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       2. Theory of Small Amplitude Waves 
 
 
2.1 General Discussion on Waves  
   Let us consider a one-dimensional (on x-axis) propagating wave that retains its 
original shape.  Assume that the wave can be expressed as a function at an initial time 
t = 0 as follows: 

)(xf=η    (1) 
If this wave shifts to the right with a velocity V, then it takes the form expressed as 

)( Vtxf −=η   (2) 
where t is time. 
 （Note: In high school, you must have studied that if a hyperbolic function 2xy =  is 

shifted to the right by 7, then it takes the form 2)7( −= xy .  In general, the position 
of the original graph moves to the right by a , when we change x  into ax − .） 

     We substitute the subordinate variable ξ=−Vtx  in the right-hand side of (2); 
therefore, )(ξη f= .  We differentiate η  partially with x , thereby obtaining      

ξηξξηη ddxddx =∂∂×=∂∂   (3) 
Further, when we differentiate it partially by t , we obtain 
    ξηξξηη ddVtddt −=∂∂×=∂∂   (4) 
Comparing (3) and (4), and eliminating ξη dd , we have the following  partial 
differential equation: 
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Equations (5) and (2) are mathematically equivalent to each other, and both equations 
are expressions of a wave moving one dimensionally toward the right on the x-axis at a 
velocity V without changing its form.  
2.2 Wave Equation  
 Equation (2) (or (5)) is a formulation of a wave propagating in the positive x direction 
(i. e., to the right).  In general cases, there are two wave components—one moving 
toward the left and the other toward the right, which have the same wave velocity and 
overlap.  For such general cases, the equation of a wave is expressed as the sum of the 
two wave components.  Hence, in place of equation (2), we must introduce the following 
form as a general wave with these two components:  
       )()( VtxgVtxf ++−=η   (6) 
where gf , are arbitrary functions giving the wave form.  By differentiating (6), first 
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with respect to x  and then with t, and eliminating the arbitrary functions gf , , we 
have the following second-order partial differential equation. 
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Equation (7) is mathematically equivalent to (6), and it is called the “wave equation” of 
the one-dimensional case. The wave velocity is often written as “c” instead of “V.”  
――――――――――――――――――――――――――――――――――――― 
[Mathematical Note] 
   Solution of a partial differential equation of two independent variables: 
    We introduce xD  and tD  as the operators of partial differentiation in x direction 

and time t,  that is, 
       tDxD tx ∂∂=∂∂= ,       (8) 
and ｚ is assumed to be a subordinate function of x and t, that is, 

       ),( txfz =  
  [Problem 1] Solve the following partial differential equation: 
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  [Answer] We re-write (9) by using (8); then we have 

       0)6( 22 =−− zDDDD ttxx   (10) 

    We can reduce (10) into the following form by using the method of resolution of 
factors  :      0)3)(2( =−+ zDDDD txtx    (11) 
Here, the a table that shows “the re-writing rule” is prepared as follows: 
       +⇒−−⇒+⇒⇒ ,,, xDtD tx  
Thus, we obtain the solution of (9) as follows: 
      )3()2( xtgxtfz ++−=     (12) 
where f and g are arbitrary differential functions. 
――――――――――――――――――――――――――――――――  
By using the result given in the mathematical note, we can obtain the solution of the 
equation of wave (7) in the following form: 
    )()( VtxgVtxf ++−=η    (13) 
This is nothing but equation (6).   
  ―――――――――――――――――――――――――――――――― 
Wave equations of two- and three-dimensional problems 
    For two-dimensional waves such as an ocean waves, the wave equation takes the 
following form: 
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   For three-dimensional cases such as seismic P and S waves, electro-magnetic waves, 
and sound waves, the wave equation takes the following form: 
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Here, the right-hand side has the Laplacian operator. 
  In any physical problem, if a subordinate variable satisfies equation (10), it can be 
shown that the value of the subordinate variable propagates as a wave having velocity 
V. 

 
2.3 Periodic Waves  

When a wave shape takes the form of a periodic repetition of the same pattern, we call 
the repeating interval as a “wavelength L ”.  If you watch any point on the x-axis, we 
observe the same variation in a uniform time interval; this time interval  called the 
“wave period T”.  Similar  to the case of a train with a length L traveling with speed V, 
the period T  is given by  

VLT /=   or LTV =    (16-a,b) 
Instead of the wavelength L, we often use “wave number k,” which is defined as  

     Lk /2π=  
and “angular frequency σ” defined as 

    T/2πσ =  
It is possible to rewrite (16-a,b)as  

     ck=σ When the wave shape consists of simple harmonics , it can be expressed as  
     )/2/2sin()sin( TtLxatkxa ππση −=−=   
where “ "a  is called “amplitude .”By introducing an expression in a complex function, 
we have 
    )( tkxiiae ση −−=  from the famous relationship 
   xixeix sincos +=   
 
2.4  Ocean Wave Theory of Infinite Amplitude  
 We place the origin at a point on a stable sea surface, and take the x-axis horizontally 
in the wave propagation direction, while the y-axis is assumed to be vertically upward.  
The ocean depth is a constant D (m).  We neglect the influence of the rotation of the 
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Earth.  We assume that sea  water is a perfect fluid (no viscosity) and has non-vortex 
motion; then we can introduce the velocity potential function φ .   
  The equation of mass conservation is given in the following form: 
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Now, we consider a wave, i. e, a periodically repeating phenomenon in the 
x-direction.  If the wavelength is considered to be L,  we can introduce the form of 
φ  in the following form: 

    ( ){ }ctxkyF −= cos)(φ      (18) 
This express the motion pattern in the form of a sinusoidal wave with a wave number 
k  )/2( Lπ=  and velocity c .  The wave number k is related to the length L in the 
following manner:  

Lk π2=       (19) 
We substitute σ=kc . This is called angular frequency (radian/s), and it is related to 
the period T  as follows:  
      T/2πσ =     (20) 
If we introduce the expression by using complex numbers, then 

)()( tkxieyF σφ −=    (21) 
  Hereafter, we use the complex expression given in (21).  The real part of the 
equation will give the form of the actual (visible) form .   You must be aware of the 
following formula  

,sincos xixeix +=  ,)( iyixyxi eee ×=+ ( ) ixix iee =′    

Substituting (21) into (17) we have 
02 =−′′ FkF     (22) 

This is a second-order linear differential equation with constant coefficients, and its 
solution has the following form: 
     kyky eCeCF −+= 21   (23) 
Finally, we have the form of the velocity potential as 
     ( ) )(

21
tkxikyky eeCeC σφ −−+=    (24) 

 
［Sea bottom condition］  

If we assume that the ocean depth is constant（ )D= , there is  no vertical 
component of the water particle velocity on the ocean bed. 

0=v  at Dy −=    (25) 
We write this condition by using φ as follows:  
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; hence, kDkD eCeC 21 =−    (26)  

If we put both side value of (26) as 2/C  then we have 
   )()(cosh tkxieDykC σφ −+=      (27) 

 Note: “cosh ” is “hyperbolic cosine” and is defined as 
2

cosh
xx eex

−+≡ .  Similarly, 

tanhsinh,  refer to “hyperbolic sine” and “hyperbolic tangent,” and they are defined as 

2
sinh

xx eex
−−=  and xxx cosh/sinh)tanh( = , respectively. They have many 

relationships among each other and for differentiation similarly to trigonometric 
functions such as sin, cos, and tan.  The differentiations are given by 

( ) ( ) xxxx coshsinh,sinhcosh =′=′ . 

[Sea surface boundary condition] 
（1） Kinematic boundary condition 

Since the present problem is a two-dimensional one ),( yx ,  the kinematic boundary 
condition on the sea surface is given by  
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,  at η=y   （28） 

Here we introduce “the order of small value.”  We define that the values ),,,( ηφvu  
<�>, which are induced by the wave and are linearly correlated with each other are 
small values of the order of )( 1εO .  The product of any two elements of <�> are the 
values of the second-order small values )( 2εO   In the scope of “linear theory” we 
assume that we can neglect values that have a higher order than 2 on comparison with 
the first-order ones.  
  Equation (28) is the condition on the surface η=y , and the v -value on the left-hand 
side is written in the form of a Taylor series as follows: 
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Hence, keeping in mind the scope of the linear theory,  we can neglect the second- and  
higher-order terms. 
   The second term on the right-hand side of (28) is obviously a higher-order value of 
the first term.  Hence, (28) can be approximately re-written in the following form: 
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（2） Dynamic boundary condition on the sea surface 
   This condition is derived from the fact that the pressure is uniformly equal to the 
atmospheric pressure.  If we assume the motion is a non-vortex one (�),  we can 
introduce a velocity potential function φ, and Bernoulli’s formula should be satisfied. 

    )(/)(
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  at η=y   (31) 

We neglect second-order terms  and assume that the water pressure is equal to the 
atmospheric pressure;  (31)then becomes 
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   at 0=y   (32) 

We partially differentiate (32) with respect to t, and substitute (31); then we have 
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    at 0=y  (33) 

 
（Note: There is an arbitrary function of time, F(t), in the right-hand side of (32), which 
implies that it is permissible to change atmospheric pressure; however, this is neglected 
in the present case） 
 Substituting (27) in (33) gives the relationship between the wave number k and 
angular frequency σ as 

kDgk tanh2 =σ         (34)  <Dispersion Relation > 
Since  ck=σ （ c：wave velocity, phase velocityfrom  (16), (19), and (20), 

    kD
k
gc tanh=         (35) 

or  

    
L
DgLc π

π
2tanh

2
=        (36) 

This is the formula for wave velocity c given  depth of water D  and wavelength L . 
Since the phase velocity changes with the wavelength, the wave shape cannot always 
maintain its initial form, and we call such waves “dispersive waves.” 

 
[Relationship between wave amplitude and water particle velocity] 

We assume that the water surface takes a sinusoidal form as follows: 
    )sin( tkxa ση −=    or  )( tkxiiae ση −−=  (37) 
where a  denotes the amplitude, and a2  is the wave height measured from the 
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bottom of the trough to the top of the wave crest. 

Substituting (37) and (30) in (31b),  C  in (27) can be expressed by the amplitude, that 
is,  

     
kD

acC
sinh

=      (4-28) 

Thus, the velocity potential function can be obtained in the following form: 

)()(cosh
sinh

tkxieDyk
kD

ac σφ −+=   (4-29) 

We can calculate the distribution of water particle motion ),( vu  by differentiating 

partially in the ,x  and y  directions. 
［Classification of waves］ 
  We return to the velocity formula (36) 

 
L
DgLc π

π
2tanh

2
=     (36) 

Here the function xtanh  can be approximated as 1tanh ≅x  when x is larger  
than 3.  On the other hand, it can also be approximated as xx ≅tanh  when x is 
smaller than 0.3.  Thus we can classify waves into three types, according to the value 
x = LDπ2  . 
（1） Long wave  When  DL 20> , x= 3.0)/2( <LDπ .Therefore, we 

approximate LDLD /2)/2tanh( ππ ≅ , making (39)   

            gDc =   (40) 

 Since the phase velocity is not dependent on the wavelength L, no dispersion is 
observed for this wave. 

(2) Shallow water wave When  DLD 202 << .  We cannot apply any 
approximation. Instead, we only  use (36) itself. 

(3) Deep water wave: When  DL 2<  (i..e, the wavelength is smaller than half 
the water depth.)  

Since x = 0.3)/2( >LDπ , we can approximate 1)/2tanh( ≅LDπ , and 
(36) becomes gk=2σ .  The phase velocity is given by  

π2
gL

k
gc ==     (41) 

 Naturally, a dispersive wave is present in this case, and the wave velocity does not 
depend on the depth D . 
[Orbit of water particles] 
 The velocity field of water particles ur ),( vu  can be calculated by differentiating the 
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velocity potential function (39) in the yx,  directions as follows:  

   
)(

sinh
)(cosh tkxie

kD
Dykiau σσ −+−=    (42a) 

   
)(
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)(sinh tkxie

kD
Dykav σσ −+=     (42b) 

By comparing (42a) and (37), we note that both η and u are multiplied by  i− ; hence, 
they change in the same phase with each other.  By integrating vu,  with respect to 
time t , we obtain the orbit of a water particle at the position ),( yx  as follows: 

 )cos(
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)(cosh tkx
kD

Dykax σ−+= , )sin(
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)(sinh tkx
kD

Dykay σ−+=    (43a,b) 

This means that each water particle moves on the orbit of an ellipsoid with a center 
),( yx . 
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In the case of deep water waves, (44) becomes 

     ( ) 222 )()( ykaeyyxx =−+−      (45) 

 This means that the orbit is a circle.  
 
３ Filter characteristics of a tsunami gauge at sea bed  
 The Japan Meteorological Agency (Kishocho) has installed pressure gauges on the sea 
bed in the sea off Tokai District and off Boso Peninsula. Now, let us consider whether 
such pressure gauges can be used to detect tsunamis.  
 Neglecting the non-linear and constant terms in Bernoulli’s formula gives 

     
t

p
∂
∂= φρ     (46) 

Substituting the velocity potential φ and taking Dy −= , we obtain 

      
)(21
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1 tkxie

kD
akip σσρ −−−=     (47) 

By using the sea surface shape  (37b) and dispersion relation (34), we can calculate the 
water pressure at the seabed p  as follows: 
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kD

gp
cosh

1ηρ=      (48) 

We expect the pressure gauge at the sea bed to reveal exact variations in depth 
ηρgp =  in real time.  However, in contrast of our expectations, (48) shows that there 

is an attenuation factor  kDcosh1 , which becomes multiplied on the pressure data. 
 JMA set four tsunami sensors at depths 40111912 −=D ｍ in the Tokai and Boso 
regions. Okada (1991) proposed a diagram showing the relationship between the period 
T  (s) and the attenuation factor kDcosh1 .  We note that a wave component with a 
period less than 2 min cannot be observed by such a type of sea bed pressure.  
  Since the period of a tsunami wave is generally 5 to 40 minutes, those pressure 
gauges function as a detector of tsunamis, but not as a detector of wind waves and 
swells. 
 
4. Energy in an Infinite Amplitude Wave 
   Next, let us consider the total energy contained in one wavelength of an infinite 
wave.  There are two types of energy:  potential energy T and kinematic energy V. 
 
                                       h   dx  

   
                                                     h   

(A)                                       
(B) 

 First, let us consider the potential energy difference between conditions (A) and (B) 
shown in the figure.  The potential energy is given by hmg∆ , where  m is mass and 
∆h is the height difference.  In the present case, since hdxm ρ=  and ∆h = h, the 
potential energy dE of the unit cube is given by .2dxghdT ρ=  
                      a  
                           dx                      dx     
                                                                      x 
          0                   L/2                      L   
 
   If the wave shape is given by Lkkxa /2;sin πη == , the total potential energy is 
calculated by the following integral: 
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  Next, we consider the kinematic energy V :  
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Green’s Law for two-dimensional cases is given as follows: 
    (Mathematical Note: Green’s Law) 

        If φ  is a harmonic function ( 02 =∇ φ ), then  

          ( ) ∫∫∫ ∂
∂=+
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         (51) 

is satisfied, where n is an outward vector.   
In the present case, the integral should be performed along the paths shown in the 

following figure I→II→III→IV.     
 

                                         IV 
  
      
                    I                                        III 
        
                                        
                                         II   

The integral along II is obviously zero since [ ] 0==∂∂−=∂∂ −= Dyvyn φφ . 

The integrated functions on I and III are identical and the direction of the integral 
paths are opposite to each other; hence, the integrals along I and III  cancel each other.  
   Thus, the kinematic energy in one wavelength is given by 
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On the other hand, the kinematic sea surface condition is  

         tv
y

ηφ ==
∂
∂− Hence, we have 

      ∫∫ =−=
L

t
IV

t dxdlV
02

1
2
1 ηφρφηρ    (53) 

By using the linearized Bernoulli’s formula ( 0=+− ηφ gt ), we have 
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Thus, we have proved that the total energy E is divided equally between the potential 
and kinematic energy components.    

 
 


