GO TO 300

SD=ABS(RD)

TD=DT*(M-1)

300 CONTINUE

WRITE(6,600) SA,SV,SD

600 FORMAT(1H1/1H0/1H ,10X,’MAX. ACC. RESPONSE(GAL) =’,

1 F10.3/1H ,10X,’MAX. VEL. RESPONSE(KINE) =’,

2 F10.4/1H ,10X,’MAX. DIS. RESPONSE(CM) =’,

3 F10.5)

STOP

END

C

C

C Subroutine program to compute the response time

C history of the given damping ratio and given natural

C period for given acceleration time history

C INPUT

C PER - NATURAL PERIOD OF THE SDOF SYSTEM

C DAMP - FRACTION OF CRITICAL DAMPING

C NN - NUMBER OF DATA

C DT - TIME INTERVAL OF DATA

C A - ACCELEROGRAM FOR WHICH RESPONSE IS COMPUTED

C OUTPUT

C RA - ABSOLUTE ACC. RESPONSE (ARRAY)

C RV - RELATIVE VEL. RESPONSE (ARRAY)

C RD - RELATIVE DIS. RESPONSE (ARRAY)

C

SUBROUTINE RESP(PER,DAMP,NN,DT,A,RA,RV,RD)

C

REAL*4 A(1),RA(1),RV(1),RD(1)

DATA PI2/6.2831853/

W=6.283185/PER

R=1.0+DAMP*W*DT+(W*DT)**2/6.0

DDX=(2.0*DAMP*W*DT-1.0)*A(1)

DX=-A(1)*DT

X=0.0

RA(1)=DDX+A(1)

RV(1)=DX

RD(1)=0.0

C

C RESPONSE COMPUTATIONS

C
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DO 110 M=2,NN

E=DX+DDX*DT/2.0

F=X+DX*DT+DDX*DT**2/3.0

DDX=-(A(M)+2.0*DAMP*W*E+W**2*F)/R

DX=E+DDX*DT/2.0

X=F+DDX*DT**2/6.0

RA(M)=DDX+A(M)

RV(M)=DXVELMAX

RD(M)=X

110 CONTINUE

RETURN

END

(2) Duhamel Integral - Convolution Integral

If a force p is applied to a system for a short duration of ∆t, the applied impulse is
p∆t, and this is equal to the increment of momentum of the system which is given by
m ∆ẋ. Thus,

p∆t = m ∆ẋ (2.4.10)

The free vibration of the system, which is initially at rest, due to the impulse p∆t or
initial velocity p∆t/m is [See Eq.(2.2.22b)]

x(t) = e−ζωnt p∆t

mωd

sin ωdt (2.4.11)

Thus the response due to the arbitrary load p(t) is (See Fig.2.4.1)

x(t) =
1

mωd

∫ t

0

p(τ)e−ζωn(t−τ) sin ωd(t− τ)dτ (2.4.12)

 

 

 

 

 

 

 

 

p(t)

x(t) = e−ζωn(t−∆t) p(∆t)∆t

mωd
sinωd(t−∆t)

x(t) = e−ζωn(t−2∆t) p(2∆t)∆t

mωd
sinωd(t− 2∆t)

x(t) = e−ζωn(t−3∆t) p(3∆t)∆t

mωd
sinωd(t− 3∆t)

Fig.2.4.1　Convolution integral
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Fig.2.4.2 Scheme of response spectrum

This is known as the Duhamel integral that is also expressed in the form

x(t) =

∫ t

0

p(τ)h(t− τ)dτ (2.4.13)

This form is called the convolution integral and the new symbol is defined by

h(t− τ) =
1

mωd

e−ζωn(t−τ) sin ωd(t− τ) (2.4.14)

This is called unit-impulse response.
If the force is caused by an external acceleration ẍg(t), Eq.(2.4.12) becomes

x(t) = − 1

ωd

∫ t

0

ẍg(τ)e−ζωn(t−τ) sin ωd(t− τ)dτ (2.4.15)

(3) Response Spectrum

The intensity of the ground motion gives engineers valuable information related to
the extent of damage of structures. The most important properties of earthquake ground
motion records are amplitude, frequency content and duration of the motion. By consid-
ering these three important properties, a convenient measure of a ground motion can be
obtained by evaluating the response of SDOF systems (see Fig.2.4.2). This measure is
called the response spectrum, which can be obtained as follows.

Structural response to earthquake excitations varies according to the dynamic char-
acteristics of the system. The dynamic characteristics are represented simply using only
damping and natural period for the simplest structure, i.e. the SDOF system.

As was described in the previous section, the response of the structure changes with
time. In structural design, in most cases the maximum response is more important than
its time variation. The maximum response to an earthquake input motion is a function
of the damping ratio ζ, and the natural period T . Let the maximum responses for rela-
tive displacement, relative velocity and absolute acceleration be represented by Sd(ζ, T ),
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Sv(ζ, T ) and Sa(ζ, T ), respectively. They can be calculated by using the step-by-step
method or by using Duhamel’s integration method as follows.

Sd(ζ, T ) =
1

ωd

∣∣∣
∫ t

0

ẍg(τ)e−ζωn(t−τ) sin ωd(t− τ)dτ
∣∣∣
max

(2.4.16a)

Sv(ζ, T ) =
∣∣∣
∫ t

0

ẍg(τ)e−ζωn(t−τ)[cos ωd(t− τ)− ζ√
1− ζ2

sin ωd(t− τ)]dτ
∣∣∣
max

(2.4.16b)

Sa(ζ, T ) = ωd

∣∣∣
∫ t

0

ẍg(τ)e−ζωn(t−τ)[(1− ζ2

1− ζ2
) sin ωd(t− τ) +

2ζ√
1− ζ2

cos ωd(t− τ)]dτ
∣∣∣
max

(2.4.16c)

The figure that presents the relationship between maximum response and period is
called the response spectrum. Therefore, Sd(ζ, T ), Sv(ζ, T ) and Sa(ζ, T ) are called the
relative displacement response spectrum, relative velocity spectrum and absolute acceler-
ation spectrum, respectively.

In the case of structural design, several strong motion records are commonly used. The
record at El Centro during the Imperial Valley earthquake, California in 1940 is the most
popular one in the world. The response spectra for this record are shown in Fig.2.4.3.
By analyzing many time history records from earthquakes, it has been found that the
response velocity of structures becomes almost constant for longer periods. Therefore a
response spectrum has the characteristics shown in Fig.2.4.4.

[Pseudo response spectra]

Since the damping ratio for ordinary structures is far less than 1, it will be found that

ζ2 ≈ 0 ,
√

1− ζ2 ≈ 1 and ωd ≈ ωn =
2π

T

Then, Eqs.(2.4.16a-c) can be rewritten approximately as follows:

Sd(ζ, T ) ≈ 1

ωn

∣∣∣
∫ t

0

ẍg(τ)e−ζωn(t−τ) sin ωn(t− τ)dτ
∣∣∣
max

(2.4.17a)

Sv(ζ, T ) ≈
∣∣∣
∫ t

0

ẍg(τ)e−ζωn(t−τ) cos ωn(t− τ)dτ
∣∣∣
max

(2.4.17b)

Sa(ζ, T ) ≈ ωn

∣∣∣
∫ t

0

ẍg(τ)e−ζωn(t−τ) sin ωn(t− τ)dτ
∣∣∣
max

(2.4.17c)

Let us introduce a new symbol as

Spv(ζ, T ) =
∣∣∣
∫ t

0

ẍg(τ)e−ζωn(t−τ) sin ωn(t− τ)dτ
∣∣∣
max

(2.4.18b)

It has been proved that Spv(ζ, T ) differs very little from Sv(ζ, T ). Introducing two more
new symbols Spd(ζ, T ), and Spa(ζ, T ) and using Eq.(2.4.18b), Eqs.(2.4.17a) and (2.4.17c)
becomes as follows.

Spd(ζ, T ) =
1

ωn

Spv(ζ, T ) ≈ Sd(ζ, T ) (2.4.18a)

Spa(ζ, T ) = ωnSpv(ζ, T ) ≈ Sa(ζ, T ) (2.4.18c)
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Fig.2.4.4 Typical characteristics of response spectra

Fig.2.4.5 Tripartite response spectrum
(El Centro 1940 NS, ζ =0, 0.02, 0.05, 0.1, 0.2)
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Fig.2.5.1 Virtual displacement of a body

The values Spd(ζ, T ), Spv(ζ, T ), and Spa(ζ, T ) are called the pseudo (relative) displacement
response, pseudo (relative) velocity response and pseudo (absolute) acceleration response,
respectively.

Due to these simple relationships, it is possible to present the three types of responses
in a single plot. A four-way log plot as shown in Fig.2.4.5 allows the three types of spectra
on a single graph that is called a tripartite response spectrum.

If the response spectrum is given, the maximum response of any SDOF system can
be determined. Furthermore, it should be noted that the response of a multi-degree
of freedom (MDOF) system can also be approximately evaluated by using the response
spectrum. The method, e.g. modal analysis or the square root of sum of squares (SRSS)
method, will be explained in Chapter 3.

2.5 Principle of Virtual Work - Generalized SDOF

Systems

If the structural system is complicated, the direct equilibration of forces may be difficult.
In such cases, the principle of virtual work can be used to formulate the equation of
motion as a substitute for the equilibrium relationships.

The principle of virtual work can be expressed as follows. If a system which is in
equilibrium under the action of a set of forces is subjected to a virtual displacement, the
total work done by the forces will be zero.

(1) For example, suppose there is a body in equilibrium with applied forces, p1, p2, p3

and p4 (See Fig.2.5.1). Then the work caused by the virtual displacement δ will be zero.
Therefore we will have the following equation.

p1 · δ + p2 · δ + p3 · δ + p4 · δ = 0 (2.5.1)

(2) If we apply this principle to a common SDOF system, the following equation can be
given. (See Fig.2.5.2)
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Fig.2.5.3　Virtual displacements of the system

−m ẍ(t) · δ − c ẋ(t) · δ − k x(t) · δ + p(t) · δ = 0 (2.5.2)

Since δ can be arbitrary, we then have the following equation of motion, which is exactly
the same as the equation derived by direct equilibration using d’Alembert’s principle.

−mẍ(t)− c ẋ(t)− k x(t) + p(t) = 0 (2.5.3)

(3) Let us consider the relatively complicated system shown in Fig.2.5.3.

The forces acting on the system at B, C, D and E are p(t), −m2
3
ÿ(t), −k y(t) and

−c1
2
ẏ(t), respectively, where the vertical displacement at D is defined as y(t). If the

virtual displacement δ is given at D, the virtual work caused by this displacement should
be zero. Then the following equation can be given.

p(t) · 1

3
δ −m

2

3
ÿ(t) · 2

3
δ − k y(t) · δ − c

1

2
ẏ(t) · 1

2
δ = 0 (2.5.4)

Finally, we can have the following equation of motion

(2

3

)2

m ÿ(t) +
(1

2

)2

c ẏ(t) + k y(t) =
1

3
p(t) (2.5.5)
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Fig.2.6.1 Free vibration of an undamped spring-mass system

If we denote,

m∗ =
4

9
m, c∗ =

1

4
c, k∗ = k, and p∗ =

1

3
p

Eq.(2.5.5) can be written in the form

m∗ÿ(t) + c∗ẏ(t) + k∗y(t) = p∗(t) (2.5.6)

This has the same form as the equation for a simple SDOF system. m∗, c∗, k∗ and p∗(t)
are called the generalized mass, generalized damping coefficient, generalized stiffness and
generalized load, respectively.

It should be noted that the sign of each term of Eqs.(2.5.2) and (2.5.4) is positive when
the virtual displacement and the force have the same direction, and is negative when the
directions of the virtual displacement and the force are opposite.

2.6 Rayleigh’s Method - Vibration of Continuous

Members

(1) Basis for the Method

The vibration frequency or period of a SDOF system has a controlling influence on its
dynamic behavior. For this reason it is useful to develop a simple method of evaluating the
vibration frequency for SDOF systems. Probably the most useful procedure is Rayleigh’s
method. The basic concept in the Rayleigh’s method is the principle of conservation of
energy; the energy in a freely vibrating system must remain constant if no damping forces
act to absorb it. Let us consider the free vibration motion of an undamped spring-mass
system. (See Fig.2.6.1)

The displacement can be expressed by

x(t) = x0 sin ωnt (2.6.1)

and the velocity by
ẋ(t) = x0 ωn cos ωnt (2.6.2)

The potential energy of this system is represented by the strain energy of the spring:

EP(t) =
1

2
k x(t)2 =

1

2
k x2

0 sin2 ωnt (2.6.3a)
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Fig.2.6.2 Vibration of a nonuniform simple beam

while the kinetic energy of the mass is

EK(t) =
1

2
mẋ(t)2 =

1

2
mx2

0 ω2
n cos2 ωnt (2.6.4a)

At the time when t = T/4 = π/(2ωn), the kinetic energy is zero and the potential energy
reaches its maximum value:

EPmax =
1

2
k x2

0 (2.6.3b)

Similarly, at the time when t = T/2 = π/ωn, the potential energy vanishes and the kinetic
energy becomes maximum.

EKmax =
1

2
mx2

0 ω2
n (2.6.4b)

Hence, if the total energy in the vibrating system remains constant (as it must in
undamped free vibration), it is then apparent that the maximum potential energy must
be equal to the maximum kinetic energy, EPmax = EKmax. We then have

ω2
n =

k

m
(2.6.5)

This is, of course, the same frequency expression which has been given earlier; in
this case it has been derived by the Rayleigh concept of equating expressions from the
maximum strain energy and the maximum kinetic energy.

(2) Approximate Analysis of General Systems

There is no advantage to be gained from the application of Rayleigh’s method to
vibration analysis of a spring-mass system as described above; its principal use is for the
approximate frequency analysis of a system having many degrees of freedom.

Consider, for example, the non-uniform simple beam shown in Fig.2.6.2. This beam
actually has an infinite number of degrees of freedom. In order to apply the Rayleigh
procedure, it is necessary to make an assumption about the shape that the beam will take
in its fundamental mode of vibration. Noting the harmonic vibration of the generalized
coordinate in free vibration, the displacement of the beam can be expressed by

y(x, t) = ψ(x) y∗ sin ωnt (2.6.6)

where ψ(x) is the shape function and y∗ is the generalized coordinate. This equation
expresses the assumption that shape of the vibrating beam does not change with time;
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only the amplitude of motion varies, and it varies harmonically in free-vibration. The
assumption of the shape function ψ(x) effectively reduces the beam to a SDOF system.
The frequency of vibration can be found as follows.

The strain energy of this flexural system is given by

EP(t) =
1

2

∫
EI(x)

{∂2y(x, t)

∂x2

}2

dx (2.6.7a)

Substituting Eq.(2.6.6) and letting the displacement amplitude take its maximum value
leads to

EPmax =
1

2
(y∗)2

∫
EI(x){ψ′′(x)}2dx (2.6.7b)

The kinetic energy of the nonuniformly distributed mass is

EK(t) =
1

2

∫
m(x){ẏ(x, t)}2dx (2.6.8a)

Differentiating Eq.(2.6.6) and substituting this to Eq.(2.6.8a), the maximum kinetic en-
ergy can be given by

EKmax =
1

2
(y∗)2ω2

n

∫
m(x){ψ(x)}2dx (2.6.8b)

Equating the maximum potential energy to the maximum kinetic energy, the frequency
is found to be

ω2
n =

∫
EI(x){ψ′′(x)}2dx∫
m(x){ψ(x)}2dx

(2.6.9)

It may be noted that the numerator is merely the generalized stiffness k∗ for this assumed
displacement shape, while the denominator is its generalized mass m∗.

k∗ =

∫
EI(x){ψ′′(x)}2dx (2.6.10)

m∗ =

∫
m(x){ψ(x)}2dx (2.6.11)

Thus Rayleigh’s method can be directly applied to any SDOF system of the generalized
form and the frequency can be given by

ω2
n =

k∗

m∗ (2.6.12)

[Example 2.5]

Derive the natural frequency of a simply
supported uniform beam, using Rayleigh’s
method.

��������������

L

m, EI

Fig.E2.5

[Solution]
At first, let us assume the shape function (1) as parabolic.
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Shape function (1)

y(x) = x2 − Lx y′(x) = 2x− L y′′(x) = 2

Then,

k∗ =

∫ L

0

EI(2)2dx = 4EI
[
x
]L

0
= 4EIL

m∗ =

∫ L

0

m (x2 − Lx)2dx = m

∫ L

0

(x4 − 2Lx3 + L2x2)dx

= m
[x5

5
− 2L

x4

4
+ L2x3

3

]L

0
= mL5

(1

5
− 1

2
+

1

3

)
=

mL5

30

ω2
n =

k∗

m∗ = 4EIL
30

mL5
= 120

EI

mL4

We can imagine this may not be a good estimate of natural frequency. Because the second
derivative of the shape function (1) is constant (= 2), which means that the curvature of
the beam is uniform along the beam length.

Because the curvature should be zero at simply supported beam ends, let us assume
the shape function (2) so that its second derivative becomes parabolic.

Shape function (2)

y(x) = x4 − 2Lx3 + L3x y′(x) = 4x3 − 6Lx2 + L3 y′′(x) = 12(x2 − Lx)

Then,

k∗ =

∫ L

0

EI{12(x2 − Lx)}2dx = 144EI

∫ L

0

(x4 − 2Lx3 + L2x2)dx

= 144EI
[x5

5
− 2L

x4

4
+ L2x3

3

]L

0
= 144EIL5

(1

5
− 1

2
+

1

3

)
=

24

5
EIL5

m∗ =

∫ L

0

m (x4 − 2Lx3 + L3x)2dx

= m

∫ L

0

(x8 + 4L2x6 + L6x2 − 4Lx7 − 4L4x4 + 2L3x5)dx

= m
[x9

9
+ 4L2x7

7
+ L6x3

3
− 4L

x8

8
− 4L4x5

5
+ 2L3x6

6

]L

0

= mL9
(1

9
+

4

7
+

1

3
− 1

2
− 4

5
+

1

3

)

= mL9 1

630
(70 + 360 + 210− 315− 504 + 210) =

31

630
mL9

ω2
n =

k∗

m∗ =
24

5
EIL5 630

31

1

mL9
=

3024

31

EI

mL4
≈ 97.5

EI

mL4
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Now, let us assume the shape function (3) as follows.

Shape function (3)

y(x) = sin
πx

L
y′(x) =

π

L
cos

πx

L
y′′(x) = −π2

L2
sin

πx

L

k∗ =

∫ L

0

EI
(
−π2

L2
sin

πx

L

)2

dx = EI
π4

L4

∫ L

0

1

2

(
1− cos

2πx

L

)
dx

= EI
π4

2L4

[
x− L

2π
sin

2πx

L

]L

0
= EI

π4

2L4

[
L

]
=

π4

2

EI

L3

m∗ = m

∫ L

0

sin2 πx

L
dx = m

∫ L

0

1

2

(
1− cos

2πx

L

)
dx

=
m

2

[
x− L

2π
sin

2πx

L

]L

0
=

mL

2

ω2
n =

k∗

m∗ =
π4

2

EI

L3

2

mL
≈ 97.4

EI

mL4

This is the best estimate of the natural frequency, because the shape function (3) is the
true shape function. It can be seen that the shape function (2) gives the natural frequency
which is almost identical to the one that is derived using the shape function (3). This
indicates that it is better to select a shape function which satisfies boundary conditions
not only in terms of deflection but also in terms of curvature.

(3) Selection of Shape Function

The accuracy of the vibration frequency obtained by Rayleigh’s method depends en-
tirely on the shape function ψ(x). In principle, any shape function may be selected which
satisfies the geometric boundary conditions. However, any shape other than the true
vibration shape would require the action of additional external constraints to maintain
equilibrium; these extra constraints would stiffen the system and thus would cause an
increase in the computed frequency. Consequently, the true vibration shape will yield the
lowest frequency obtainable by Rayleigh’s method and the lowest frequency given by this
method is always the best approximation.

The correct vibration shape ψc(x) is the deflected shape that results from a loading
Pc(x) proportional to m(x)ψc(x). It is not possible to guess the exact shape ψc(x) for a
complex system, but the Rayleigh procedure will provide good accuracy with the deflec-
tion shape computed from the loading P̄ (x) = m(x)ψ̄(x), where ψ̄(x) is any reasonable
approximation of the true shape. One common assumption is that the inertia force P̄ (x)
is merely the weight of the beam, that is, P̄ (x) = m(x)g. The maximum strain energy
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can then be found very simply, from the fact that the stored energy must be equal to the
work done in the system by the applied loading.

EPmax =
1

2

∫
P̄ (x) yd(x)dx =

1

2
gy∗

∫
m(x) ψ̄(x)dx

where yd(x) is the deflected shape resulting from the dead load. The kinetic energy is
given by Eq.(2.6.8b), in which ψ̄(x) = yd(x)/y∗. Thus the frequency can be given by

ω2
n =

g

y∗

∫
m(x)ψ̄(x)dx∫

m(x){ψ̄(x)}2dx

=
g

∫
m(x)yd(x)dx∫

m(x){yd(x)}2dx
(2.6.13)

The loading P̄ (x) is the gravitational loading in cases where the principal vibratory
motion is in the vertical direction. For a structure like a vertical cantilever, the loading
must be applied laterally, because the principal motion is horizontal. We must be cau-
tioned against spending too much time in computing deflected shapes, for any reasonable
shape assumption will give useful results.

(4) Improved Rayleigh’s Method

The idea of using a deflected shape resulting from an inertia loading can be applied
to improved versions of the procedure.

Method R00

Let us select the arbitrary shape function which satisfies the geometric boundary
conditions. We have

y(0)(x, t) = ψ(0) y∗ sin ωnt (2.6.14)

where superscript zero denotes the initial values. The maximum potential and kinetic
energy are given by

EPmax =
1

2

∫
EI(x){∂2y(0)

∂x2
}2dx

=
y∗(0)2

2

∫
EI(x){ψ′′(0)}2dx (2.6.15)

EKmax =
1

2

∫
m(x){ẏ(0)}2dx

=
y∗(0)2

2
ω2

n

∫
m(x){ψ(0)}2dx (2.6.16)

The standard Rayleigh frequency expression, designated as R00, is

ω2
n =

∫
EI(x){ψ′′(0)}2dx∫
m(x){ψ(0)}2dx

(2.6.17)
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Method R01

A better approximation of the frequency can be obtained by computing the potential
energy from the work done in deflecting the system by the inertia force associated with
the assumed deflection. The inertia force at the time of maximum displacement is,

p(0)(x) = ω2
n m(x) y(0) = y∗(0)ω2

n m(x) ψ(0) (2.6.18)

The deflection caused by this loading may be expressed as,

y(1) = ω2
n

y(1)

ω2
n

= ω2
n ψ(1)y

∗(1)

ω2
n

= ω2
n ψ(1) ȳ∗(1) (2.6.19)

where ωn is the unknown frequency. The potential energy of the strain produced by this
loading is given by,

EPmax =
1

2

∫
p(0)(x) y(1)dx

=
1

2
y∗(0) ȳ∗(1)ω4

n

∫
m(x) ψ(0) ψ(1)dx (2.6.20)

Equating this to the kinetic energy given by the originally assumed shape [Eq.(2.6.16)]
leads to the improved Rayleigh frequency expression, R01:

ω2
n =

y∗(0)

ȳ∗(1)

∫
m(x){ψ(0)}2dx∫

m(x) ψ(0) ψ(1) dx
(2.6.21)

This is often recommended in preference to Eq.(2.6.17) because it avoids the differentiation
operation and will give improved accuracy.

Method R11

A still better approximation can be obtained with relatively additional effort by com-
puting the kinetic energy from the calculated shape y(1). In this case,

EKmax =
1

2

∫
m(x){ẏ(1)}2dx

=
ω6

n

2
{ȳ∗(1)}2

∫
m(x){ψ(1)}2dx (2.6.22)

Equating this to Eq.(2.6.20) leads to the further improved result (R11 method):

ω2
n =

y∗(0)

ȳ∗(1)

∫
m(x) ψ(0) ψ(1)dx∫
m(x){ψ(1)}2dx

(2.6.23)

Further improvement could be obtained by continuing the process another step, that
is, by using the inertia loading associated with ψ(1) to calculate a new shape ψ(2). In
fact, the process will eventually converge with the exact vibration shape. However, for
practical use of Rayleigh’s method there is no need to go beyond the improved procedure
represented by Eq.(2.6.23).
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[Example 2.6]

A concentrated mass M is attached to the
center of a simply supported uniform beam,
whose length is L, mass per unit length is m
and flexural stiffness is EI, as shown in Fig.
E2.6. Calculate the fundamental natural pe-
riod of the beam, using Rayleigh’s method
with the prescribed shape function.

������������������
���

M

L L

m, EI

/2 /2

Fig.E2.6

Where, L = 100 (cm), m = 2.0 × 10−5 (kN s2/cm2), M = 0.1 (kN s2/cm), E = 2 100
(kN/cm2), I = 6.0× 105 (cm4)

Shape function (1) : y(x) = sin
(πx

L

)

Shape function (2) : y(x) = x
(
3L2 − 4x2

)
for

(
x ≤ L

2

)

[Solution]

For shape function (1)

y(x) = sin
(πx

L

)
y′(x) =

π

L
cos

(πx

L

)
y′′(x) = −π2

L2
sin

(πx

L

)

k∗ =

∫ L

0

EI
{
y′′(x)

}2
dx = EI

π4

L4

∫ L

0

(
sin

πx

L

)2
dx

= EI
π4

L4

∫ L

0

1

2

(
1− cos

2πx

L

)
dx = EI

π4

L4

[x

2
− L

4π
sin

2πx

L

]L

0

= EI
π4

L4

[L

2

]
=

EI

2L3
π4

=
2100× 6× 105

2× 1003
× π4 = 630π4 ≈ 61370

m∗ =

∫ L

0

my2dx + M
{
y(x =

L

2
)
}2

= m

∫ L

0

sin2 πx

L
dx + M

(
sin

π

L

L

2

)2

= m

∫ L

0

1

2

(
1− cos

2πx

L

)
dx + M = m

[x

2
− L

4π
sin

2πx

L

]L

0
+ M

=
Lm

2
+ M =

100

2
× 2.0× 10−5 + 0.1 = 0.101

ω2
n =

k∗

m∗ ≈
61370

0.101
≈ 6.076× 105 ωn = 779

For shape function (2)

y(x) = x
(
3L2 − 4x2

)
y′(x) = 3L2 − 12x2 y′′(x) = −24x
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k∗ =

∫ L

0

EI
{
y′′(x)

}2
dx = 2EI

∫ L/2

0

(−24x)2dx = 1152 EI
[x3

3

]L/2

0
= 1152 EI

[1

3

L3

23

]

= 48EIL3 = 48× 2100× 6× 105 × 1003 = 6.048× 1016

m∗ =

∫ L

0

my2dx + M
{
y(x =

L

2
)
}2

= 2m

∫ L/2

0

{
x(3L2 − 4x2)

}2
dx + M

{L

2

(
3L2 − 4

L2

22
)
}2

= 2m

∫ L/2

0

(
9L4x2 − 24L2x4 + 16x6

)
dx + ML6

= 2m
[9

3
L4x3 − 24

5
L2x5 +

16

7
x7

]L/2

0
+ ML6 = 2mL7

[3

8
− 24

5× 32
+

16

7× 27

]
+ ML6

= mL7
[3

4
− 3

10
+

1

28

]
+ ML6 = mL7

[105

140
− 42

140
+

5

140

]
+ ML6

=
17

35
mL7 + ML6 =

17

35
2× 10−5 × 1007 + 0.1× 1006 = 0.97× 109 + 0.1× 1012

≈ 0.101× 1012

ω2
n =

k∗

m∗ ≈
6.048× 1016

0.101× 1012
≈ 5.988× 105 ωn = 774

The frequency obtained from the shape function (2), ωn = 774, is smaller than that
obtained from the shape function (1), ωn = 779. Since the lesser frequency obtained by
Rayleigh’s method always gives better approximation, the shape function (2) is closer to
the real mode shape.

2.7 Frequency Domain Analysis

Let us remember Fourier transformation. This is a fundamental mathematical technique
with which an ordinary function can be decomposed into many simple harmonic motions
with different frequencies. When the external force p(t) is expanded into many terms
of simple harmonic motions by Fourier transformation, the response to each term can
be obtained by the procedure in Section 2.3 for the solution of simple harmonic loading.
When the solution for each harmonic loading is obtained, the solution for p(t) is then the
sum of all those responses.

(1) Complex Frequency Response Function

An equation of motion for a damped SDOF system subjected to the external force
p(t) is

m ẍ(t) + c ẋ(t) + k x(t) = p(t)

Then consider the external force that is

p(t) = p0 eiωt (2.7.1)
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Remembering the Euler’s formula, eiωt = cos ωt + i sin ωt, the above equation represents
sunusoidal and cosine forces together. Then the equation of motion becomes

m ẍ(t) + c ẋ(t) + k x(t) = p0 eiωt (2.7.2)

Since the external force is harmonic, let us assume that the solution is also hamonic with
the same frequency as the external force.

x(t) = p0 H(ω) eiωt (2.7.3a)

where H(ω) remains to be determined. Differenciating the above equation, we obtain

ẋ(t) = iωp0H(ω)eiωt ẍ(t) = −ω2p0H(ω)eiωt (2.7.3b)

Substituting these equations into Eq.(2.7.2), we have

m{−ω2p0H(ω)eiωt}+ c{iωp0H(ω)eiωt}+ k{p0H(ω)eiωt} = p0 eiωt

{−ω2m + iωc + k}p0H(ω) eiωt = p0 eiωt

Then we have

H(ω) =
1

−ω2m + iωc + k

=
1

k

1

{1− (ω/ωn)2}+ i{2ζ(ω/ωn)}
=

1

k

1

(1− r2
n) + i(2ζrn)

(2.7.4)

where, as already defined, ω2
n = k/m, ζ = c/(2mωn) = c ωn/(2k) and rn = ω/ωn.

H(ω) is known as the complex frequency response function and represents the steady
state response of the system to a harmonic force of unit amplitude.

(2) Response to Arbitrary Excitation

Any excitation p(t) can be represented by the Fourier integral as follows.

p(t) =
1

2π

∫ ∞

−∞
P (ω)eiωtdω (2.7.5a)

where,

P (ω) =

∫ ∞

−∞
p(t)e−iωtdt (2.7.5b)

Eq.(2.7.5b) represents the Fourier transform of the time function of p(t), and Eq.(2.7.5a)
is the inverse Fourier transform of the frequency function P (ω).

The response of a linear sysytem to excitation p(t) can be obtained by combining the
response to each harmonic excitation term of Eq.(2.7.5a). Then,

x(t) =
1

2π

∫ ∞

−∞
X(ω)eiωtdω (2.7.6a)
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X(ω) = H(ω)P (ω) (2.7.6b)

(3) Complex Frequency Response Function and Unit Impulse Function

The impulse response function of Eq.(2.4.14) can be written for τ = 0 as

h(t) =
1

mωd

e−ζωnt sin ωdt (2.7.7)

Substituting p(t) = δ(t) into Eq.(2.7.5b), the Fourier transform for the unit impulse is
given as follows.

P (ω) =

∫ ∞

−∞
δ(t)e−iωtdt (2.7.8)

Substituting P (ω) = 1 into Eq.(2.7.6b), Eq.(2.7.6a) gives

h(t) =
1

2π

∫ ∞

−∞
H(ω)eiωtdω (2.7.9a)

We can see that h(t) is the inverse Fourier transform of H(ω), and H(ω) is the Fourier
transform of h(t).

H(ω) =

∫ ∞

−∞
h(t)e−iωtdt (2.7.9b)

(4) Discrete Fourier Transform

The frequency domain analysis requires that the Fourier transform of p(t), Eq.(2.7.5b),
and the inverse Fourier transform of X(ω), Eq.(2.7.6a), be evaluated numerically and the
numerical evaluation requires truncating these integrals over an infinite range to a finite
range. This is equivalent to approximating the arbitrary time-varing excitation by a
periodic function.

[Finite complex Fourier series]

When the arbitrary loading is expressed as N digitized values pm,

pm =

N/2−1∑

k=0

Pke
i(2πkm/N) m = 0, 1, 2, . . . , N − 1 (2.7.10a)

Pk =
1

N

N/2−1∑

k=0

pme−i(2πkm/N) k = 0, 1, 2, . . . , N − 1 (2.7.10b)

The response will be,

x(t=tm) = xm =

N/2−1∑

k=0

H( 2πk
N∆t

) Pk ei(2πkm/N) m = 0, 1, 2, . . . , N − 1 (2.7.11)

[Finite Fourier series]
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Complex algebra is required to calculate equations for the finite complex Fourier series.
The calculation without complex algebra can be done using the finite Fourier series as
follows:

pm =
A0

2
+

N/2−1∑

k=0

(Ak cos ωkt + Bk sin ωkt) +
AN/2

2
cos ωN/2t (2.7.12)

where, ωk =
2πk

N∆t

Ak =
2

N

N−1∑
m=0

pm cos
2πkm

N
k = 0, 1, 2, . . . , N/2− 1, N/2 (2.7.13a)

Bk =
2

N

N−1∑
m=0

pm sin
2πkm

N
k = 1, 2, . . . , N/2− 1 (2.7.13b)

The coefficient of Eq.(2.7.10a) and the above coefficients have the relationship as follows:

Pk =
Ak − iBk

2
, 0 ≤ k ≤ N/2 (2.7.14a)

PN−k =
Ak − iBk

2
, 1 ≤ k ≤ N/2− 1 (2.7.14b)

The response will be,

x(t = tm) = xm =

N/2−1∑

k=0

Rdy Ak cos
2πkm

N
+

N/2−1∑

k=1

Rdy Bk sin
2πkm

N
m = 0, 1, 2, . . . , N−1

(2.7.15)
where the dynamic magnification factor Rdy has been already given by Eq.(2.3.21).



Chapter 3

Multi Degree of Freedom (MDOF)
Systems

3.1 Equations of Motion

Equations of motion for a two-degree of freedom system, as illustrated in Fig.3.1.1, can
be derived as follows.

Considering the equilibrium of the forces acting on the first mass, we have

−m1 ẍ1 − c1 ẋ1 + c2(ẋ2 − ẋ1)− k1 x1 + k2(x2 − x1) + p1 = 0 (3.1.1a)

Similarly as to the second mass, we have

−m2 ẍ2 − c2(ẋ2 − ẋ1)− k2(x2 − x1) + p2 = 0 (3.1.1b)

It should be noted that for simplicity, from this section on, x and p are used instead of
x(t) and p(t), respectively. Rearranging the above equations yields

m1 ẍ1 + (c1 + c2)ẋ1 − c2 ẋ2 + (k1 + k2)x1 − k2 x2 = p1 (3.1.2a)

m2 ẍ2 − c2 ẋ1 + c2 ẋ2 − k2 x1 + k2 x2 = p2 (3.1.2b)

When we rewrite these equations in a matrix form, we have
[
m1 0
0 m2

]{
ẍ1

ẍ2

}
+

[
c1 + c2 −c2

−c2 c2

]{
ẋ1

ẋ2

}
+

[
k1 + k2 −k2

−k2 k2

]{
x1

x2

}
=

{
p1

p2

}
(3.1.3a)

c   x -x

c   x -xc  x

-m  x p p

k  x

x

 .

.. -m  x
k   x -x

k   x -x
x

 .  .

 .  .

..

1

1

2

2
22

2
2

2
1

1
21 1

22

2 1

1

21 1

1
1

-

-

-

-

(
(

(

(

)

)

)

)

Fig.3.1.1 Two-degree of freedom system
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or

[m]{ẍ}+ [c]{ẋ}+ [k]{x} = {p} (3.1.3b)

where [m], [c] and [k] are called the mass matrix, damping matrix and stiffness matrix,
respectively, and {ẍ}, {ẋ}, {x} and {p} are the acceleration vector, velocity vector, dis-
placement vector and force vector, respectively.

It can be seen that Eq.(3.1.3b) corresponds exactly to Eq.(2.1.1) which is the equation
of motion of a SDOF system, except that the former has a matrix form. When we calculate
the multiplication of the third term of Eq.(3.1.3b), we obtain the forces ps1 and ps2 which
are caused by the springs and the displacements.

ps1 = k11 x1 + k12 x2 (3.1.4a)

ps2 = k21 x1 + k22 x2 (3.1.4b)

The element k11 is the force produced at the 1st mass due to a unit displacement at the
1st mass only, and k12 is the force produced at the 1st mass due to a unit displacement at
the 2nd mass only, etc. Therefore, each element of the matrices has the following physical
meaning: mij, cij, and kij are the forces at the i-th mass due to a unit of acceleration,
velocity and displacement applied at the j-th mass, respectively, with a restriction that
all other accelerations, velocities and displacements are equal to zero.

Then it can be seen that the first column of the stiffness matrix shows the forces
applied at each mass to give a unit displacement at the first mass, etc. Similarly, the
i-th column of the damping matrix shows the forces applied at each mass to give a unit
velocity at i-th mass, etc. Furthermore we can see that mij = mji, cij = cji and kij = kji

by Betti’s law, i.e. the work done by one set of loads on the deflections due to a second
set of loads is equal to the work of the second set of loads acting on the deflections due
to the first.

Let us derive the equation of motion of a rather complicated system in Fig.3.1.2. The
displacement vector can be defined as follows.

{x} =





x1

x2

θ
xs





(3.1.5)

where x1, x2, θ and xs are the horizontal displacement of m1, the horizontal displacement
of m2, the rotation angle of Iθ and the horizontal displacement of M , respectively. The
mass matrix is

[m] =




m1 0 0 0
0 m2 0 0
0 0 Iθ 0
0 0 0 M


 (3.1.6)

The elements of the first column of the stiffness matrix are the forces that give a unit
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Fig.3.1.2 Model of MDOF systems

displacement at m1 (see Fig.3.1.3a). Then,

k11 = k1 + k2 (3.1.7a)

k21 = −k2 (3.1.7b)

k31 = k1 h1 − k2 h2 (3.1.7c)

k41 = −k1 (3.1.7d)

The elements of the second column are (see Fig.3.1.3b)

k12 = −k2 (3.1.8a)

k22 = k2 (3.1.8b)

k32 = k2 h2 (3.1.8c)

k42 = 0 (3.1.8d)

The elements of the third column are (see Fig.3.1.3c)

k13 = k1 h1 − k2 h2 (3.1.9a)

k23 = k2 h2 (3.1.9b)

k33 = kθ + k1 h2
1 + k2 h2

2 (3.1.9c)

k43 = −k1 h1 (3.1.9d)

where, kθ = L2 kv.
The elements of the fourth column are (see Fig.3.1.3d)

k14 = −k1 (3.1.10a)

k24 = 0 (3.1.10b)

k34 = −k1 h1 (3.1.10c)

k44 = kh + k1 (3.1.10d)
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Fig.3.1.3 Elements of stiffness matrix

[Example 3.1]

Derive the equation of motion of the system
subjected to the ground acceleration ẍg as
shown in Fig.E3.1, where m1 = m2 = m,
c1 = 3c, c2 = 2c and k1 = 3k, k2 = 2k.

[Solution]

The mass matrix is

[m] =

[
m1 0
0 m2

]
=

[
m 0
0 m

]

The damping matrix is

[c] =

[
c1 + c2 −c2

−c2 c2

]
=

[
5c −2c
−2c 2c

]

The stiffness matrix is

[k] =

[
k1 + k2 −k2

−k2 k2

]
=

[
5k −2k
−2k 2k

]
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Therefore the equation of motion is
[
m 0
0 m

]{
ẍ1

ẍ2

}
+

[
5c −2c
−2c 2c

]{
ẋ1

ẋ2

}
+

[
5k −2k
−2k 2k

]{
x1

x2

}
= −ẍg

[
m 0
0 m

]{
1
1

}

where, {1} is a vector of ones.
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In general, we can write the equation of motion for a MDOF system subjected to the
ground acceleration as follows.

[m]{ẍ}+ [c]{ẋ}+ [k]{x} = −ẍg[m]{1}

3.2 Undamped Free Vibration

Omitting the damping forces and external forces from Eq.(3.1.3b), the equation of motion
of undamped free vibration is given by

[m]{ẍ}+ [k]{x} = {0} (3.2.1)

When we assume that the motion for free vibration is a simple harmonic, as we did in
the case of the SDOF system, the displacement vector can be written in the form of

{x} = {u} sin(ωjt + θ) (3.2.2)

where {u} is the shape of a system that does not change with respect to time and θ is
the phase angle. The second derivative of this equation can be obtained as

{ẍ} = −ω2
j{u} sin(ωjt + θ) (3.2.3)

Substituting the above two equations into Eq.(3.2.1) yields

−ω2
j [m]{u} sin(ωjt + θ) + [k]{u} sin(ωjt + θ) = {0}

Then, (
[k]− ω2

j [m]
){u} sin(ωjt + θ) = {0}

Since the sine term changes with time, the following relation must be satisfied.

(
[k]− ω2

j [m]
){u} = {0} (3.2.4)

In order for a nontrivial solution of {u} to be possible, the determinant of
(
[k]− ω2

j [m]
)

must be zero. Then, ∣∣[k]− ω2
j [m]

∣∣ = 0 (3.2.5)

This equation is called the frequency equation (or characteristic equation) of the system.
Expanding the determinant, this becomes the algebraic equation of the n degrees in the
frequency parameter ω2

j for a system having n degree of freedom. The n roots of this
equation represent the frequencies of the n modes of vibration which are possible in the
system. The mode having the lowest frequency is called the first or fundamental mode,
the second lowest is called the second mode, etc. The vector of the entire set of modal
frequencies, arranged in sequence, is called the frequency vector {ωj}.

{ωj} =





ω1

ω2
...

ωn





(3.2.6)
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When the frequencies of vibration are determined from Eq.(3.2.5), Eq.(3.2.4) becomes

[Ej]{u} = {0} (3.2.7)

where,

[Ej] = [k]− ωj
2[m] (3.2.8)

since [Ej] depends on the frequency, it is different for each mode. The amplitude vector
{u} of the vibration is indeterminate, but the shape of the system can be determined.
The procedure to determine the frequency and the corresponding amplitude shape, which
is called the eigenvalue problem in mathematics, will be discussed later. If we let the
vector be dimensionless by dividing all components by one reference component (usually
the first or the largest), the vector can be determined, and it is called the j-th mode shape
{φj}. Where,

{φj} =





φ1j

φ2j
...

φnj





(3.2.9)

The square matrix made up of the N mode shapes is called the mode shape matrix [φ].

[φ] =
[{φ1}{φ2} · · · {φn}

]
=




φ11 φ12 · · · φ1n

φ21 φ22 · · · φ2n
...

...
. . .

...
φn1 φn2 · · · φnn


 (3.2.10)

The preceding discussion of the equation of motion was based on the stiffness matrix.
However, in many cases it is more convenient to express the elastic properties of the
structural system by means of the flexibility matrix rather than the stiffness matrix. The
flexibility matrix [f ] is the inverse of the stiffness matrix [k].

[f ] = [k]−1 (3.2.11)

Eqs.(3.1.3a) and (3.1.3b) can be written in the form of

{ps} = [k]{x} (3.2.12)

Substituting Eq.(3.2.11) to this equation yields

{x} = [f ]{ps} (3.2.13)

or

x1 = f11 ps1 + f12 ps2 (3.2.13a)

x2 = f21 ps1 + f22 ps2 (3.2.13b)
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From these equations, it can be seen that the element of the flexibility matrix fij is the
deflection at the i-th mass due to a unit force applied to the j-th mass. If we use the
flexibility matrix, Eq.(3.2.5) can be written in the form of

∣∣∣∣
1

ω2
j

[I]− [f ][m]

∣∣∣∣ = 0 (3.2.14)

where [I] represents an identity matrix of order n.
The flexibility matrix is given as the inverse matrix of the stiffness matrix, i.e. [f ] =

[k]−1. In case the flexibility matrix is given, the stiffness matrix can be obtained as the
inverse matrix of the flexibility matrix, i.e. [k] = [f ]−1.

[Example 3.2]

Find the frequency vector and mode shape
matrix of the system as shown in Fig.E3.2,
where m1 = m2 = m and k1 = 3k, k2 = 2k.

���������

����������������������������

�������
�������

m

m

�

�

k

k

�

�
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[Solution]

The mass matrix is

[m] =

[
m1 0
0 m2

]
=

[
m 0
0 m

]

The stiffness matrix is

[k] =

[
k1 + k2 −k2

−k2 k2

]
=

[
5k −2k
−2k 2k

]

The frequency equation becomes

∣∣[k]− ω2
n[m]

∣∣ =

∣∣∣∣
[

5k −2k
−2k 2k

]
− ω2

n

[
m 0
0 m

]∣∣∣∣ = 0

∣∣∣∣
5k −mω2

j −2k
−2k 2k −mω2

j

∣∣∣∣ = 0

(5k −mω2
j )(2k −mω2

j )− (−2k)(−2k) = 0

(mω2
j )

2 − 7k(mω2
j ) + 6k2 = 0

(mω2
j − k)(mω2

j − 6k) = 0

mω2
j = k or mω2

j = 6k

ω2
j =

k

m
or ω2

j =
6k

m

ωj =

√
k

m
or ωj =

√
6k

m
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Then the frequency vector is given as

{ω} =





√
k
m√
6k
m



 =

√
k

m

{
1√
6

}

When ω1 =
√

k/m, Eq.(3.2.4) becomes,

[
4k −2k
−2k k

]{
u1

u2

}
=

{
0
0

}

Then,
u2 = 2u1

When ω2 =
√

6k/m, Eq.(3.2.4) becomes,

[ −k −2k
−2k −4k

]{
u1

u2

}
=

{
0
0

}

Then,

u2 = −1

2
u1

Then the mode shape matrix is given as

[φ] =

[
1 1
2 −1

2

]

3.3 Orthogonality Conditions

The mode shape for an undamped system in free vibration of the j-th mode can be written
as follows [see Eq.(3.2.4)].

[k]{uj} = ω2
j [m]{uj} (3.3.1a)

This equation must be satisfied for all mode vectors. Then we have for the k-th mode

[k]{uk} = ω2
k[m]{uk} (3.3.1b)

Taking the transposition of both sides of Eq.(3.3.1a) and post-multiplying both sides by
{uk}, we have

([k]{uj})T{uk} = ω2
j ([m]{uj})T{uk} (3.3.2)

Remembering the relationships
(
[A][B]

)T
= [B]T[A]T, and the matrices [k] and [m] are

symmetrical, i.e. [k]T = [k] and [m]T = [m], this equation becomes

{uj}T[k]{uk} = ω2
j{uj}T[m]{uk} (3.3.3a)

Pre-multiplying both sides of Eq.(3.3.1b) by {uj}T, we have

{uj}T[k]{uk} = ω2
k{uj}T[m]{uk} (3.3.3b)
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This equation is subtracted from each side of Eq.(3.3.3a).

(ω2
j − ω2

k){uj}T[m]{uk} = 0

Apparently, ωj 6= ωk. Therefore, we have for different mode shapes

{uj}T[m]{uk} = 0 for ωj 6= ωk (3.3.4)

This is the first orthogonality of eigenvectors, i.e. the different mode shapes are orthogonal
with respect to the mass matrix. This means that the off-diagonal elements of the product
[u]T[m][u] are zero.

The second orthogonality can be given from this relation. Pre-multiplying Eq.(3.3.1b)
by {uj}T and using Eq.(3.3.4), we have

{uj}T[k]{uk} = 0 for ωj 6= ωk (3.3.5)

This equation shows that the different mode shapes are orthogonal with respect to stiffness
matrix. The previous two equations indicate that the mass matrix and stiffness matrix
are diagonalized by the same matrix [u].

Pre-multiplying both sides of Eq.(3.3.1b) by {uj}T[k][m]−1 leads to

{uj}T[k][m]−1[k]{uk} = ω2
k{uj}T[k]{uk}

from which (using Eq.(3.3.5))

{uj}T[k][m]−1[k]{uk} = 0 (3.3.6)

Pre-multiplying Eq.(3.3.1b) by {uj}T[k][m]−1[k][m]−1 leads to

{uj}T[k][m]−1[k][m]−1[k]{uk} = ω2
k{uj}T[k][m]−1[k]{uk}

from which (using Eq.(3.3.6))

{uj}T[k][m]−1[k][m]−1[k]{uk} = 0 (3.3.7)

Pre-multiplying both sides of Eq.(3.3.1b) by 1
ω2

j
{uj}T[m][k]−1 leads to

1

ω2
j

{uj}T[m]{uk} = {uj}T[m][k]−1[m]{uk}

from which (using Eq.(3.3.4))

{uj}T[m][k]−1[m]{uk} = 0 (3.3.8)

Similarly we have
{uj}T[m][k]−1[m][k]−1[m]{uk} = 0 (3.3.9a)

or, introducing the relation of [k]−1 = [f ]

{uj}T[m][f ][m][f ][m]{uk} = 0 (3.3.9b)
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The above mentioned orthogonality conditions can be expressed as

{uj}T[m]
(
[m]−1[k]

)b{uk} = 0 for −∞ < b < ∞ (3.3.10a)

It should be noted that Eqs.(3.3.4) and (3.3.5) are given by this equation when b = 0 and
b = 1, respectively.

Using the mode shape vector form, we have

{φj}T[m]
(
[m]−1[k]

)b{φk} = 0 for −∞ < b < ∞ (3.3.10b)

[Example 3.3]
For the system in Example 3.2, confirm the orthogonality conditions of Eqs.(3.3.4) and
(3.3.5).

[Solution]
The mass matrix, stiffness matrix and mode shape matrix have been given as follows.

[m] =

[
m 0
0 m

]
[k] =

[
5k −2k
−2k 2k

]
[φ] =

[
1 1
2 −1

2

]

Therefore,

{φ1}T[m]{φ2} =

{
1
2

}T [
m 0
0 m

]{
1
−1

2

}
=

{
m 2m

} {
1
−1

2

}
= m−m = 0

{φ1}T[k]{φ2} =

{
1
2

}T [
5k −2k
−2k 2k

]{
1
−1

2

}
=

{
k 2k

}{
1
−1

2

}
= k − k = 0

3.4 Concept of Normal Coordinates

It should be noted that the mode shapes can serve the same purpose as the trigonometric
functions in Fourier series, and that any displacement vector {x} for an N -degree-of-
freedom structure can be developed by superposing suitable amplitudes of the N modes
of vibration. Consider, for example, the three degree of freedom system shown in Fig.3.4.1.
We have,

{x} =





xa

xb

xc



 = x∗1





φa1

φb1

φc1



 + x∗2





φa2

φb2

φc2



 + x∗3





φa3

φb3

φc3



 =




φa1 φa2 φa3

φb1 φb2 φb3

φc1 φc2 φc3








x∗1
x∗2
x∗3



 (3.4.1a)

or
{x} = [φ]{x∗} (3.4.1b)

where {x}, [φ] and {x∗} are the displacement vector, mode shape matrix and normal
coordinate vector, respectively.

Then, consider the undamped equation of motion of the system.

[m]{ẍ}+ [k]{x} = {p} (3.4.2)
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Fig.3.4.1 Concept of normal coordinates

Introducing Eq.(3.4.1b) and its second time derivative {ẍ} = [φ]{ẍ∗} leads to

[m][φ]{ẍ∗}+ [k][φ]{x∗} = {p} (3.4.3)

Pre-multiplying both sides of this equation by the transpose of the j-th mode shape vector
{φj}T yields

{φj}T[m][φ]{ẍ∗}+ {φj}T[k][φ]{x∗} = {φj}T{p} (3.4.4)

Expanding the first term of the left hand side, we have

{φj}T[m]{φ1}ẍ∗1 + {φj}T[m]{φ2}ẍ∗2 + . . .︸ ︷︷ ︸
0

+{φj}T[m]{φj}ẍ∗j

+ . . . + {φj}T[m]{φn}ẍ∗n︸ ︷︷ ︸
0

= {φj}T[m]{φj}ẍ∗j (3.4.5)

Remembering the orthogonality conditions in the previous section, the above equation
becomes as follows.

{φj}T[m]{φj}ẍ∗j + {φj}T[k]{φj}x∗j = {φj}T{p} (3.4.6)

If we define new symbols as

m∗
j = {φj}T[m]{φj} (3.4.7a)

k∗j = {φj}T[k]{φj} (3.4.7b)

p∗j = {φj}T{p} (3.4.7c)

which are called the (normal coordinate) generalized mass, generalized stiffness and gen-
eralized load for the j-th mode, respectively. Then, Eq.(3.4.6) can be written,

m∗
j ẍ∗j + k∗j x∗j = p∗j (3.4.8)

which is a SDOF equation of motion for the j-th mode. If the mode shape vector form of
Eq.(3.3.1), [k]{φj} = ω2

j [m]{φj}, is pre-multiplied on both sides by {φj}T, the generalized
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stiffness for the j-th mode is related to the generalized mass by the frequency of vibration
as follows.

{φj}T[k]{φj} = ω2
j{φj}T[m]{φj} (3.4.9a)

or
k∗j = ω2

j m∗
j (3.4.9b)

Then Eq.(3.4.8) can be rewritten

ẍ∗j + ω2
j x∗j =

p∗j
m∗

j

(3.4.10)

The equation of motion of the damped system is

[m]{ẍ}+ [c]{ẋ}+ [k]{x} = {p} (3.4.11)

If it is assumed that the damping matrix satisfies the following orthogonality condition,

{φj}T[c]{φk} = 0 j 6= k (3.4.12)

we obtain a SDOF equation of the motion for the j-th mode as follows.

m∗
j ẍ
∗
n + c∗j ẋ

∗
j + k∗j x

∗
j = p∗j (3.4.13)

where
c∗j = {φj}T[c]{φj} (3.4.14)

is the generalized damping for the j-th mode. Then Eq.(3.4.13) can be rewritten as

ẍ∗j + 2ωjζjẋ
∗
j + ω2

j x
∗
j =

p∗n
m∗

j

(3.4.15)

where

ζj =
c∗j

2m∗
jωj

is the j-th mode damping ratio.
The procedure described above can be used to obtain an independent SDOF equation

for each mode of vibration. That is, the normal coordinates transform a set of n si-
multaneous differential equations into a set of independent normal coordinate equations.
Therefore, the dynamic response can be obtained by solving separately for the response
of each normal coordinate and then superposing them. This procedure is called the mode
superposition method, and will be summarized in Section 3.8.

3.5 Damping Models

A dashpot is commonly used to represent the mechanism of structural damping. The
dashpot has been tacitly combined with the spring in parallel. However, a number of
combinations of dashpot and spring for dynamic systems have been proposed. We will
take a brief look at several simple models of the dashpot and spring.



3.5. DAMPING MODELS 63

a b

Fig.3.5.1 (a) Damping for Voigt model and (b) Maxwell model

(1) Voigt Model

The combination of dashpot and spring in parallel as shown in Fig.3.5.1a is called
Voigt model, which is sometimes referred to as Kelvin model. Let the spring constant,
damping coefficient, force applied to the system, and resulting deformation be denoted by
k, c, p, and δ, respectively. Since equal deformations arise in the spring and the dashpot
for a parallel model, the force of the spring is p1 = k δ, and the force of dashpot is p2 = c δ̇.
Then, from p = p1 + p2, we have

p = k δ + c δ̇ (3.5.1)

Assuming that a harmonic deformation with frequency ω is given to the model,

δ = δ0 sin ωt (3.5.2)

Then,
p = δ0(k sin ωt + c ω cos ωt) (3.5.3)

Eliminating ωt from the above two equations, the relationship between force p and defor-
mation δ is given as follow.

( p

k δ0

)2

− 2
( p

k δ0

)( δ

δ0

)
+

{
1 +

(c ω

k

)2}( δ

δ0

)2

=
(c ω

k

)2

(3.5.4a)

This represents the equation of an ellipse (Fig.3.5.2) that is shown as follows.

Let us denote Y =
p

k δ0

, X =
δ

δ0

and d =
c ω

k
, then Eq.(3.5.4a) becomes

Y 2 − 2 Y X + (1 + d2)X2 = d2 (3.5.4b)

The X-Y axes is rotated by an angle θ to a new x-y axes. Then the relationships between
these two pairs of coordinates are as follows (Fig.3.5.3).

X = x cos θ − y sin θ (3.5.5a)

Y = x sin θ + y cos θ (3.5.5b)

Substituting the above two equations into Eq.(3.5.4b), we have

(x sin θ + y cos θ)2 − 2(x sin θ + y cos θ)(x cos θ − y sin θ) + (1 + d2)(x cos θ − y sin θ)2 = d2

x2 sin2 θ + 2xy sin θ cos θ + y2 cos2 θ

−2x2 sin θ cos θ + 2xy sin2 θ − 2xy cos2 θ + 2y2 sin θ cos θ

+(1 + d2)(x2 cos2 θ − 2xy sin θ cos θ + y2 sin2 θ) = d2
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Using the formulae sin 2θ = 2 sin θ cos θ and cos 2θ = 1− 2 sin2 θ = 2 cos2 θ− 1, the above
equation becomes

(1− sin 2θ + d2 1 + cos 2θ

2
)x2 + (1 + sin 2θ + d2 1− cos 2θ

2
)y2− (2 cos 2θ + d2 sin 2θ)xy = d2

(3.5.6)
In order to eliminate the term that includes xy, let us rotate the X-Y axes by an angle θ
that satisfies the following equations.

tan 2θ = − 2

d2
or sin 2θ = − 2√

4 + d4
cos 2θ =

d2

√
4 + d4

(3.5.7)

Then, Eq.(3.5.6) becomes the equation that represents an ellipse as follows.

x2

a2
+

y2

b2
= 1 (3.5.8)

where,

a2 =
2d2

2 + d2 −√4 + d4
(3.5.9a)

b2 =
2d2

2 + d2 +
√

4 + d4
(3.5.9b)

The area enclosed by the ellipse is πab = πd for the coordinates of x and y. Then the
area of the inclined ellipse in the original coordinates of p and δ (Fig.3.5.2) is,

∆E = πd(k δ0)δ0 = πc ωδ2
0 (3.5.10)

The area represents the energy loss or energy dissipation per cycle that is proportional to
the frequency ω.

�

�

�

p

y
xk�0

0
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(2) Maxwell Model

Maxwell model is, on the other hand, the combination of spring and dashpot in series
(Fig.3.5.1b). In the series model, the force of the spring is equal to the force of the
dashpot, i.e. p1 = p2 = p. The deformation of the spring is

δ1 =
p

k
(3.5.11)

The deformation of the dashpot is

δ2 =

∫ (p

c

)
dt

(
since, δ̇2 =

p

c

)
(3.5.12)

From δ = δ1 + δ2, the equation for Maxwell model is

δ =
p

k
+

∫
(
p

c
) dt (3.5.13)

Differentiating this equation yields

ṗ +
k

c
p = k δ̇ (3.5.14)

Assuming,
p = k δ0 sin ωt (3.5.15)

we have

δ = δ0

(
sin ωt− k

c ω
cos ωt

)
(3.5.16)

Eliminating ωt from the above two equations, we have

{
1 +

( k

c ω

)2}( p

kδ0

)2

− 2
( p

kδ0

)( δ

δ0

)
+

( δ

δ0

)2

=
( k

c ω

)2

(3.5.17a)

Let us again denote Y =
p

k δ0

, X =
δ

δ0

and d =
c ω

k
, then Eq.(3.5.7a) becomes

{1 + (1/d)2}Y 2 − 2 Y X + X2 = (1/d)2 (3.5.17b)

Substituting Eqs.(3.5.5a) and (3.5.5b) to Eq.(3.5.17b), we have

{
1− sin 2θ + (1/d)2 1− cos 2θ

2

}
x2

+
{

1 + sin 2θ + (1/d)2 1 + cos 2θ

2

}
y2 −

{
2 cos 2θ − (1/d)2 sin 2θ

}
xy = (1/d)2 (3.5.18)

In order to eliminate the term that includes xy, let the X-Y axes rotate by an angle θ
that satisfies the following equations.

tan 2θ =
2

(1/d)2
or sin 2θ =

2√
4 + (1/d)4

cos 2θ =
(1/d)2

√
4 + (1/d)4

(3.5.19)
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Then Eq.(3.5.18) becomes Eq.(3.5.8) that represents the equation of an ellipse, where

a2 =
2(1/d)2

2 + (1/d)2 −
√

4 + (1/d)4
(3.5.20a)

b2 =
2(1/d)2

2 + (1/d)2 +
√

4 + (1/d)4
(3.5.20b)

Therefore, the area of the ellipse in the coordinates of p and δ becomes as follows.

∆E = π(1/d)(kδ0)δ0 = π
k2δ2

0

c ω
(3.5.21)

The area is inversely proportional to the frequency ω for Maxwell model, in contrast to
the Voigt model.

(3) Hysteretic Damping Model

Although this model is apparently the same as Voigt model (Fig.3.5.1a), the damping
coefficient c is assumed to be inversely proportional to the frequency ω. Therefore, the
expansion of equations follows Voigt model with the substitution of ĉ/ω (ĉ: constant) in
place of c for the damping coefficient.

Then, the energy loss for this case is

∆E = πĉ δ0
2 (3.5.22)

(4) Comparison of Damping Ratios

For each of the three models, the maximum potential energy is equal to

EP =
1

2
kδ2

0 (3.5.23)

The energy loss rate (also called the specific energy loss), i.e. ∆E/EP is related to the
damping factor,

ζ =
1

4π

∆E

EP

(3.5.24)

Then, the damping ratio for each model can be obtained as follows.

Voigt model ζ =
1

2

c ω

k
(3.5.25a)

Maxwell model ζ =
1

2

k

c ω
(3.5.25b)

Hysteretic damping model ζ =
1

2

ĉ

k
(3.5.25c)

These relationships are schematically shown in Fig.3.5.4. It should be noted that the
damping factor ζ for Voigt model is proportional to the frequency ω, the damping factor
for Maxwell model is inversely proportional to the frequency, and the damping factor for
the hysteretic damping model is constant with respect to frequency.
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Fig.3.5.4 Frequency dependency of damping factor for each model

3.6 Stodola (Matrix Iteration) Method

This is one of the most convenient methods to solve for the mode shapes and corresponding
natural frequencies of a structure. In Stodola method, the initially assumed mode shape
is iteratively adjusted until an adequate approximation of the true mode shape has been
achieved. Then the frequency of vibration is determined.

(1) Procedure of Stodola method

i) Dynamic matrix

The mode shape {u} for an undamped system in free vibration can be written as

[k]{u} = ω2
j [m]{u} (3.6.1)

Pre-multiplying the above equation by the flexibility matrix [f ] = [k]−1, we have

{u} = ω2
j [f ][m]{u}

= ω2
j [A]{u} (3.6.2)

where [A] = [f ][m] is the dynamic matrix.

ii) Assumption of mode shape

Assume the mode shape {u}(1) that can be considered to be a close approximation to
the first mode, where the amplitude is arbitrary.

iii) Assumption of next mode shape

Calculate the following formula.

{ûc}(1) = [A]{u}(1) (3.6.3)

And assume the next mode shape as follows.

{u}(2) = α1{û}(1) (3.6.4)



68 CHAPTER 3. MULTI DEGREE OF FREEDOM (MDOF) SYSTEMS

where α1 is an arbitrary constant. If we choose α1 to be {ui}(1) = {ui}(2), α1 eventually
converges on 1/ω2

j .

iv) Repetition of assumed mode shape

Repeat step iii) until the following relation is satisfied

{û}(r) ≈ αr{u}(r−1) (3.6.5)

Then {û}(r) is the mode shape vector and αr = 1/ω2
j is the eigenvalue.

(2) Proof of Convergence

Any assumed mode shape can be expressed as

{u}(1) = {φ1}x∗1 + {φ2}x∗2 + {φ3}x∗3 + · · · (3.6.6)

Eq.(3.6.3) becomes

{û}(1) = [A]{u} = [A]{φ1}x∗1 + [A]{φ2}x∗2 + [A]{φ3}x∗3 + · · ·

Remembering [A]{φi} = 1
ω2

i
{φi}, the above equation can be written as

{û}(1) =
1

ω2
1

{φ1}x∗1 +
1

ω2
2

{φ2}x∗2 +
1

ω2
3

{φ3}x∗3 + · · · (3.6.7)

Repeating step iii) in (1), we have

{û}(2) = α1

{ 1

ω2
1

[A]{φ1}x∗1 +
1

ω2
2

[A]{φ2}x∗2 +
1

ω2
3

[A]{φ3}x∗3 + · · ·
}

= α1

{( 1

ω2
1

)2{φ1}x∗1 +
( 1

ω2
2

)2{φ2}x∗2 +
( 1

ω2
3

)2{φ3}x∗3 + · · ·
}

(3.6.8)

{û}(r) =
α1α2 · · ·αr−1

ω2r
1

{
{φ1}x∗1 +

(ω1

ω2

)2r{φ2}x∗2 +
(ω1

ω3

)2r{φ3}x∗3 + · · ·
}

(3.6.9)

Note the following relationship

1 >>
(ω1

ω2

)2r

>>
(ω1

ω3

)2r

>> . . . (3.6.10)

Therefore, we can eliminate the higher modes from the first assumption of the mode
shape, and the contribution of the higher modes can be made as small as is desired by
repeating step iii) in (1).

(3) Analysis of Higher Modes

The proof of convergence in (2) indicates that the procedure can be used to evaluate
the higher modes as well. Eq.(3.6.9) shows that, if x∗1 is equal to zero, the process must
converge towards the second mode shape. Thus, in order to calculate the second mode by
the matrix iteration method, it is necessary to assume a trial mode shape {u2}(1) which
contains no first mode component as follows.
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Any arbitrary assumption of the second mode shape is

{u2}(1) = {φ1}x∗1 + {φ2}x∗2 + {φ3}x∗3 + . . . (3.6.11)

Pre-multiplying both sides by {φ1}T[m] leads to

{φ1}T[m]{u2}(1) = {φ1}T[m]{φ1}x∗1 + {φ1}T[m]{φ2}x∗2 + {φ1}T[m]{φ3}x∗3 + · · ·
= {φ1}T[m]{φ1}x∗1 (3.6.12)

Hence,

x∗1 =
{φ1}T[m]{u2}(1)

{φ1}T[m]{φ1} (3.6.13)

Therefore, if this component is removed from the assumed shape, the vector is to be
purified.

{ũ2}(1) = {u2}(1) − {φ1}x∗1 (3.6.14)

This purified vector will now converge towards the second mode shape in the matrix
iteration method. Round-off error in the numerical calculations, however, will cause
reappearance of the first mode. Therefore this purification operation is necessary at
each cycle of iteration. A convenient means of purification is to use a sweeping matrix.
Substituting Eq.(3.6.13) to Eq.(3.6.14) yields

{ũ2}(1) = {u2}(1) − {φ1}{φ1}T[m]{u2}(1)

{φ1}T[m]{φ1}
= [s1]{u2}(1) (3.6.15)

where

[s1] = [I]− {φ1}{φ1}T[m]

{φ1}T[m]{φ1} (3.6.16)

is the sweeping matrix.
Then, the Stodola procedure in (1) can now be formulated so that it converges towards

the second mode, replacing the dynamic matrix [A] by the product [A][S] of the dynamic
matrix and the sweeping matrix.

The third and higher modes can be obtained by the use of the following sweeping
matrices.

[s2] = [s1]− {φ2}{φ2}T[m]

{φ2}T[m]{φ2} (3.6.17)

[s3] = [s2]− {φ3}{φ3}T[m]

{φ3}T[m]{φ3} (3.6.18)

[Example 3.4]
For a dynamic matrix [A] given below, calculate the mode shape vector and the eigen

value of the first mode by Stodola Method.

[A] =




1 1 1
1 2 2
1 2 3
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[Solution]

Table E3.4 Calculation sheet for Stodola method
{φ}

[A] (1) (2) (3) (4) (5) (6)
1 1 1 1 0.500 0.452 0.446 0.445 0.445
1 2 2 1 0.833 0.806 0.803 0.802 0.802
1 2 3 1 1 1 1 1 1

1/ω2 6 5.166 5.064 5.052 5.049 5.049
Therefore {φ}T = {0.445 0.802 1} and 1/ω2 = 5.049.
Then, ω2 = 0.198, ω = 0.445 and T = 14.12.

[Example 3.5]

For a five story shear type structure, calcu-
late the mode shape vector and the eigen
value of the first mode by Stodola Method.
Where, W1 = W2 = W3 = W4 = W5 = 490
(kN), k1 = 500 (kN/cm), k2 = 450 (kN/cm),
k3 = 400 (kN/cm), k4 = 350 (kN/cm),
k5 = 300 (kN/cm),
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[Solution]
Table E3.5 Calculation sheet for Stodola method

r i φ1i mi miφ1i

∑i
n miφ1i ki δi *

∑i
n δi ω2

1 ** φ1i

5 5 0.5 2.500 2.500 300 0.00833 0.06675 74.91 4.450
4 4 0.5 2.000 4.500 350 0.01286 0.05842 68.47 3.895

1 3 3 0.5 1.500 6.000 400 0.01500 0.04556 65.85 3.037
2 2 0.5 1.000 7.000 450 0.01556 0.03056 65.45 2.037
1 1 0.5 0.500 7.500 500 0.01500 0.01500 66.67 1.000
5 4.450 2.225 2.225 0.00742 0.06290 70.74 4.362
4 3.895 1.948 4.173 0.01192 0.05548 70.21 3.847

2 3 3.037 ditto 1.519 5.692 ditto 0.01423 0.04356 69.72 3.021
2 2.037 1.019 6.711 0.01491 0.02933 69.45 2.034
1 1.000 0.500 7.211 0.01442 0.01442 69.35 1.000
5 4.362 2.181 2.181 0.00727 0.06205 70.30 4.348
4 3.847 1.924 4.105 0.01173 0.05478 70.23 3.839

3 3 3.021 ditto 1.511 5.616 ditto 0.01404 0.04305 70.17 3.017
2 2.034 1.017 6.633 0.01474 0.02901 70.11 2.033
1 1.000 0.500 7.133 0.01427 0.01427 70.08 1.000
5 4.348 2.174 2.174 0.00725 0.06191 70.23 4.348
4 3.839 1.920 4.094 0.01170 0.05466 70.23 3.838

4 3 3.017 ditto 1.509 5.603 ditto 0.01401 0.04296 70.23 3.017
2 2.033 1.017 6.620 0.01471 0.02895 70.22 2.033
1 1.000 0.500 7.120 0.01424 0.01424 70.22 1.000
5 4.348 2.174 2.174 0.00725 0.06190 70.24 4.347
4 3.838 1.919 4.093 0.01169 0.05465 70.23 3.838

5 3 3.017 ditto 1.509 5.602 ditto 0.01401 0.04296 70.23 3.017
2 2.033 1.017 6.619 0.01471 0.02895 70.22 2.033
1 1.000 0.500 7.119 0.01424 0.01424 70.22 1.000
5 4.347 2.174 2.174 0.00725 0.06190 70.23 4.347
4 3.838 1.919 4.093 0.01169 0.05465 70.23 3.838

6 3 3.017 ditto 1.509 5.602 ditto 0.01401 0.04296 70.23 3.017
2 2.033 1.017 6.619 0.01471 0.02895 70.22 2.033
1 1.000 0.500 7.119 0.01424 0.01424 70.22 1.000

* δi =
∑i

n miφ1i/ki, ** ω2
1 = φi/(

∑i
n δi)

Therefore, {φ}T = {1 2.03 3.02 3.84 4.35}T, ω2 = 70.22, ω = 8.38(rad/s), and
T = 0.75(s).

3.7 Holzer Method

In Stodola method, an assumed mode shape is adjusted until the true mode shape is
obtained, and then the frequency of vibration is calculated. In the Holzer method, the
process is essentially the reverse. The frequency is adjusted so that the true frequency
is established and the mode shape is evaluated simultaneously. It should be noted that
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this method is only applicable to so-called shear type structures or chain structures. The
process is as follows. (See Fig.3.7.1)

i) First of all, assume ωj, where it can be an approximation of frequency for any mode.
ii) The force pn produced by the n-th mass is equal to the shear force Vn just below the
n-th mass, and is given by

pn = Vn = ω2
j mn un

where un can be an arbitrary constant.
iii) The deflection δn caused by the shear force Vn is

δn = Vn/kn = ω2
j mn un/kn = un − un−1

iv) Then, the (n− 1)-th element of the mode shape vector is

un−1 = un − δn

v) The shear force Vn−1 just below the (n− 1)-th mass is

Vn−1 = pn + pn−1 =
n∑

i=n−1

ω2
j mi ui

vi) Then, the deflection δn−1 caused by the shear force Vn−1 is

δn−1 = Vn−1/kn−1 = un−1 − un−2

vii) The (n− 2)-th element of the mode shape vector is

un−2 = un−1 − δn−1

Repeating steps v)∼vii), we have
viii)

δ1 =
V1

k1

=
n∑

i=1

ω2
j mi ui/ki

ix)
u0 = u1 − δ1

If u0 is equal to zero, the initial assumption of ωj is the correct frequency of vibration.
If this value is positive, the assumed ωj is smaller than the true ωn in the case of odd
modes, or the assumed ωj is larger than the true ωj in case of even modes.

The Holzer method explained above can be conveniently performed according to Table
3.7.1.

The procedure for filling the blanks of the table is as follows.
a) Write in each value of mass mi and stiffness ki.
b) Assuming un = 1, calculate pn, Vn and δn.
c) Calculate un−1 where un−1 = un − δn.
d) Repeat steps b) and c) until u0 = u1 − δ1 is calculated.
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Fig.3.7.1 Holzer method

Table 3.7.1 Calculation sheet for Holzer method
i mi ui pi = miuiω

2
j Vi =

∑
pi ki δi = Vi/ki

n 1.000 → → → →
n− 1
n− 2

...
3
2
1
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[Example 3.6]

For a five story shear type structure as shown
in Fig.E3.6, calculate the mode shape vec-
tor and the eigen value of the first mode and
the second mode by Holzer method, where,
W1 = W2 = W3 = W4 = W5 = 490 (kN),
k1 = 500 (kN/cm), k2 = 450 (kN/cm), k3 =
400 (kN/cm), k4 = 350 (kN/cm), k5 = 300
(kN/cm).

[Solution]

For SDOF systems, the natural period is
given as

Tn = 2π

√
m

k

Let the displacement of the system be δst,
when the weight of the system is applied hor-
izontally.

k =
mg

δst
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Fig.E3.6

Therefore,

Tn = 2π

√
δst

g
≈
√

δst

5

where, Tn is given in second and δst is given in cm.

For MDOF systems, similar formula is given as follows.

T1 ≈
√

δst

5.5

The horizontal displacement of the structure subjected to horizontal forces that are
equal to its own weight is

δst =
490

300
+

490× 2

350
+

490× 3

400
+

490× 4

450
+

490× 5

500
= 1.63 + 2.80 + 3.68 + 4.36 + 4.90 = 17.37(cm)

T1 ≈
√

17.37

5.5
≈ 0.76(s) ω ≈ 8.27 ω2 ≈ 68
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Table E3.6a First mode for Holzer method
(First assumption, ω2

1 = 68)
i mi ui pi Vi ki δi

= miuiω
2
j =

∑
pi = Vi/ki

5 0.500 1.000 34.00 34.00 300 0.113
4 0.500 0.887 30.16 64.16 350 0.183
3 0.500 0.704 23.94 88.10 400 0.220
2 0.500 0.484 16.46 104.56 450 0.232
1 0.500 0.252 8.57 113.13 500 0.226

u0 = 0.026

Table E3.6b First mode for Holzer method
(Second assumption, ω2

1 = 70)
i mi ui pi Vi ki δi

= miuiω
2
j =

∑
pi = Vi/ki

5 0.500 1.000 35.00 35.00 300 0.117
4 0.500 0.883 30.91 65.91 350 0.188
3 0.500 0.695 24.33 90.24 400 0.226
2 0.500 0.469 16.42 106.66 450 0.237
1 0.500 0.232 8.12 114.78 500 0.230

u0 = 0.002

Table E3.6c First mode for Holzer method
(Third assumption, ω2

1 = 70.2)
i mi ui pi Vi ki δi

= miuiω
2
j =

∑
pi = Vi/ki

5 0.500 1.000 35.10 35.10 300 0.117
4 0.500 0.883 30.99 66.09 350 0.189
3 0.500 0.694 24.36 90.45 400 0.226
2 0.500 0.468 16.43 106.88 450 0.238
1 0.500 0.230 8.07 114.95 500 0.230

u0 = 0.000

Therefore, for the first mode

ω2
1 = 70.2, ω1 = 8.38(rad/s), T1 = 0.75(s)

{u1}T = {0.230 0.468 0.694 0.883 1.000}T

In general, the natural frequencies of a uniform continuous beam fixed at the end is
given as follows.

ωj = (2j − 1)ω1

Therefore, it may be assumed that the natural frequency of the second mode is ω2 ≈
3ω1 ≈ 3× 8.38 ≈ 25.1. Then, let us assume ω2

2 ≈ 25.12 ≈ 630 ≈ 600.
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Table E3.6d Second mode for Holzer method
(First assumption, ω2

2 = 600)
i mi ui pi Vi ki δi

= miuiω
2
j =

∑
pi = Vi/ki

5 0.500 1.000 300.00 300.00 300 1.000
4 0.500 0.000 0.00 300.00 350 0.857
3 0.500 −0.857 −257.14 42.86 400 0.107
2 0.500 −0.964 −289.24 −246.38 450 −0.548
1 0.500 −0.416 −124.95 −371.33 500 −0.743

u0 = 0.327

Table E3.6e Second mode for Holzer method
(Second assumption, ω2

2 = 500)
i mi ui pi Vi ki δi

= miuiω
2
j =

∑
pi = Vi/ki

5 0.500 1.000 250.00 250.00 300 0.833
4 0.500 0.167 41.67 291.67 350 0.833
3 0.500 −0.667 −166.67 125.00 400 0.313
2 0.500 −0.979 −244.79 −119.79 450 −0.266
1 0.500 −0.713 −178.79 −298.03 500 −0.596

u0 = −0.117

Table E3.6f Second mode for Holzer method
(Third assumption, ω2

2 = 500 + 100×0.117
0.117+0.327

= 526)

i mi ui pi Vi ki δi

= miuiω
2
j =

∑
pi = Vi/ki

5 0.500 1.000 263.00 263.00 300 0.877
4 0.500 0.123 32.35 295.35 350 0.844
3 0.500 −0.721 −189.62 105.73 400 0.264
2 0.500 −0.985 −259.06 −153.33 450 −0.341
1 0.500 −0.644 −169.37 −323.70 500 −0.645

u0 = 0.001

Therefore, for the second mode
ω2

2 = 526, ω2 = 22.93(rad/s), T2 = 0.274(s),
{u2}T = {−0.644 − 0.985 − 0.721 0.123 1.000}T.

3.8 Mode Superposition and Modal Analysis

(1) Derivation of Equations

The procedures for mode superposition and modal analysis are explained, deriving
equations for a lumped mass “n” degrees of freedom as an example.

The equation of motion for a MDOF system is as already given

[m]{ẍ}+ [c]{ẋ}+ [k]{x} = {p} (3.8.1a)
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When the system is subjected to earthquake ground acceleration ẍg(t) at the base, the
above equation is expressed as follows.

[m]{ẍ + ẍg}+ [c]{ẋ}+ [k]{x} = {0} (3.8.1b)

The base acceleration term is moved to the right hand side, and then

[m]{ẍ}+ [c]{ẋ}+ [k]{x} = −[m]{1}ẍg (3.8.1c)

where {1} is a vector of ones, i.e. all elements of the vector are unity.
The matrices for a lumped mass n degrees of freedom are given as follows.

[m] =




m11 m12 · · · m1n

m21 m22 · · · m2n
...

...
. . .

...
mn1 mn2 · · · mnn


 =




m1 0 · · · 0

0 m2
. . .

...
...

. . . . . . 0
0 · · · 0 m3


 (3.8.2a)

[k] =




k11 k12 · · · k1n

k21 k22 · · · k2n
...

...
. . .

...
kn1 kn2 · · · knn


 (3.8.2b)

[c] =




c11 c12 · · · c1n

c21 c22 · · · c2n
...

...
. . .

...
cn1 cn2 · · · cnn


 (3.8.2c)

The equation of motion of undamped free vibration is

[m]{ẍ}+ [k]{x} = {0} (3.8.3)

As was used for the SDOF system, we assume that the displacement vector is expressed
as a product of constant vector and time function ei ωt ∗, i.e.

{x} = {u}ei ωt (3.8.4a)

namely, 



x1

x2

x3



 =





u1

u2

u3



 ei ωt (3.8.4b)

In order to obtain a non-zero vector solution for {u}, the determinant of the expression
{[k]− ω2[m]} must be zero, i.e.

∣∣∣[k]− ω2[m]
∣∣∣ = 0 (3.8.5)

∗e±iω = cos ω ± i sin ω
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From this condition, we obtain n values of ω2
j as eigenvalues. In addition, a corresponding

vector can be computed for each eigenvalue.
Dividing each element of the vector {u} by one reference element (usually the first or

the largest), dimensionless vector {φj} is obtained. Combining the eigen vectors, a mode
shape matrix is obtained as follows.

[φ] = [{φ1}{φ2} · · · {φn}] =




φ11 φ12 · · · φ1n

φ21 φ22 · · · φ2n
...

...
. . .

...
φn1 φn2 · · · φnn


 (3.8.6)

Now, we assume that the solution {x} for the original problem is expressed as a product
of [φ] and a time function vector {x∗}.

{x} = [φ]{x∗} = [{φ1} {φ2} · · · {φn}]





x∗1
x∗2
...

x∗n





(3.8.7)

Then the equation of motion becomes

[m][φ]{ẍ∗}+ [c][φ]{ẋ∗}+ [k][φ]{x∗} = −[m]{1}ẍg (3.8.8)

Pre-multiplying the transposed matrix of [φ] to each term of the above equation, we have

[φ]T[m][φ]{ẍ∗}+ [φ]T[c][φ]{ẋ∗}+ [φ]T[k][φ]{x∗} = −[φ]T[m]{1}ẍg (3.8.9)

As it was mentioned previously, i.e. because of orthogonality of eigen vectors, we have

[φ]T[m][φ] =




m∗
1 0 · · · 0

0 m∗
2

. . .
...

...
. . . . . . 0

0 · · · 0 m∗
n


 (3.8.10)

where, m∗
j = {φj}T[m]{φj} is called the generalized mass.

[φ]T[k][φ] =




k∗1 0 · · · 0

0 k∗2
. . .

...
...

. . . . . . 0
0 · · · 0 k∗n


 (3.8.11)

where, k∗j = {φj}T[k]{φj} is called the generalized stiffness.
Generally the damping matrix is not diagonalized by matrix [φ], since eigen vectors

are not orthogonal with respect to damping matrix. Therefore,

[φ]T[c][φ] =




c∗11 c∗12 · · · c∗1n

c∗21 c∗22 · · · c∗2n
...

...
. . .

...
c∗n1 c∗n2 · · · c∗nn


 (3.8.12a)
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However, we assume that the above matrix becomes diagonal, i.e.,

[φ]T[c][φ] =




c∗1 0 · · · 0

0 c∗2
. . .

...
...

. . . . . . 0
0 · · · 0 c∗n


 (3.8.12b)

where, c∗j = {φj}T[c]{φj} is called the generalized damping.

Then, the equation of motion becomes




m∗
1 0 · · · 0

0 m∗
2

. . .
...

...
. . . . . . 0

0 · · · 0 m∗
n








ẍ∗1
ẍ∗2
...

ẍ∗n





+




c∗1 0 · · · 0

0 c∗2
. . .

...
...

. . . . . . 0
0 · · · 0 c∗n








ẋ∗1
ẋ∗2
...

ẋ∗n





+




k∗1 0 · · · 0

0 k∗2
. . .

...
...

. . . . . . 0
0 · · · 0 k∗n








x∗1
x∗2
...

x∗n





= −





∑n
i=1 miφi1∑n
i=1 miφi2

...∑n
i=1 miφin





ẍg

(3.8.13a)

This matrix equation is equivalent to one of the following three sets of differential equa-
tions.

m∗
1ẍ
∗
1 + c∗1ẋ

∗
1 + k∗1x

∗
1 = −ẍg

∑n
i=1 miφi1

m∗
2ẍ
∗
2 + c∗2ẋ

∗
2 + k∗2x

∗
2 = −ẍg

∑n
i=1 miφi2

... (3.8.13b)

m∗
nẍ∗n + c∗nẋ∗n + k∗nx∗n = −ẍg

∑n
i=1 miφin

or

ẍ∗1 +
c∗1
m∗

1

ẋ∗1 +
k∗1
m∗

1

x∗1 = −ẍg

∑n
i=1 miφi1

m∗
1

ẍ∗2 +
c∗2
m∗

2

ẋ∗2 +
k∗2
m∗

2

x∗2 = −ẍg

∑n
i=1 miφi2

m∗
2

... (3.8.13c)

ẍ∗n +
c∗n
m∗

n

ẋ∗n +
k∗n
m∗

n

x∗n = −ẍg

∑n
i=1 miφin

m∗
n
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Therefore,

ẍ∗1 + 2ζ1ω1ẋ
∗
1 + ω1

2x∗1 = −β1ẍg

ẍ∗2 + 2ζ2ω2ẋ
∗
2 + ω2

2x∗2 = −β2ẍg

... (3.8.13d)

ẍ∗n + 2ζnωnẋ∗n + ωn
2x∗n = −βnẍg

where

ωj =

√
k∗j
m∗

j

2ζjωj =
c∗j
m∗

j

βj =

∑n
i=1 miφij∑n
i=1 miφ2

ij

(3.8.14)

Each of the above equations is the equation of motion for a SDOF system for which the
natural circular frequency is ωn, and the damping factor is ζn. In addition, the input
motion is scaled by the participation factor βi.

From the equation {x} = [φ]{x∗}, the solution {x} will be evaluated with [φ] and
{x∗}.

{x} = [φ]{x∗} (3.8.15a)

For a “n” degree of freedom system,

{x} =





x1

x2
...

xn





=




φ11 φ12 · · · φ1n

φ21 φ22 · · · φ2n
...

...
. . .

...
φn1 φn2 · · · φnn








x∗1
x∗2
...

x∗n





=





φ11x
∗
1 + φ12x

∗
2 + · · ·+ φ1nx

∗
n

φ21x
∗
1 + φ22x

∗
2 + · · ·+ φ2nx

∗
n

...
φn1x

∗
1 + φn2x

∗
2 + · · ·+ φnnx

∗
n





(3.8.15b)

Mode Superposition
Calculate the response of each mode, solving the equation of motion of a SDOF system,

e.g. Eq.(3.8.13d) by any appropriate method, e.g. by Duhamel integral.

x∗j =
1

m∗
j ωdj

∫ t

0

p∗j(τ)e−ζjωj(t−τ) sin ωdj(t− τ)dτ (3.8.16a)

x∗j = − 1

ωdj

∫ t

0

βjẍg(τ) e−ζjωj(t−τ) sin ωdj(t− τ)dτ (3.8.16b)

Where x∗j is obtained as a time history response for the input ground motion βjẍg. Sum-
ming up the responses of all modes, we can determine the total response of the system
using Eq.(3.8.15a).

Modal Analysis
Determine the maximum of x∗j for each mode using a response spectrum, i.e. x∗j max is

given by βjSd(ωj), where Sd(ωj) is the ordinate of the displacement response spectrum.
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Then the maximum response of x can be estimated, e.g. using square root of sum of the
squares (SRSS) as

ximax ≈
√∑n

j=1{βj φij Sd(ωj)}2 (3.8.17a)

The maximum response of x for a “n” DOF system is

{xmax} =





x1max

x2max
...

xnmax





≈





√{
β1φ11Sd(ω1)

}2
+

{
β2φ12Sd(ω2)

}2
+ · · ·+ {

βnφ1nSd(ωn)
}2

√{
β1φ21Sd(ω1)

}2
+

{
β2φ22Sd(ω2)

}2
+ · · ·+ {

βnφ2nSd(ωn)
}2

...√{
β1φn1Sd(ω1)

}2
+

{
β2φn2Sd(ω2)

}2
+ · · ·+ {

βnφnnSd(ωn)
}2





(3.8.17b)

(2) Mode Superposition

The mode superposition procedure is summarized as follows.

i) Mass matrix and stiffness matrix
Calculate the mass matrix [m] and stiffness matrix [k].

ii) Mode shapes and natural frequencies
Determine the mode shapes {φ} and natural frequencies ω, solving the following equa-

tion by any appropriate method.

(
[k]− ω2[m]

){φ} = {0} (3.8.18a)

or ∣∣[k]− ω2[m]
∣∣ = 0 (3.8.18b)

iii) Generalized mass and load or participation factor

Calculate the generalized mass and load for each mode, using the following formulae.

m∗
j = {φj}T[m]{φj} (3.8.19a)

p∗j = {φj}T{p} (3.8.19b)

Or calculate the participation factor.

βj =
{φj}T[m]{1}
{φj}T[m]{φj} (3.8.20)

iv) Uncoupled equations of motion
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Then the equation of motion for each mode becomes as follows.

ẍ∗j + 2ζjωjẋ
∗
j + ω2

j x
∗
j =

p∗j
m∗

j

(3.8.21a)

or

ẍ∗j + 2ζjωjẋ
∗
j + ωj

2x∗j = −βjẍg (3.8.21b)

v) Modal response
Calculate the response for each mode, solving Eq.(3.8.21) by any appropriate method,

e.g. by Duhamel integral or step-by-step integration [see Section 2.4(1)].

vi) Total response
Summing up the response for each mode, we can determine the total response of the

structure.

{x} = [φ]{x∗} (3.8.22)

(3) Modal Analysis

It should be noted that the mode superposition procedure gives us not the approximate
solution but the exact solution. Whereas, the modal analysis using the SRSS (Square Root
of Sum of Squares) method gives the approximate solution in a stochastic manner. This
method is very similar to the mode superposition method except that in modal analysis
the response of each mode is determined by the response spectrum and the maximum
total response is given in stochastic manner, e.g. SRSS. The procedure is summarized as
follows.

i) Mass matrix and stiffness matrix
This step is exactly the same as to the mode superposition procedure.

ii) Mode shapes and natural frequencies
This step is also the same as to the mode superposition procedure. It should be noted,

however, that there is no need to calculate all mode shapes and corresponding frequencies.
Because usually only first few modes have a controlling influence on the response of the
system, it is enough to calculate the mode shapes and corresponding natural frequencies
for the first few influencial modes.

iii) Participation factors
This step is again similar to the mode superposition procedure. The participation

factor βj for each mode is calculated as follows.

βj =
{φj}T[m]{1}
{φj}T[m]{φj} (3.8.23a)

or

βj =

∑n
i=1 miφij∑n
i=1 miφij

2
(3.8.23b)

iv) Maximum response for each mode
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Determine the maximum response for each mode which can be given by the product of
mode shape, participation factor and spectral value at the corresponding frequency and
damping ratio, if any.

xijmax = βj φij Sd(ωj) (3.8.24)

In order to determine the velocity or acceleration, the spectal value is obtained from the
velocity response spectrum Sv(ωn) or acceleration response spectrum Sa(ωn).

v) Estimation of maximum response
Estimate the maximum total response of the system from each modal response by

stochastic manner, e.g. SRSS.

ximax ≈
√∑n

j=1{βj φij Sd(ωj)}2 (3.8.25)

(4) Methods for the Estimation of Maximum Response

Although the SRSS method is commonly used for the dynamic analysis of structures,
a number of other methods have been proposed to estimate the maximun response.

[SRSS] : Square Root of Sum of Squares
In case the natural frequencies are not close to each other, the SRSS gives good

estimate of the maximum response.

ximaxSRSS =
√∑n

j=1{βj φij Sd(ωj)}2 (3.8.26)

[ABSSUM] : Absolute Sum
Since the SRSS sometimes underestimates the maximum response, ABSSUM has been

proposed to give the extreme of the maximum response.

ximaxABS =
n∑

j=1

∣∣βj φij Sd(ωj)
∣∣ (3.8.27)

[Average of SRSS and ABSSUM]
The ABSSUM gives the extreme of the maximum response and usually overestimates

it. This is because the maximum response of each mode does not occur simultaneously.
Therefore the average of SRSS and ABSSUM has been proposed.

ximax ≈ 1

2
(ximaxSRSS + ximaxABS) (3.8.28)

[CQC] : Complete Quadratic Combination
Since the SRSS does not give good estimate of the maximum response, especially

when the natural frequencies are close to each other, CQC has been proposed. The CQC
is derived from the random vibration theory, which takes into account the correlation
between natural frequencies.

ximaxCQC =
√∑n

j=1

∑n
k=1{βj φij Sd(ωj)} ρjk {βk φik Sd(ωk)} (3.8.29a)
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ρjk =
8
√

ζj ζk (ζj + rjk ζk) r
2/3
jk

(1 − r2
jk)

2 + 4ζj ζk rjk (1 + r2
jk) + 4(ζ2

j + ζ2
k) r2

jk

(3.8.29b)

where, ζj and ζk are the damping ratios for the j-th and k-th mode, respectively, and rjk

is the ratio of the j-th mode natural frequency to the k-th mode natural frequency.

All modes having significant contribution to total structural response should be con-
sidered in the above Eqs.(3.8.29a) and (3.8.29b).

[Example 3.7]

Calculate the maximum acceleration response of a two story building as shown in Fig.E3.7a,
using SRSS method. The building is subjected to the earthquake excitation whose re-
sponse spectrum is given in Fig.E3.7b, assuming the maximum ground acceleration is
0.3g, and W1 = W2 = 10 000 (kN) and k1 = k2 = 1 000 (kN/cm).
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Fig.E3.7b

[Solution]

m1 = m2 =
10 000

980
= 10.2 kN s2/cm

The mass matrix is

[m] =

[
m1 0
0 m2

]
=

[
10.2 0
0 10.2

]

The stiffness matrix is

[k] =

[
k11 k12

k21 k22

]
=

[
k1 + k2 −k2

−k2 k2

]
=

[
2 000 −1 000
−1 000 1 000

]

The equation of motion for an undamped system is,

[m]{ẍ}+ [k]{x} = 0

The mode shapes {φ} are given by

(
[k]− ω2[m]

){φ} = {0} (E3.7)
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Then the frequency equation,
∣∣[k]− ω2[m]

∣∣ = 0, becomes

∣∣∣∣
k11 − ω2m1 k12

k21 k22 − ω2m2

∣∣∣∣ = 0

(k11 − ω2m1)(k22 − ω2m2)− k12k21 = 0

From the given values of parameters,

(2 000− 10.2ω2)(1 000− 10.2ω2)− (−1 000)(−1 000) = 0

104ω4 − 30 600ω2 + 1 000 000 = 0

1.04ω4 − 306ω2 + 10 000 = 0

Therefore,

ω2 =
153±√1532 − 10400

1.04
=

153± 114

1.04
= 37.5 or 257

ω1 =
√

37.5 = 6.124 (rad/s), T1 =
2π

ω1

= 1.026 (s)

ω2 =
√

257 = 16.03 (rad/s), T2 =
2π

ω2

= 0.392 (s)

From Eq.(E3.7), [
k11 − ω2m1 k12

k21 k22 − ω2m2

] {
φ1

φ2

}
= 0

The first equation of the above matrix equation becomes

(2 000− 10.2ω2)φ1 − 1 000φ2 = 0

1) For the first mode, ω1
2 = 37.5

1 618 φ1 − 1 000 φ2 = 0

φ2 = 1.62 φ1

Then, {φ1} can be chosen arbitrarily as,

{
φ11

φ21

}
=

{
1

1.62

}

2) For the second mode ω2
2 = 257

−621 φ1 − 1 000 φ2 = 0

φ2 = −0.62 φ1
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Then, {φ2} can be chosen as,
{

φ12

φ22

}
=

{
1

−0.62

}

The participation factor for the n-th mode is

βn =

∑N
i=1 miφin∑N
i=1 miφin

2

β1 =
m1φ11 + m2φ21

m1φ11
2 + m2φ21

2
=

10.2× 1.00 + 10.2× 1.62

10.2× 1.002 + 10.2× 1.622
= 0.723

β2 =
m1φ12 + m2φ21

m1φ12
2 + m2φ22

2
=

10.2× 1.00 + 10.2× (−0.62)

10.2× 1.002 + 10.2× (−0.62)2
= 0.274

For the fundamental mode T1 = 1.026 (s), the corresponding acceleration response
is Sa(ω1) = 1.0 × 0.3 × 980 = 294 (gal). For the second mode T2 = 0.392 (s), the
corresponding acceleration response is Sa(ω2) = 3.0× 0.3× 980 = 882 (gal).

The maximum acceleration response is computed by SRSS method as,

{ẍmax} ≈
{√

{β1φ11Sa(ω1)}2 + {β2φ12Sa(ω2)}2√
{β1φ21Sa(ω1)}2 + {β2φ22Sa(ω2)}2

}

=

{ √
{0.723× 1.00× 294}2 + {0.274× 1.00× 882}2√

{0.723× 1.62× 294}2 + {0.274× (−0.62)× 882}2

}

=

{
322
375

}
(gal)

[Example 3.8]

By the modal analysis using SRSS, calculate the maximum responses of a shear type
structure as shown in Fig.E3.8a subjected to the earthquake excitation whose velocity
response spectrum is given as Fig.E3.8b, where v0 = 49 (cm/s) and Tc = 1.0 (s). The
weight of each story of the structure from top to bottom is W1 = W2 = W3 = W =
9 800(kN), each story stiffness is k1 = 3k, k2 = 5k and k3 = 6k, where k = 200(kN/cm),
and h1 = h2 = h3 = h = 3(m).

i) story deflection at each floor.

ii) story shear force at each floor.

iii) overturning moment (OTM) at the base.
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[Solution]
The mass matrix is

[m] =




m1 0 0
0 m2 0
0 0 m3


 = m




1 0 0
0 1 0
0 0 1


 where m =

9 800

980
= 10

The stiffness matrix is

[k] =




k1 −k1 0
−k1 k1 + k2 −k2

0 −k2 k2 + k3


 = k




3 −3 0
−3 8 −5
0 −5 11




The mode shapes {φ} are given by

(
[k]− ω2[m]

){φ} = {0} (E3.8)

Then the frequency equation,
∣∣[k]− ω2[m]

∣∣ = 0, becomes

∣∣∣∣∣∣
k




3 −3 0
−3 8 −5
0 −5 11


−mω2




1 0 0
0 1 0
0 0 1




∣∣∣∣∣∣
= 0

k

∣∣∣∣∣∣

3− m
k
ω2 −3 0

−3 8− m
k
ω2 −5

0 −5 11− m
k
ω2

∣∣∣∣∣∣
= 0

Letting m
k
ω2 = λ, we have

(3− λ)(8− λ)(11− λ)− (−3)2(11− λ)− (−5)2(3− λ) = 0

−λ3 + 22λ2 − 111λ + 90 = 0

(λ− 1)(λ− 6)(λ− 15) = 0
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Therefore, λ = 1, 6 or 15.

1) Substituting λ = 1 to the first and the third equations of Eq.(E3.8), we have

2φ1 − 3φ2 = 0

−5φ2 − 10φ3 = 0

Then, φ2 = 2φ3, φ1 = 3φ3. Therefore, for the first mode

{φ1} =





3
2
1



 , ω2

1 =
k

m
=

200

10
= 20(s−2), ω1 = 4.47(s−1), T1 = 1.405(s)

2) Substituting λ = 6, we have

−3φ1 − 3φ2 = 0

−5φ2 + 5φ3 = 0

Then, φ2 = φ3, φ1 = −φ3. Therefore, for the second mode

{φ2} =




−1
1
1



 , ω2

2 = 6
k

m
= 120(s−2), ω2 = 10.96(s−1), T2 = 0.574(s)

3) Substituting λ = 15, we have

−12φ1 − 3φ2 = 0

−5φ2 − 4φ3 = 0

Then, φ2 = −0.8φ3, φ1 = 0.2φ3. Therefore, for the third mode

{φ3} =





0.2
−0.8

1



 , ω2

3 = 15
k

m
= 300(s−2), ω3 = 17.32(s−1), T3 = 0.363(s)

The participation factors are

β1 =
10× 3 + 10× 2 + 10× 1

10× 32 + 10× 22 + 10× 12
= 0.429

β2 =
10× (−1) + 10× 1 + 10× 1

10× (−1)2 + 10× 12 + 10× 12
= 0.333

β3 =
10× 0.2 + 10× (−0.8) + 10× 1

10× (0.2)2 + 10× (−0.8)2 + 10× 12
= 0.238
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Table E3.8 Calculation sheet for SRSS
1st mode 2nd mode 3rd mode max.values

ω2
n 20 120 300

ωn 4.472 10.954 17.321
Tn 1.405 0.574 0.363
φ1 3 −1 0.2
φ2 2 1 −0.8
φ3 1 1 1
βn 0.429 0.333 0.238

Sa = ωSv 219.0 308.3 308.1
Sv 49.000 28.126 17.787

Sd = Sv/ωn 10.96 2.566 1.027
δ1(cm) 14.11 −0.85 0.049 14.1
δ2(cm) 9.40 0.85 −0.196 i) 9.4
δ3(cm) 4.70 0.85 0.244 4.8
ẍ1(gal) 281.9 −102.7 14.7 300.4
ẍ2(gal) 187.9 102.7 −58.7 222.0
ẍ3(gal) 94.0 102.7 73.3 157.3
p1(kN) 2 819 −1 027 147 3 004
p2(kN) 1 879 1 027 −587 2 220
p3(kN) 940 1 027 733 1 573
V1(kN) 2 819 −1 027 147 3 004
V2(kN) 4 698 0 −440 ii) 4 719
V3(kN) 5 638 1027 293 5 738

OTM (kN· m) 39 465 0 0 iii) 39 465

3.9 Solution by Step-by-step Integration Method

The equation of motion for a MDOF system subjected to the earthquake ground acceler-
ation ẍg is given as follows.

[m]{ẍ}+ [c]{ẋ}+ [k]{x} = −ẍg[m]{1} (3.9.1)

This equation can be solved directly by a step-by-step integration method as an extension
of a SDOF system. The method, i.e. step-by-step integration, is the same as for nonlinear
sysytems that will be explained in the next chapter.

The mass matrix and the stiffnes matrix can be evaluated by analyzing the structure.
However, the damping matrix can not be evaluated through the analysis of the strucure.
Therefore, in this section, it is briefly explained how to construct the damping matrix [c].

Usually we specify a damping property with the damping factor for each mode, e.g.
2% for the first mode, 5% for the second mode, etc.

In order to give a different damping factor for each mode, the damping matrix is
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constructed as follows. If the orthogonality condition for the damping matrix is satisfied,

[φ]T[c][φ] =




c∗1 0 · · · 0

0 c∗2
. . .

...
...

. . . . . . 0
0 · · · 0 c∗n




=




2ζ1ω1m
∗
1 0 · · · 0

0 2ζ2ω2m
∗
2

. . .
...

...
. . . . . . 0

0 · · · 0 2ζnωnm∗
n




=




m∗
1 0 · · · 0

0 m∗
2

. . .
...

...
. . . . . . 0

0 · · · 0 m∗
n







2ζ1ω1 0 · · · 0

0 2ζ2ω2
. . .

...
...

. . . . . . 0
0 · · · 0 2ζnωn




=




. . .

m∗
j

. . .







. . .

2ζjωj

. . .




= [m∗
j ][2ζjωj] (3.9.2)

where, ζj is the damping factor for the j-th mode, and ωj is the natural circular frequency
of the j-th mode.

Then, the damping matrix can be evaluated as follows.

[c] = ([φ]T)−1[φ]T[c][φ][φ]−1

= ([φ]T)−1




m∗
1 0 · · · 0

0 m∗
2

. . .
...

...
. . . . . . 0

0 · · · 0 m∗
n







2ζ1ω1 0 · · · 0

0 2ζ2ω2
. . .

...
...

. . . . . . 0
0 · · · 0 2ζnωn


 [φ]−1

= ([φ]T)−1




. . .

m∗
n

. . .







. . .

2ζnωn

. . .


 [φ]−1

= ([φ]T)−1[m∗
n][2ζnωn][φ]−1 (3.9.3)

One of the classical damping matrices is the Rayleigh damping, for which the damping
matrix is given as follows.

[c] = a0[m] + a1[k] (3.9.4)

where a0 and a1 are the coefficients to be determined from the damping ratios of two
different modes. When the damping ratios for the m-th mode and n-th mode are given,
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these coefficients are given, solving the equation

1

2

[
1/ωm ωm

1/ωn ωn

]{
a0

a1

}
=

{
ζm

ζn

}
(3.9.5)

When only the damping ratio for the fundamental mode is given, sometimes the damp-
ing matrix is estimated as follows.

[c] =
2ζ1

ω1

[k] (3.9.6)

This expression is simple and convenient, but it should be noted that it overestimates the
damping ratios for higher modes. This is because Eq.(3.9.6) indicates that the damping
ratio is proportional to the frequency.





Chapter 4

Nonlinear Analysis

4.1 Outline of Nonlinear Analysis

In order to analyze a linear structure subjected to arbitrary dynamic loadings, the Duhamel
integral is probably the most convenient technique. However, this method and mode su-
perposition can only be applied to linear systems. On the other hand, the response of a
structure subjected to severe earthquake motions may exceed the linear range of the ma-
terials. Therefore, it is necessary to develop another method that is suitable for nonlinear
analysis. The most powerful technique for this purpose is the step-by-step integration.
In this method, the response is evaluated for a series of short time increments ∆t. The
condition of dynamic equilibrium is established at the beginning and end of each time
increment, and the nonlinearity of the structure is accounted for by calculating new prop-
erties at the beginning of each time increment.

4.2 Nonlinear Response of SDOF Systems

At any instant of time t, the following relation must be satisfied.

pI(t) + pd(t) + ps(t) = p(t) (4.2.1)

where pI(t), pd(t), ps(t) and p(t) denote the inertia force, damping force, spring (restoring)
force and external force, respectively. A short time ∆t later, the above equation becomes,

pI(t + ∆t) + pd(t + ∆t) + ps(t + ∆t) = p(t + ∆t) (4.2.2)

Subtracting Eq.(4.2.1) from Eq.(4.2.2) yields the incremental form of the equation of
motion.

∆pI(t) + ∆pd(t) + ∆ps(t) = ∆p(t) (4.2.3)

where the incremental forces are,

∆pI(t) = pI(t + ∆t)− pI(t) = m∆ẍ(t) (4.2.4a)

∆pd(t) = pd(t + ∆t)− pd(t) = c(t)∆ẋ(t) (4.2.4b)

∆ps(t) = ps(t + ∆t)− ps(t) = k(t)∆x(t) (4.2.4c)

∆p(t) = p(t + ∆t)− p(t) (4.2.4d)
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Substituting Eqs.(4.2.4a)∼(4.2.4d) into Eq.(4.2.3) leads to

m∆ẍ(t) + c(t)∆ẋ(t) + k(t)∆x(t) = ∆p(t) (4.2.5)

Many procedures are available for the numerical integration of the above equation. If
we use the linear acceleration method, which is simple but which has been found to yield
excellent results, the following relationships are given.

∆ẋ(t) = ẍ(t)∆t + ∆ẍ(t)
∆t

2
(4.2.6a)

∆x(t) = ẋ(t)∆t + ẍ(t)
∆t2

2
+ ∆ẍ(t)

∆t2

6
(4.2.6b)

These equations are solved for the incremental acceleration and velocity. Then,

∆ẍ(t) =
6

∆t2
∆x(t)− 6

∆t
ẋ(t)− 3ẍ(t) (4.2.7a)

∆ẋ(t) =
3

∆t
∆x(t)− 3ẋ(t)− ∆t

2
ẍ(t) (4.2.7b)

Substituting Eqs.(4.2.7a) and (4.2.7b) into Eq.(4.2.5) leads to

m
[ 6

∆t2
∆x(t)− 6

∆t
ẋ(t)− 3ẍ(t)

]
+c(t)

[ 3

∆t
∆x(t)− 3ẋ(t)− ∆t

2
ẍ(t)

]

+ k(t)∆x(t) = ∆p(t) (4.2.8)

Rearranging the above equation yields

k̃(t)∆x(t) = ∆p̃(t) or ∆x(t) =
∆p̃(t)

k̃(t)
(4.2.9)

where

k̃(t) = k(t) +
6

∆t2
m +

3

∆t
c(t) (4.2.10a)

∆p̃(t) = ∆p(t) + m
[ 6

∆t
ẋ(t) + 3ẍ(t)

]
+ c(t)

[
3ẋ(t) +

∆t

2
ẍ(t)

]
(4.2.10b)

Therefore, after solving the displacement increment by Eq.(4.2.9), the incremental velocity
can be calculated by Eq.(4.2.7b). The initial conditions for the next time step can be given
by the addition of the these incremental values to the values at the beginning of the time
step. The acceleration should be determined by Eq.(4.2.1) at each time step, in order
to minimize the accumulation of any errors which may occur at each step of numerical
integration. This is done by using the following equation.

ẍ(t) =
1

m
[ p(t)− pd(t)− ps(t)] (4.2.11)

The procedure is summarized as follows.
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i) Determine the acceleration of the system under the given initial values and initial
conditions by Eq.(4.2.11).

ii) Calculate k̃(t) and ∆p̃(t) by Eqs. (4.2.10a) and (4.2.10b) and determine ∆x(t) by
Eq.(4.2.9).

iii) Calculate the incremental velocity by Eq.(4.2.7b).

iv) Calculate the displacement and the velocity, adding the initial values and the incre-
ments.

v) Determine the acceleration by Eq.(4.2.11).

Repeat steps i) to v) until the end of calculation time.

4.3 Nonlinear Response of MDOF Systems

The procedure of nonlinear analysis for MDOF systems is similar to that for SDOF
systems. The equilibrium of force increments are given by

{∆pI(t)}+ {∆pd(t)}+ {∆ps(t)} = {∆p(t)} (4.3.1)

The force increments in this equation are

{∆pI(t)} = {pI(t + ∆t)} − {pI(t)} = [m]{∆ẍ(t)} (4.3.2a)

{∆pd(t)} = {pd(t + ∆t)} − {pd(t)} = [c(t)]{∆ẋ(t)} (4.3.2b)

{∆ps(t)} = {ps(t + ∆t)} − {ps(t)} = [k(t)]{∆x(t)} (4.3.2c)

{∆p(t)} = {p(t + ∆t)} − {p(t)} (4.3.2d)

when Eqs. (4.3.2a)∼(4.3.2d) are substituted into Eq.(4.3.1), the incremental equation of
motion becomes

[m]{∆ẍ(t)}+ [c(t)]{∆ẋ(t)}+ [k(t)]{∆x(t)} = {∆p(t)} (4.3.3)

Adopting the linear acceleration method, we have

[k̃(t)]{∆x(t)} = {∆p̃(t)} (4.3.4)

[k̃(t)] = [k(t)] +
6

∆t2
[m] +

3

∆t
[c(t)] (4.3.5a)

{∆p̃(t)} = {∆p(t)}+ [m]
( 6

∆t
{ẋ(t)}+ 3{ẍ(t)})

+[c(t)]
(
3{ẋ(t)}+

∆t

2
{ẍ(t)}) (4.3.5b)

When the displacement increment {∆x(t)} has been determined, the velocity increment
is

{∆ẋ(t)} =
3

∆t
{∆x(t)} − 3{ẋ(t)} − ∆t

2
{ẍ(t)} (4.3.6)
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The displacement and velocity vectors at the end of the time increment are

{x(t + ∆t)} = {x(t)}+ {∆x(t)} (4.3.7a)

{ẋ(t + ∆t)} = {ẋ(t)}+ {∆ẋ(t)} (4.3.7b)

The acceleration vector is given by

{ẍ(t + ∆t)} = [m]−1({p(t + ∆t)} − {pd(t + ∆t)} − {ps(t + ∆t)} (4.3.8)

Therefore, if we repeat the calculations for Eqs.(4.3.4) through (4.3.8), the response of
the MDOF system can be estimated.




