STERA 3D ver.5.5

<u>ST</u>ructural <u>Earthquake Response Analysis</u> 3D

斉藤大樹

独立行政法人 建築研究所

まえがき

現在のところ、本ソフトでは、鉄筋コンクリート造建物の

- 弾性振動モード解析
- 1方向静的漸増載荷解析(逆三角形分布、等分布)
- 弾塑性地震応答解析

ができるようになっています。建物データの入力から解析結果の表示まで、直感的な操作で、 誰でも使えるように工夫しています。

このソフトは、

- 実建物の地震時性能の把握
- 構造実験のシミュレーション
- 学生や技術者の教育

などに広く使ってもらいたいと考えています。ただし、利用は研究および教育目的に限定させていただきます。

まだ開発途上ですが、とりあえず公開して、皆さんの意見を聞きながら改良を加えたいと思っています。

また、本ソフトには、未知のバグがあるかもかもしれませんので、解析結果には責任は負え ません。もし不具合が出たときには、ご連絡くだされば可能な範囲で対処いたします。

ぜひ、お試しいただき、ご意見を頂ければ幸いです。

平成 15 年 3 月 26 日

ソフト開発者

斉藤 大樹

tsaito@kenken.go.jp

独立行政法人 建築研究所 国際地震工学センター 上席研究員

 $\mathbf{2}$

STERA 3D 使用法

更新履歴

2006.06.25	STERA_3D Ver.2.7 をアップロードしました。
	応答結果を保存する際に、保存先のフォルダを選択できるようにしました。
	また、応答出力用のプログラム(response.exe)を STERA 3D から自動的
	に実行するようにしました。
2006.07.05	STERA_3D Ver.2.8 をアップロードしました。
	"Error in Shell Command"のエラーを解決しました。
	基礎ばね設定のバグを直しました。
2006.07.10	STERA_3D Ver.2.9 をアップロードしました。
	ムービーファイルを再生中に画面がフリーズするバグを直しました。
2006.07.31	STERA_3D Ver.3.0 をアップロードしました。
	減衰定数の値が変更できないバグを直しました。
	鉄筋強度に 230 N/mm ² を追加しました。
	<u>注)以前作った建物ファイルの鉄筋強度は再度修正が必要です。</u>
	静的非線形解析の外カ分布に UBC(米国基準)の分布を追加しました。
	地震応答解析の出力画面で、頂部応答(建物高さで割った値)とベースシア
	の関係を出力できるようにしました。
	3D 表示画面の色を白黒にするボタンを新たに追加しました。
2006.09.15	STERA_3D Ver.3.1 をアップロードしました。
	静的非線形解析において、正負繰り返し加力ができるようにしました。
2007.02.26	STERA_3D Ver.3.2 をアップロードしました。
	壁柱がない壁を入力した場合にエラーメッセージが出るようにしました。
	質量のない層を入力できるようにしました。
	免震層の層間変形もグラフにできるようにしました。
2007.04.03	STERA_3D Ver.3.3 をアップロードしました。
	地動変位を入力すると地盤も動くようにしました。
	モード分布で静的加力ができるようにしました。
	剛性比例で減衰マトリクスをつくる際に固有円振動数のモード次数を指定
	できるようにしました。
	部材の主筋とせん断補強筋に別の鉄筋強度を入力できるようにしました。
	部材ごとにコンクリートのヤング係数を入力できるようにしました。
	偏心率が計算されるようにしました。
	オプションとして2次元解析が出来るようにしました。
2007.05.10	STERA_3D Ver.3.4 をアップロードしました。
	白黒ボタンを両画面に追加しました。

応答倍率を表示するようにしました。

ポーズボタンを追加しました。その他、細かい操作性をよくしました。 出力ファイルに重心位置の回転角も出力されるようにしました。

- 2007.07.17 STERA_3D Ver.3.5 をアップロードしました。 レンガ部材を追加しました。これに伴い、部材の色を変更しました。 オプション画面で拘束自由度を入力できるようにしました。
- 2007.10.01 STERA_3D Ver.3.6 をアップロードしました。
- 指定部材の力・変形関係の時刻歴応答を出力できるようにしました。
- 2007.10.18 STERA_3D Ver.3.7 をアップロードしました。
- 数値積分法を選択できるようにしました。出力されるデータを増やしました。 2007.10.31 STERA_3D Ver.3.8 をアップロードしました。
- 変換マトリクスのバグを修正しました。

2008.05.20 STERA_3D Ver.3.9 をアップロードしました。 免震デバイス(アイソレータ)を中間層に配置できるようにしました。

2008.07.10 STERA_3D Ver.4.2 をアップロードしました。 材料強度(鉄筋、コンクリート)を直接入力するようにしました。 レンガとモルタルから構成される壁部材(レンガ壁)を追加しました。 ダンパーとレンガ壁の編集画面で上部の梁部材タイプを入力するようにし ました。

部材タイプを 30 まで増やしました。

2009.01.12 STERA_3D Ver.4.3 をアップロードしました。

柱、梁、壁、レンガ壁の編集画面にオプションボタンを追加して、部材強度 算定の細かい設定ができるようにしました。 免震デバイスを NRB と LRB から選択できるようにしました。 履歴ダンパーと粘性ダンパーを選択できるようにしました。また、それぞれ

- の種類をメニューから選択できるようにしました。 2009.10.22 STERA_3D Ver.4.4 をアップロードしました。 地震応答解析においてエネルギー応答を出力できるようにしました。
 - 梁・柱の配筋を細かく設定できるようにしました。

2010.03.30 STERA_3D Ver.4.5 をアップロードしました。 P-δ効果の算定式を変更しました。

- 出力フォーマットを変更しました。
- 2010.05.06 STERA_3D Ver.4.6 をアップロードしました。
 部材タイプを 100 まで選択できるようにしました。
 部材応答の時刻暦を 20 部材まで出力できるようにしました。

STERA 3D 使用法

2010.08.16	STERA_3D Ver.4.7 をアップロードしました。
	部材タイプに Default 値を設定できるようにしました。
	階高、スパン数を変えても、元の部材モデルが使えるようにしました。
	オプションで層応答、節点応答、部材応答を出力するかどうか選択できる
	ようにしました。
	部材応答は 100 部材まで選べるようにしました。
2010.09.02	STERA_3D Ver.4.8 をアップロードしました。
	壁柱の応答が出力されない問題を解決しました。
	出力ファイルの保存先に、以前の保存先が表示されるようにしました。
2010.10.25	STERA_3D Ver.4.9 をアップロードしました。
	接合部の弾性せん断変形を考慮できるようにしました。
	梁の復元カモデルに、最大耐力以降の負勾配の骨格曲線を考慮できるように
	しました。
	柱の部材入力で、2方向のせん断補強筋を別々に入力するようにしました。
2010.11.08	STERA_3D Ver.5.0 をアップロードしました。
	壁が連続で繋がる場合のバグを修正しました。
2010.12.01	STERA_3D Ver.5.1 をアップロードしました。
	非線形曲げばねの降伏回転角の算定式のバグを修正しました。
2011.01.17	STERA_3D Ver.5.4 をアップロードしました。
	出力データの有効桁数を小数点未満 4 桁にしました。
	オプションメニューで柱・梁・壁モデルの非線形せん断バネを考慮しない (弾
	性)にできるようにしました。
	オプションメニューで質量分布を指定できるようにしました。
	地震入力の倍率を直接入力できるようにしました。
	建物の最大スパンを X 方向 30 スパン、Y 方向 20 スパンに増やしました。
2011.03.07	STERA_3D Ver.5.5 をアップロードしました。
	Ai 分布のバグを修正しました。
	支配面積により質量分布を求める方法を改善しました。

L型や連続壁を解析できるようにしました。

 $\mathbf{5}$

簡易マニュアル (とにかく試してみよう)

阪神淡路大震災の神戸の記録で

建物を揺らしてみよう

STERA 3D

<u>ST</u>ructural <u>Earthquake Response Analysis</u> 3D

独立行政法人 建築研究所

- ① アイコン 🏭 をダブルクリック
- ② "File" → "Open"で 建物データ "Stera7F"をオープン

STERA 3D 使用法

建物をいろいろと動かしてみよう

① 0 をクリックして、実際の寸法で表示します。

② 画面の上をマウスで右クリックしながらドラッグすると
 建物が回転します。

建物を地震で揺らしてみよう

が出たら OK を押すと

10

🔜 STERA 3D - Stera7F.stera	■ 開く	—
File(F) Pattern(P) Member(M) Option(O) View(V) Help(H)	STERA 3D V5.0 > DataWaves	→ 4 → DataWavesの検索
	整理 ▼ 新しいフォルダー	
And the second sector of the second sector of the second sector of the second sector of the second seco	▲ かちに 2 い ▲ 名前 ^^	更新日時 種類
₩ 0 ₩ = =		2005/08/06 12:22
Unif: mm 0 1 2 3 4 5 6	GenerotoEw ElcentrotoEw ElcentrotoEw ElcentrotoEw	2005/08/06 13:33 ファ
	Elcentro40UD	2005/08/06 13:34 ファ
Direction Distribution Target Drift	Kobe(EW)	2005/08/07 16:26 ファ
X - 1:Ai - 1/50 -	デスクトップ Kobe(NS) Kobe(UD)	2005/08/07 16:26 ファ
	□ Kobe(00)	2005/08/07 10:27
View 1: Drift - Shear Relation	🜏 ホームグループ	
	📙 Saito	
EARTHQUAKE File Name Rower		Þ
	ファイル名(N): Kobe(NS)	-
		聞く(0) キャンセル
C1 File (Y) 1.0 -		
File (2)		
10000 B9	617.1 gal	
	× · · · · · · · · · · · · · · · · · · ·	
C1MOVIE	0.0 gal	
File	γ	
	0.0 asl	
RESPONSE	Z	
O Mode O Static O Earthquake	20.0 sec	
reauy		
I		
③ をクリックして、	、クロの地震波ナータを建	き択しより。
例えば 地古海洋生色ムの [七句の注"Koba (EW)" ト	レキオ
1例える。 仲尸海汗丸家百0 El		しより。
 ③ <u>」 をクリックして、</u> 例えば、神戸海洋気象台の EV 	、万回の地震波ナーダを建 方向の波"Kobe(EW)"と	き択しまり。 します。

④ <u>File M</u> をクリックして、Y 方向の地震波データを選択します。 例えば、神戸海洋気象台の NS 方向の波" Kobe (NS)" とします。

⑤ <u>File ②</u> をクリックして、Z方向の地震波データを選択します。 例えば、神戸海洋気象台の UD 方向の波"Kobe (UD)"とします。

- ⑥ ▶ をクリックすると応答が開始します。
 - をクリックすると応答が一時停止します。
 - をクリックすると応答が停止します。
 - をクリックすると揺れが拡大されます。
 - ✓ をクリックすると揺れが縮小されます。
 - をクリックすると画面の切り替えができます。

STERA 3D 使用法

使用方法

解析の基本仮定

- 基本設定では床は面内変形に対して剛とし、面外方向のみ変形します(剛床仮定)。
 オプションで平面有限要素として、床の吹き抜けや面内弾性変形を考慮することができます。
- 部材は、床を除き、線材に置換しています。
- 梁は、両材端に弾塑性曲げバネおよび部材中央に弾塑性せん断バネを有する部材モデ ルを使用しています。
- 柱は、軸力と曲げの非線形相互作用が考慮できる MS モデル(両材端の断面内にそれ ぞれ5つの非線形軸ばねを配置し、部材中央に水平2方向の弾塑性せん断ばねを有す るモデル)を使用しています。
- 壁は、軸力と曲げの非線形相互作用が考慮できる MS モデル(両材端の断面内にそれ ぞれ8つの非線形軸ばねを配置し、壁パネルおよび側柱のそれぞれに弾塑性せん断ば ねを有するモデル)を使用しています。
- 基礎には、基礎固定、ピン、免震要素または浮き上がりバネを設定できます。免震要素には MSS モデル(多方向非線形せん断ばねモデル)を使用しています。
- せん断部材として、ダンパーやレンガ壁部材を設定できます。
- 接合部のせん断変形は剛または弾性に設定することができます。
- ・ 地震応答解析では、基本設定では剛性比例型の減衰とし、減衰定数を 0.03 と仮定しています。オプションで、瞬間剛性比例型やレーリー型を選択できるほか、減衰定数を変えることができます。

その他、細かい解析仮定とそれらの変更方法については、別に作成予定の「技術マニュアル」 をご覧ください。

1. ファイル構成

フォルダ「STERA 3D V*.*」の中に、以下のファイルおよびフォルダがあることを確認して ください。

Stera 3D.exe	メインプログラム
response.exe	出力用のサブプログラム
Stera7F.stera	サンプル建物
Stera7F(SI).stera	サンプル建物 (免震)
DataWaves	地震波データのフォルダ
OutFiles	出力結果のフォルダ(空)

このうち、Stera 3D.exe と response.exe の2つの実行ファイルは、常に同じフォルダに 保存してください。

Stera 3D.exe Stera MFC Application	Response.exe
Stera7F.stera STERA ファイル 152 KB	Stera7F(SD).stera STERA ファイル 152 KB
DataWaves	OutFiles

2. 初期画面

"Stera 3D.exe" をダブルクリックします。 左画面は、"プラン入力画面"で、ここに部材の平面配置を入力します。 右画面は、"3D表示画面"で、建物の形状や解析結果の応答を見ることができます。 また、保存した建物ファイルを開くには、[File]→ [Open]でファイルを選択します。

プラン入力画面

3D 表示画面

3. 部材パターンのセット

プラン入力画面は、1F(階数は右下に表示)のプランから始まります。

- マウスクリックで部材がセットされます。

ただし、レンガ壁、ダンパー、アイソレータを考慮する場合には、一般階では、

- ◆ 柱(緑) → アイソレータ → なし → 柱(緑)
- ◇ 梁 (緑) → ダンパー (茶) → レンガ壁 (茶) → 壁 (濃緑) → なし → 梁 (緑)
- マウスをドラッグ(押したまま移動)すれば、領域内の部材を一度にセットできます。
- セットされた部材について、マウスを右クリックすると、部材タイプ番号(柱は C1~C100、
 梁は B1~B100、壁は W1~W100 など)をセットできます。
- 他の階に移動したり、入力したプランのパターンを削除(クリア)したりコピーしたりす るには、画面の下のボタンを使用します。

入力したプランは、3D表示画面で確認ができます。

4. 建物情報、部材情報の入力

4-1. 部材情報の入力

柱情報 (ボタン回)

Column Editor	
	COLUMN
	00201111
Type C1 * C2 = C3 = C4 C5 C6	Size (mm) Y-side B 0 d1 40 D 0 d2 40
C7 C8 C9 C10 C11 C12 C13 C14	Vertical Reiforcementcorner4-D \bullet X-side0 \bullet -D6 \bullet Y-side0 \bullet -D6 \bullet SD295
C15	Shear Reinforcement
Сору	X-side 2 ▼ D6 ▼ -@ 50 ▼
	Y-side 2 ▼ D6 ▼ -@ 50 ▼
	SD 295
	Concrete (N/mm2) Fc 24 OPTION
	ADD OK

- 断面サイズを入力して下さい。
 ここに、d1, d2 はそれぞれ X 方向、Y
 方向の主筋までの距離、複数配筋の場
 合は鉄筋重心までの距離を入力して
 下さい。(初期値には 40mm が設定されています。)
- 配筋はメニューから選択して下さい。
- 材料強度(SD と Fc)は直接入力して
 下さい。(初期値には Default 値が入っています)
- [ADD]で入力をセットし、次の部材タ イプへ移動します。
- [Copy]で前の部材タイプの情報をコ ピーできます。

Column Option Editor	
COLUMN OPTION	
1. Amplification Factor for Steel Strength (0-10)	1.1
	ок

[OPTION] で鉄筋の公称強度と実強 度の比(Default値は1.1)を設定で きます。

-

Column Editor	8
	COLUMN
Type C87 C88 C89 C90 C91 C92 C93 C94 C95 C96 C97 C98 C99 C100 Cdef ▼	Size (mm) Y-side B 600 d1 40 D 600 d2 40 Vertical Reiforcement Imm2) 95 Vertical Reiforcement Imm2) Imm2) Fc 24 Imm2) Imm2)
	ADD OK

部材タイプの最後の"Cdef"を選択して入力した数値をDefault値として全ての部材に適用することができます。

梁情報 (ボタン)

Beam Option Editor	-X
BEAM OPTION	
1. Amplification Factor for Steel Strength [0,10]	1.1
2. Amplification Factor for Slab Effect [0,10]	1
3. Stiffness Degrading Ratio [0,1]	0.5
4. Slip Stiffness Ratio [0,1]	0
5. Strength Degrading Ratio [0,1]	0
6. Ultimate Rotation Angle (Ru) [0,1]	0.02
7. Stiffness Ratio over Ru [-1, 1]	0.01
	ОК

断面サイズを入力して下さい。

-

ここに、d1, d2 はそれぞれ上端、下 端の主筋までの距離、複数配筋の場 合は鉄筋面積重心までの距離を入力 して下さい。このとき、スラブ筋の 面積は考えません。

- 配筋はメニューから選択して下さい。
- 材料強度(SD と Fc)は直接入力して
 下さい。(初期値には Default 値が入っています)
- [ADD]で入力をセットし、次の部材タ イプへ移動します。
- [Copy]で前の部材タイプの情報をコ ピーできます。
- 部材タイプの最後の"Bdef"を選択して入力した数値をDefault値として全ての部材に適用することができます。
- [OPTION] で設計強度と実強度の比
 (Default 値は 1.1)及びスラブ効果
 (Default 値は 1.0)を設定できます。
- 材端曲げばねの履歴特性として、以下の
 パラメータを設定できます。
 - ・ 剛性低下率 (Default 値は 0.5)
 - ・スリップ率 (Default 値は 0.0)
 - ・繰り返しによる耐力低下率(Default 値は 0.0)
 - ・終局回転角 Ru (Default 値は 1/50)

・Ru 以降の剛性比(Default 値は 0.01) これらのパラメータの詳細については 技術マニュアルをご覧ください。

壁情報(ボタン 📟

Wall Edito	r	×
	WALL	
Type W1 W2 W3 W4 W5 W6 W7 W8 W9 W10 W11 W12 W13 Copy	Size t (mm) Shear Reinforcement in a Panel SD (N/mm2) 1 • 0 6 • 0 50 • 295 Concrete (N/mm2) Fc 24 OPTION	
	ADD OK	

Wall Option Editor	
WALL OPTION	
1. Amplification Factor for Steel Strength (0-10)	1.1
2. Reduction Factor for Stiffness (0-10)	1
3. Reduction Factor for Strength (0-10)	1
	ок

- 断面サイズを入力して下さい。
- 配筋はメニューから選択して下さい。
- 材料強度(SD と Fc)は直接入力して
 下さい。(初期値には Default 値が入っています)
- [ADD]で入力をセットし、次の部材タ イプへ移動します。
- [Copy]で前の部材タイプの情報をコ ピーできます。
- 部材タイプの最後の"Wdef"を選択し
 て入力した数値をDefault値として全
 ての部材に適用することができます。
- [OPTION] で設計強度と実強度の比 (Default 値は 1.1) 及び壁開口に応 じた剛性とせん断耐力の低減係数 (Default 値は 1.0) を設定できます。

接合部パネル情報(ボタン・

剛域

せん断弾性パネル

接合部内の剛域やせん断弾性パネルの長さの比率を設定できます。 Default では 1.0(部材の面まででの長さ)です。 レンガ壁情報(ボタン =)注)オプションで Masonry Element 選択時のみ有効

Masonry E	ditor 🛛 🗙
	MASONRY WALL
Type M 1 M 2 M 3 M 4 M 5 M 6 M 7 M 8 M 9	Size (mm) Hb (brick) 0 tb (brick) 0 Hm (mortal) 0
M10 M11 M12 M13 M14 M15 M16 V	Compression Strength (N/mm2) Fcb (brick) 0 Fcm (mortal) 0
Сору	OPTION
	ADD OK

- レンガ単体とモルタルのサイズ、材料
 圧縮強度を入力してください。
- レンガ壁の上に鉄筋コンクリート梁 がある場合(下図参照)には、Upper Beam Type で、そのタイプ番号をメニ ューから選択して下さい。

部材タイプの最後の"Mdef"を選択して入力した数値をDefault値として全ての部材に適用することができます。

Masonry Option Editor	
MASONRY WALL OPTION	
1. Reduction Factor for Stiffness (0-10)	1
2. Reduction Factor for Strength (0-10)	1
	ОК

[OPTION] で壁開口に応じた剛性と
 せん断耐力の低減係数(Default 値は
 1.0)を設定できます。

アイソレータ情報(ボタン³⁰) 注)オプションで Isolator 選択時のみ有効

Isolator	X
	ISOLATOR
Type	Type of Isolator • NRB (Natural Rubber Bearing) • LRB (Lead Rubber Bearing) • LRB (Lead Rubber Bearing)
111 112 113 114 115 116	Vertical Stiffness Kv / K0 1000 PROPERTY ADD OK

NRB(積層ゴム支承)選択時

- NRB (積層ゴム支承) と LRB (鉛入り積 層ゴム支承)から選択し、それぞれの 特性は[PROPERTY]で入力します。
 また、鉛直剛性と水平剛性との比率 (Default 値は 1000)を入力します。
- 部材タイプの最後の"Idef"を選択し
 て入力した数値をDefault値として全
 ての部材に適用することができます。

Property Editor	
Elastic Spring	
Stiffness (kN/mm) K0 0	OK

LRB(鉛入り積層ゴム支承)選択時

Isolator		×
Isolator Type 11 12 13 14 15 16 17 18 19 110 111 112 113 114	ISOLATOR Type of Isolator NRB (Natural Rubber Bearing) LRB (Lead Rubber Bearing) LRB (Lead Rubber Bearing) Vertical Stiffness	
14 15 16 ❤	Kv/K0 1000 PROPERTY	1
Copy	ADD OK	

Property Editor	×
Bilinear I	Hysteresis
Stiffness (kN/mm)	
Stiffness ratio	Force (kN) Fy 0
	ОК

制振ダンパー情報(ボタン 注)オプションで Damper Element 選択時のみ有効

Damper Edit	or	×
Damper Edit	or SHEAR SPRING DEVICE Upper Beam Type none Type of Shear Spring Elastic Hysteresis Network 1. Bilinear	
D 6 D 7 D 8 D 9 D 10 D 11 D 12 D 13 D 14 D 15		
Сору	PROPERTY ADD OK	

Elastic (弾性)、Hysteresis (履歴ダン パー)、Viscous (粘性ダンパー)から選 択します。

Hysteresis (履歴ダンパー)と Viscous (粘性ダンパー)は、特性をメニューか ら選択します。

- ダンパーの特性は[PROPERTY]で入力し ます。
- 制振ダンパーの上に鉄筋コンクリート 梁がある場合には、Upper Beam Type で そのタイプ番号をメニューから選択し て下さい。
- 部材タイプの最後の"Ddef"を選択して 入力した数値を Default 値として全て の部材に適用することができます。

Viscous (粘性ダンパー) 選択時

Hysteresis(履歴ダンパー)選択時

オイルダンパー

バイリニア履歴

粘性ダンパー

基礎ばね	情報(ボタン <mark>き</mark>) 注)書	甚磅
Spring Edit	or	
	NONLINEAR SPRING	
Type S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13 S14 S15 S16 Copy	Type of Support Pin Vertical Spring Vertical Spring V	

浮き上がりバネの場合

)基礎階(BF)選択時のみ有効、初期設定はピン支持

部材タイプの最後の"Sdef"を選択して入力した数値をDefault値として全ての部材に適用することができます。

床スラブ情報(ボタン 1 (パイン)

Floor Editor	×
	FLOOR
Type F1 ▲ F2 ↓ F3 ↓ F4 ↓ F5 ↓ F6 ↓ F7 ↓ F8 ↓ F9 ▼	Concrete (N/mm2) Fc
Сору	
[ADD OK

- 注) オプションで"Flexible Floor"を選択時のみ有効
 - 剛床仮定をはずしたいときに選択します。
 - 床の面内の弾性変形が考慮されます。
 - 部材タイプの最後の"Fdef"を選択して入力した数 値を Default 値として全ての部材に適用することが できます。

建物規模情報(ボタン Frame Editor × FLOOR / SPAN スパン数や階数を変更したいときに選択します。 -階数 : 最大 61 H3 スパン数: X方向 最大 30 H2 H1 スパン数: 丫方向 最大 20 まで設定可能です。 Х2 ΧЗ X1 Number of Floors H 8 -Number of Spans X 3 --3 Y Cancel ΟK Frame Editor 23 -すでに入力した建物情報を初期化するかどうかを聞 いてきます。Noとすると、建物情報が保存されます。 FLOOR / SPAN ΗЗ H2 💷 Dialog × Clear all building information? YES NO Number of Spans 5 • х 5 -Y Cancel OK

STERA 3D 使用法

4-2. 出力部材の指定

指定した部材の材端モーメント・回転角関係を出力することができます。

部材指定(ボタン→) クリックすると出力部材を指定できます。 もう一度クリックするとキャンセルできます 🖬 STERA 3D - Stera7F.stera File(E) Pattern(E) Member(M) Option(Q) View(Q) Help(H) 🗅 🚅 🖬 🔁 🗐 💡 S PLAN - C X @ 3D s 🖾 🏟 🖽 🖸 🔶 8 🖷 🛈 Unit: mm 6000 6000 6000 (B3) (B3) C1 W1 10000 ВИ Β4 Β4 Β4 B2 B2 B2 10000 Β4 Β4 Β4 R4 0 C1 B2 B2 B2 10000 Β4 Β4 Β4 Β4 C1 (B3) C1 W1 C1 (B3) 出力したい部材を左クリックする 3D 画面で位置を確認できます。 と、円で囲まれて上に番号が表示さ 赤い円の荷重変形関係が 3D 画面 ЗF れます。100まで指定できます。 に表示されます。 SORL もう一度、左クリックすると赤い円 になります。この荷重変形関係を3D 画面に表示することができます。 右クリックで出力の指定がキャンセ ルされて、円が消去されます。

4-3. その他の設定

初期設定の条件を変えたいときには、[Option] で条件を設定します。

OPTION → STRUCTURE

① 拘束自由度

拘束する自由度番号を並べた番号を入力します。 例) 2467 … X 方向のみの1方向解析 1568 … Y 方向のみの1方向解析 45678 … 回転をすべて拘束 78 … 接合部を剛

- ② 剛床仮定
- Flexible Floor では、平面有限要素として床スラブをモデル化します。
- P-デルタ効果
- 鉛直部材(柱、壁)の剛性マトリクスに P−デルタ効果を考慮します。
- ④ 非線形せん断ばね
 非線形せん断ばねを考慮します(考慮しない場合は弾性ばね)
- ⑤ 層質量の各節点への分布を指定します。
 同じ質量とするか、支配面積の比率とするか
- ⑥ ダンパー
 制振ブレースダンパー(履歴型または粘性型)を含めます。
- アイソレータ 免震アイソレータを含めます。
- ⑧ レンガ要素
 せん断耐力低下型のレンガ壁を含めます。
- ⑨ 鉄筋のヤング係数を入力します。

$\mathsf{OPTION} \twoheadrightarrow \mathsf{ANALYSIS} \twoheadrightarrow \mathsf{STATIC}$

静的繰り返し加力では、建物頂部での変形 角(drift angle、頂部変形を建物高さで割 った値)を指定します。

No. of Maximum Segment : 繰り返しのセグメントの総数
No. of Separation of Segment:
1つのセグメント内の解析刻み数
(1方向漸増載荷解析の刻みもこの 数値になります。)

加カプログラムは、各載荷セグメントの目 標変形角(D1, D2 … D150)を与えて定義 します。変形角は、1/10000が最小単位です。

$\mathsf{OPTION} \rightarrow \mathsf{ANALYSIS} \rightarrow \mathsf{DYNAMIC}$

Option for Dynamic Analysis	×
Dynamic Analysis	
No. of Separation of Time 5	
Damping	
Damping Type 1. [C]=a[K0]	
Damping Factor h1 0.03 💌	
h2 0.03 💌	
Numerical Integration Method	
Average Acceleration	
C Force Correction	
OK	

地震応答解析において、地震波データの時間 間隔を分割する分割数を与えます。例えば、 地震波データの時間刻みが 0.02 秒で、分割 数が5の場合には、地震応答解析における数 値積分の刻みは、0.004 秒になります。 減衰マトリクスは次の中から選択します。

- [C] = a[K0]: 初期剛性比例
- [C] = a[Kp]: 瞬間剛性比例
- [C] = a[K0]+b[M]: レーリー型

次に、1次と2次の粘性減衰定数 h1, h2 を 指定します。h2 はレーリー型の場合に使用さ れます。

数値積分法として、平均加速度法(Average Acceleration) と 修 正 復 元 力 法 (Force Correction) のいずれかを選択します。

$\text{OPTION} \rightarrow \text{ANALYSIS} \rightarrow \text{OUTPUT}$

外部ファイルに各解析ステップの応答 を出力するかどうかを設定します。

- Floor response
 各層の重心位置での変位、層せん断 力などを出力します。Defaultでは出 力する設定になっています。
- 2) Nodal Response

全節点の絶対変位、作用力を出力し ます。Default では出力しない設定に なっています。出力する場合にはフ ァイルサイズが大きくなることに注 意してください。

 Member response
 出力マークを付けた部材の応答を出 カします。Defaultでは出力する設定 になっています。

5. 建物および解析結果の3D表示

5-1. 建物の3D表示

[1] "Default の "の 画面 では、スパン1、 階高 0.5 の 固定比率になっています。 "Actual "をクリックすると、入力した実際の寸法で表示します。

- [2] "Analize""が有効になったら、クリックして初期解析(モード解析と初期条件の設定)をします。
- [3] 以下のメッセージが出たら、OKを押すと、応答設定画面が現れます。

Stera 🔀
Analysis is completed.
<u> </u>
$\int \!$
Response Setting
MODE 0 1 2 3 4 5 6
STATIC LOAD Direction Distribution Target Drift X I: Ai I: Ai I: 50 View I: Drift - Shear Belation
EARTHQUAKE
File (X)
File (Y)
File (Z) 1.0
View 1: Input Earthquake Ground Motion
MOVIE
File
RESPONSE

応答設定画面

5-2. 弾性振動モード

- [1] "MODE"の番号ボタンをクリックすると、振動モード(1次から6次)が表示されます。 また、画面の右上に固有周期(Period)の値が示されます。
- [2] "Start ▶ "で振動モードの揺れが表示されます。"Pause" で一時停止します。 "Stop ■ "で停止します。
- [3] "Amplify **へ**"で揺れが拡大、"Reduce [※] "で揺れが縮小します。
- [4] **スライダー** 33 によって、表示速度を遅くできます。
- [5] "Save Data"で解析結果をファイルに保存します。
- [6] "Black and White **の**"で白黒画面に切り替わります。

5-3.1方向静的漸増載荷解析

[1] "STATIC LOAD"で加力条件を設定します。

"Direction":	加力方向を設定します。
	X (X 方向) —X (X 方向の逆) Y (Y 方向) -Y (Y 方向の逆)
"Distribution":	水平力分布を設定します。力は各層の重心位置に作用します。
	Ai(Ai 分布) Triangular(逆三角形分布) Uniform(等分布)
	UBC (米国 UBC コード) Mode(加力方向のモード分布形)
"Target Drift":	どこまで載荷するか(目標とする頂部変形角)を設定します。
	cyclic はオプションで設定した繰り返し加力になります。
	1/50 1/100 1/200 cyclic

[2] 下の画面に表示する応答を選択します。

[3] "Start ▶ "で載荷します。"Pause" ■ で一時停止、"Stop ■ "で停止します。

上の画面には、加力方向、載荷の進行状態バー、部材の塑性率の色が示されます。

STERA 3D - Stera7F.stera File(E) Pattern(P) Mamber(M) Option(O) View(M)	Help(H)			
PLAN Response Setting		□ 3D		
Unit: mm	3: Member Resp 指定した(赤い(onse Dが付けられた) 部材の	荷重・変形関係を描きま	す。
X ↓ 1: Ai 10000 B4 View 3: Member Resp	梁は両端、柱は 	主脚の X, Y 方向です。		
C1 File Nam C1 C1 C1 C1 C1 C1 C1 C1 C1 C1	elation onse e Power			
10000 B4 File ↔	1.0 •			
File (Z) 10000 B4 View 1: Input Earthque	ake Ground Motion	М/Му 1.2	М/Му 1.2	
C1 File	VIE		, R/Ry 	
C Mode © Static	ONSE C Earthquake	END1	END2	
✓ ▲ 五 ▼ 코] Ready	3F	, → & X Ø ĵ ! ► II ■ \$		

5-4. 弹塑性地震応答解析

[1] "EARTHQUAKE"で入力地震動(地動加速度データ)を設定します。

File (※): ファイル選択画面から X 方向の入力地震動を選択します。
 File (※): ファイル選択画面から Y 方向の入力地震動を選択します。
 File (Z): ファイル選択画面から Z 方向(上下)の入力地震動を選択します。
 "Power": 入力倍率を指定します(初期値は 1.0)。
 [2] 下の画面に表示する応答を選択します。
 [3] "Start ▶ "で地震応答を開始します。"Pause" ■ で一時停止、"Stop ■ "で停止します。
 下の画面には、入力地震動の全波形(白)と現在までの入力(赤)が示されます。

[4] "Record 🗮 "で、地震応答をムービー・ファイルとして保存します(5-5.参照)。

44

STERA 3D 使用法

入力地震動ファイルの書式

入力地震動ファイルを自分で用意する場合には、以下のような書式にしてください。

順序		説明	備考
1番目	整数	0 または 1	0:地動加速度データのみの場合
(ID)			1:地動加速度データと地動変位データがある場合
2番目	整数	地動加速度データ	地動加速度データと地動変位データは、同じデー
(NDATA)		のデータ数	タ数とします。データの最大数は 20,000 個です。
3番目	実数	データの時間刻み	単位は秒
(DT)			
4番目以降	実数	地動加速度データ	NDATA 個のデータ。単位は(cm/sec ²)
		地動変位データ	ID=1 の場合。加速度データに引き続き、NDATA
			個の変位データを並べる。単位は(cm)

データは、空白またはコンマ(,) で区切ってください。

例) "DataWave"フォルダにある"Kobe(NS)"の中身

0		···ID	(地動加	速度デー	-タのみ)						
1000		···ND									
0.020	0	···DT	(0.02 私	り間隔)							
0.70	0.70	-0.30	-2.00	-2.90	-1.70	-0.30	-0.90	-0.40	3.30)	
3.50	-2.00	-6.30	-5.70	-3.60	-4.10	-2.50	0.20	-0.50	-4.50		
-9.30	-5.70	2.50	4.70	4.50	9.20	13.70	8.20	6.60	4.00		
-6.50	-11.00	0.40	14.90	2.20	-8.00	4.40	15.90	24.40	36.60		地動加速度
38.30	20.10	3.60	-1.80	0.00	14.80	3.40	-40.00	-49.60	-36.00	}	データ
-21.90	-9.60	-0.90	0.40	-20.60	-31.30	-24.80	-14.00	3.70	11.00		
-2.10	-16.70	-16.30	-12.70	-9.90	-4.50	-4.00	-5.80	-13.50	-26.60		
-20.60	24.10	65.30	44.70	0.90	-14.80	7.30	30.40	13.40	-12.00		
										J	

5-5. 建物の地震応答アニメーション・ムービーの保存と再生

1) ムービーの保存方法

地震応答解析(5-3)において、建物の規模が大きい場合や解析時間刻みを細かくした場合 には、建物の揺れの表示に時間がかかることがあります。その場合には、アニメーション部分 (建物の揺れと地震波形)をムービー・ファイルとして保存しておき、あとでムービー・ファ イルを再生することで、高速に表示させることができます。なお、ムービー・ファイルは容量 が大きくなるので注意してください。

[1] "EARTHQUAKE"で入力地震動(地動加速度データ)を設定します。

[2] "Record **?**"をクリックして、保存用のムービー・ファイル名を指定します。

[3] 自動的に録画が始まります。"Pause" ■ で一時停止、"Stop ■ "で停止します。

- 2) ムービーの再生方法
- [1] 応答設定画面の"MOVIE"で「File」を押して、保存したムービー・ファイルを選択します。

[2] "Start ▶"で地震応答が表示されます。"Pause" ■ で一時停止、"Stop ■ "で停止します。

5-6. 解析の切り替え

[1]"RESPONSE"のラジオボタンをクリックすると、解析の切り替えができます。

Mode:	
Static:	

静的非線形漸増載荷解析

弾性モード解析

Earthquake: 弹塑性地震応答解析

Movie:

ムービー・ファイルの再生

Response Setting	
MODE	
0 1 2 3 4 5 6	
STATIC LOAD	
Direction Distribution Target Drift	
X • 1:Ai • 1/50 •	
View 1: Drift - Shear Relation	
EARTHQUAKE	
File Name Power	
File (X) 1.0	
File (Y) 1.0	
File (Z) 1.0	[1]
View 1: Input Earthquake Ground Motion 🚽	[1]
MOVIE	
File	
RESPONSE	
© Mode C Static C Earthquake	
C Movie	

6. ファイルの保存と読み込み

6-1. 建物ファイルの保存

建物情報と部材情報をファイルに保存して、あとで読み込むことができます。 保存するファイルには、拡張子.stera が付きます。

6-2. 解析結果の保存

解析結果を外部ファイルに保存するためには、いったん建物の情報や解析条件をデータ・ファ イルとして保存して、別のプログラムを起動します。

[1] 応答設定画面において、解析条件を設定します。

- [2] "Save Data を選択します。
- [3] データを保存するフォルダを選択します。

	[2]
ESTERA 3D - Stera7F.stera File(E) Pattern(P) Member(M) Option(Q) View(V) Help(H) D 22 R 20	
PLAN Response Settine X □ □ □ = □ □ 1 2 3 4 5 6 □ □ □ = □ □ 1 2 3 4 5 6 □ □ □ 1 2 3 4 5 6 0 1 2 3 4 5 6 0 1 2 3 4 5 6 0 1 2 3 4 5 6 0 1 2 3 4 5 6 0 1 2 3 4 5 6 0 1 0 1 <td>Image: Sector of the secto</td>	Image: Sector of the secto
10000 69 EA C1 File File Kobe File (𝔅) Kobe File (𝔅) Kobe	gram\C++070707_Stera_F(Cancel
View 1: Input Earthquake Ground Motion MOVIE File	x
RESPONSE ✓ ▲ △ ▼ 코 ✓ A △ ▼ 코 Ready	Z ~~HW\/My/I\/WMY/Av~~~~~332.2 gal 20.00 sec 7F → & X & 0 \$ ► II ■ & V ■

[4] "OK"を押すと、解析条件に応じた解析を行い、結果を指定したフォルダに保存します。

_

Are you ready to start calculation ? Y,y(yes) / N,n(no) ? >>>> Start initial analysis >>>> Start elastic modal analysis >>>> Start nonlinear dynamic analysis 10 % finished 20 % finished 30 % finished 50 % finished 60 % finished 80 % finished 100 % finished 90 % finished 100 % finished 100 % finished 100 % finished 2>>>> Calculation completed press any key to continue	🖼 C:¥Documents and Settings¥SAITO¥My Documents¥SAITO¥SAITO_2007¥Program¥STE 💶 🗙
<pre>>>>> Start initial analysis >>>> Start elastic modal analysis >>>> Start nonlinear dynamic analysis 10 % finished 20 % finished 30 % finished 40 % finished 50 % finished 50 % finished 80 % finished 90 % finished 100 % finished >>>> Calculation completed press any key to continue</pre>	Are you ready to start calculation ? Y,y(yes) / N,n(no) ? y
<pre>>>>> Start elastic modal analysis >>>> Start nonlinear dynamic analysis 10 % finished 20 % finished 30 % finished 40 % finished 50 % finished 60 % finished 80 % finished 90 % finished 100 % finished press any key to continue</pre>	>>>> Start initial analysis
<pre>>>>> Start nonlinear dynamic analysis</pre>	>>>> Start elastic modal analysis
	<pre>>>>> Start nonlinear dynamic analysis 10 % finished 20 % finished 30 % finished 40 % finished 50 % finished 60 % finished 80 % finished 90 % finished 100 % finished 100 % finished >>>> Calculation completed </pre>
•	

出力先のフォルダには、以下のファイルが自動的に作成されます。

📄 data_beam		
data_column		
data_column		
	(
data_spring		data_*^* 部材、建物のアータ
data_structure		
🗋 data_wall	ļ	
📋 max_beam		
🗎 max_bi		
📄 max_column		
📄 max_damper	}	max_^^^ 部材、建物の最大応答値
max_spring		
max_structure		
max_wall	J	
response_eccentricity		
📄 response_eigen		
response_energy		response_eccentricity:偏心率
response_member01		response_eigen:固有周期、モード
response_member02	}	response_member01, 02,: 指定部材の応答値
response_member03		response_node: 節点の応答値
response_member04		response_structure: 各層の応答値
response_node		
response_structure		

beam : 梁 column: 柱 wall: 壁 damper: ダンパーおよびレンガ壁 spring: 鉛直ばね bi : 免震要素 structure: 建物

1) ファイル "response_eigen.txt"

6次までの固有周期、固有ベクトル、刺激関数

					固有周期]
++	1-mode	++	t =	1.006	i5 sec	
×,y,z 1		mode 0.0007 0.000 0.000 0.000 0.000 0.000	0 国有モー 0 0 0 0	.000 bx -ド .000 .000 .000	6.423 by 0.000 0.000 0.000 0.000 0.000 0.000	0.000 bz 数関数 0.000 0.000 0.000 0.000 0.000
2		0.000 0.000 0.000	000000000000000000000000000000000000000	.000	0.000 0.000 0.000	0.000 0.000 0.000
3		0.022 0.062 0.101 0.135 0.164 0.187 0.203		.000 .000 .000 .000 .000 .000 .000	0.141 0.395 0.647 0.870 1.053 1.203 1.306	0.000 0.000 0.000 0.000 0.000 0.000 0.000
5		0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000		.000 .000 .000 .000 .000 .000 .000	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

53

2) ファイル "response_structure.txt"

①1方向漸増載荷解析の場合

解析ステップごとの耐力曲線と各層の層間変位、層せん断力、変位

kstep	sd	sa	max drift	F	sdx	sdy	SSX	ssy	sfx	sfy	dx	dy	rz	F
0	0.0000E+00	0.0000E+00	0.00000	0	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	-0.5561E-12	-0.1368E-12	0.0000E+00	0.0000E+00	0.0000E+00	1
1	0.7990E-01	0.1667E+02	0.00005	0	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	0.6131E+03	-0.5684E-13	0.0000E+00	0.0000E+00	0.0000E+00	1
2	0.1598E+00	0.3329E+02	0.00010	0	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	0.1224E+04	-0.1084E-12	0.0000E+00	0.0000E+00	0.0000E+00	1
3	0.2396E+00	0.4990E+02	0.00015	0	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	0.1835E+04	-0.2363E-12	0.0000E+00	0.0000E+00	0.0000E+00	1
4	0.3191E+00	0.6283E+02	0.00020	0	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	0.2304E+04	-0.1936E-12	0.0000E+00	0.0000E+00	0.0000E+00	1
5	0.3986E+00	0.6976E+02	0.00024	0	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	0.2555E+04	-0.4974E-13	0.0000E+00	0.0000E+00	0.0000E+00	1
6	0.4781E+00	0.8760E+02	0.00029	0	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	0.3207E+04	-0.9770E-13	0.0000E+00	0.0000E+00	0.0000E+00	1
7	0.5577E+00	0.1040E+03	0.00034	0	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	0.3809E+04	-0.1421E-12	0.0000E+00	0.0000E+00	0.0000E+00	1
8	0.6373E+00	0.1164E+03	0.00039	0	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	0.4263E+04	-0.2132E-12	0.0000E+00	0.0000E+00	0.0000E+00	1
9	0.7167E+00	0.1278E+03	0.00044	0	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	0.4674E+04	-0.1510E-12	0.0000E+00	0.0000E+00	0.0000E+00	1
10	0.7959E+00	0.1296E+03	0.00049	0	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	0.4732E+04	-0.2851E-12	0.0000E+00	0.0000E+00	0.0000E+00	1
11	0.8752E+00	0.1397E+03	0.00054	0	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	0.5098E+04	-0.1412E-12	0.0000E+00	0.0000E+00	0.0000E+00	1

	kstep	解析ステップ数	
■耐力曲線	\mathbf{sd}	等価1自由度系の変形 (cm)	
	sa	等価1自由度系の加速度(gal)	
■最大層間変形角	max drift	層間変形角が最大となる層の値	
■層番号	F	層番号(0:は基礎階)	
■層間変位	sdx	X 方向層間変位(cm)	
	sdy	Y 方向層間変位(cm)	
	srz	Z軸周り回転角(ねじれ)	
■層せん断力	sfx	X 方向層せん断力(kN)	
	sfy	Y 方向層せん断力(kN)	
■基礎からの変位	dx	X 方向変位(基礎からの相対変位)	(cm)
	dv	Y 方向変位(基礎からの相対変位)	(cm)
	rž	Z軸周り回転角(ねじれ)	

②地震応答解析の場合

時間刻みごとの各層の層間変位、層せん断力、変位

kstep	t	F	sdx	sdy	SSX	ssy sf)	(sfy	dx	dy	rz	ax	ay	F
0	0.0000	0	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00 -0.5561E-12	2 -0.1368E-12	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	1
5	0.0200	0	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00 -0.4253E-13	0.7851E-12	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	1
10	0.0400	0	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00 -0.1093E-10) -0.9877E-12	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	1
15	0.0600	0	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00 -0.1451E-10	0.1215E-11	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	1
20	0.0800	0	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00 -0.7334E-11	0.6395E-13	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	1
25	0.1000	0	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00 -0.1252E-10	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	1
30	0.1200	0	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00 -0.7099E-11	-0.1483E-12	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	1
35	0.1400	0	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00 -0.5970E-11	0.2149E-12	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	1
40	0.1600	0	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00 -0.5672E-11	-0.1634E-12	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	1

■時間	t	時間(秒)	
■層番号	F	層番号(0:は基礎階)	
■層間変位	sdx	X 方向層間変位(cm)	
	sdv	Y 方向層間変位(cm)	
	srz	Z軸周り層間回転角(ねじれ)	
■層せん断力	sfx	X 方向層せん断力(kN)	
	sfv	Y 方向層せん断力(kN)	
■基礎からの変位	dx	X 方向変位(基礎からの相対変位)	(cm)
	dv	Y 方向変位(基礎からの相対変位)	(cm)
	rz	Z軸周り回転角(ねじれ)	
	ax	Y 方向絶対応答加速度(gal)	
	ay	Z 方向絶対応答加速度(gal)	

3) ファイル "response_eccentricity.txt"

== Output for rigidity ratio == 各層の剛性率 <X-direction> 層番号 X方向剛性率 Y方向剛性率 NF R× 1 0.220E+01 2 0.105E+01 3 0.813E+00 4 0.725E+00 5 0.709E+00 6 0.723E+00 7 0.781E+00 <Y-direction> Ry NF 1 0.143E+01 2 0.747E+00 3 0.743E+00 4 0.811E+00 5 0.924E+00 6 0.103E+01 7 0.131E+01 == Output for eccentricity ratio == < 0 F> < 1 F> 1FCenter of rigitity (cm) Cx = 900.00 Cy = 1517.95 剛心位置 Center of gravity (cm) Gx = 900.000 重心位置 Gy = 1500.000 Eccentricity distance (cm) Ex = 0.000 Ey = 17.948 偏心距離 Radius of gyration (cm) rx = 1455.956 ry = 3034.104 弹力半径 Eccentricity ratio R× = 0.012 偏心率 Ry = 0.000 < 2 F>

4) ファイル "response_member.txt"

部材端部の応答

の場合 1

BF	No	47
БĽ	NO.	47

	Rya Mya	Uya	Rpa	Mpa	Upa	Ryb Myb	Uyb
0.000	-0.7202E-04 -0.5209E+04	-0.013	-0.4177E-04 -	-0.5209E+04	-0.011	-0.8340E-04 -0.5492E+04	-0.015
1.000	-0.1200E-03 -0.8533E+04	-0.021	-0.6844E-04 -	-0.8533E+04	-0.017	-0.1324E-03 -0.8843E+04	-0.023
2.000	-0.1679E-03 -0.1186E+05	-0.029	-0.9510E-04 -	-0.1186E+05	-0.024	-0.1814E-03 -0.1219E+05	-0.032
3.000	-0.2159E-03 -0.1518E+05	-0.038	-0.1218E-03 -	-0.1518E+05	-0.031	-0.2304E-03 -0.1554E+05	-0.040
4.000	-0.2650E-03 -0.1859E+05	-0.046	-0.1491E-03 -	-0.1859E+05	-0.038	-0.2805E-03 -0.1897E+05	-0.049
5.000	-0.3118E-03 -0.2125E+05	-0.055	-0.1757E-03 -	-0.2125E+05	-0.044	-0.3317E-03 -0.2151E+05	-0.058
6.000	-0.3706E-03 -0.2243E+05	-0.065	-0.2329E-03 -	-0.2243E+05	-0.059	-0.3861E-03 -0.2316E+05	-0.068
7.000	-0.4313E-03 -0.2364E+05	-0.076	-0.2921E-03 -	-0.2364E+05	-0.074	-0.4425E-03 -0.2488E+05	-0.078
8.000	-0.4927E-03 -0.2487E+05	-0.086	-0.3520E-03 -	-0.2487E+05	-0.089	-0.4999E-03 -0.2662E+05	-0.088
9.000	-0.5511E-03 -0.2606E+05	-0.097	-0.4095E-03 -	-0.2606E+05	-0.104	-0.5569E-03 -0.2833E+05	-0.098
10.000	-0.6092E-03 -0.2724E+05	-0.107	-0.4668E-03 -	-0.2724E+05	-0.118	-0.6137E-03 -0.3005E+05	-0.108
	■モーメント						

変形 力(kNcm)	塑性率	
Rya Mya	Uya	A 端
Rpa Mpa	Upa	B 端
Ryb Myb	Uyb	A 端非線形曲げばね
Rpb Mpb	Upb	B端非線形曲げばね
■せん断力		
変形(cm) 力(kN)	塑性率	
Rsx Qsx	Usx	非線形せん断ばね

②柱の場合

CO No.	1	_						-		
		Kya	_Mya	Uya	Ryb	Myb	Uyb	Kxa	Mxa	Uxa
0.000	U.9130E	-06 0.4332	E+U3 (1.000	0.6594E-05	0.8325E+03	0.000	0.5818E-07	0.2760E+02	0.000
1.000	U.2023E	-04 0.2518	E+U4 I	1.000	0.2078E-05	0.1242E+04	0.000	U.6/40E-0/	0.3197E+02	0.000
2.000	U-3949E	-04 0.4597	E+U4 I	1.000	-U.2424E-U5	U.1651E+U4	0.000	0.7622E-07	0.3616E+02	0.000
3.000	U.58/5E	-04 0.6677	E+U4 I	1.000	-0.6925E-05	0.2060E+04	0.000	0.8504E-07	0.4035E+02	0.000
4.000	U.//U3E	-04 0.8663	E+U4 I	1.000	-U.1094E-04	0.2480E+04	0.000	0.8545E-07	0.4054E+02	0.000
5.000	U-9534E	-04 0.1062	E+U5 I	1.000	-U.1562E-U4	0.2821E+04	0.000	0.8354E-07	0.3963E+02	0.000
6.000	U.1142E	-03 0.1277	E+U5 I	1.000	-U.1/63E-U4	0.350/E+04	0.000	0.8//2E-0/	0.4162E+02	0.000
7.000	U.1333E	-03 0.1496	E+05 I	1.000	-U.195/E-U4	0.4216E+04	0.000	0.10/5E-06	0.5101E+02	0.000
8.000	U.1522E	-03 0.1712	E+05 I	1.000	-U.2143E-U4	0.4920E+04	0.000	0.1032E-06	0.4898E+02	0.000
9.000	U.1694E	-03 0.1882	E+U5 (1.000	-U.2882E-U4	0.4884E+04	0.000	0.1010E-06	0.4/91E+02	0.000
10.000	U.1856E	-03 0.2035	E+U5 (J.UUU	-U.368/E-U4	0.4/1/E+04	0.000	0.1037E-06	0.4917E+02	0.000
	■モーメ	ント								
	<u></u>	カ(kNcm)	塑性率							
	Rva	Mva		∆ ☆栄	(方向				
	Dyb	Myb	llyh	ロい	(北千市古) V・	七向				
	Пил	MyD	Uyu		」(作主現)「、	力问				
	кха	Mxa	uxa	A 听	「(性脚))」	ク민				
	Rxb	Mxb	Uxb	B 端	i (柱頭) X :	方问				
	■せん断:	ታ								
	変形(cm)	力 (kN)	朔性率							
	Rev	0ev		X +	向非線形井	ん断げわ				
	Dav		USA	÷ € 2	ロリットがパンピ	/ ミンド				
	кѕу	usy	usy	「 「 」 「 」	「川非線形せ	ん断ばね				

USX	X万回非緑形せん断はね
Usy	Y方向非線形せん断ばね

-	ō .			-
■マルチ.	スプリン	グ軸ばね		
変形(cm)	カ(kN)	塑性率		
C1D(a)	C1F (a)	C1U(a)	A 端コンクリートばね	11
C2D(a)	C2F (a)	C2U(a)	A 端コンクリートばね	32
C3D (a)	C3F (a)	C3U(a)	A 端コンクリートばね	33
C4D (a)	C4F (a)	C4U (a)	A 端コンクリートばね	4
C5D (a)	C5F (a)	C5U(a)	A 端コンクリートばね	35
S1D (a)	S1F (a)	S1U(a)	A 端鉄筋ばね 1	
S2D (a)	S2F (a)	S2U (a)	A端鉄筋ばね2	
S3D (a)	S3F (a)	S3U (a)	A 端鉄筋ばね3	
S4D (a)	S4F (a)	S4U (a)	A端鉄筋ばね4	
S5D (a)	S5F (a)	S5U (a)	A 端鉄筋ばね5	
C1D (b)	C1F (b)	C1U(b)	B 端コンクリートばね	1
C2D (b)	C2F (b)	C2U (b)	B 端コンクリートばね	22
C3D (b)	C3F (b)	C3U(b)	B端コンクリートばね	33
C4D(b)	C4F (b)	C4U(b)	B端コンクリートばね	34
C5D (b)	C5F (b)	C5U (b)	B 端コンクリートばね	35
S1D (b)	S1F (b)	S1U(b)	B 端鉄筋ばね 1	
S2D (b)	S2F (b)	S2U (b)	B端鉄筋ばね2	
S3D (b)	S3F (b)	S3U(b)	B端鉄筋ばね3	
S4D (b)	S4F (b)	S4U (b)	B端鉄筋ばね4	
S5D (b)	S5F (b)	S5U (b)	B端鉄筋ばね5	

③壁の場合

WA No.	1			-			-		
0.0 1.0 2.0 3.0 4.0 6.0 7.0 8.0 9.0 10.0	$\begin{array}{rrrr} 100 & -0.2314 \\ 100 & 0.2021 \\ 100 & 0.4037 \\ 100 & 0.6052 \\ 100 & 0.7957 \\ 100 & 0.9870 \\ 100 & 0.1180 \\ 100 & 0.1374 \\ 100 & 0.1565 \\ 100 & 0.1745 \\ 100 & 0.1916 \end{array}$	Rya E-19 0.1455 E-04 0.2835 E-04 0.5665 E-04 0.8491 E-04 0.1107 E-04 0.1326 E-03 0.1326 E-03 0.1866 E-03 0.2011 E-03 0.2011 E-03 0.2215	Mya U 5E-10 0.0 5E+06 0.0 3E+06 0.0 3E+07 0.0	ya Ryi 00 -0.2314E-1: 00 0.1978E-0: 00 0.3937E-0: 00 0.5898E-0: 00 0.7364E-0: 00 0.8628E-0: 00 0.9408E-0: 00 0.9408E-0: 00 0.9497E-0: 00 0.8142E-0: 00 0.6466E-0:	Myb -0.7276E-10 5 -0.2139E+06 5 -0.4274E+06 5 -0.6409E+06 5 -0.6409E+06 5 -0.1050E+07 5 -0.1214E+07 5 -0.1386E+07 5 -0.1541E+07 5 -0.1649E+07 5 -0.1847E+07	Uyb 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	Ksx -0.2224E-19 0.1066E-04 0.2129E-04 0.3191E-04 0.5129E-04 0.6023E-04 0.6023E-04 0.6880E-04 0.8688E-04 0.8958E-04	95x 0.5183E-12 0.2485E+03 0.4962E+03 0.7438E+03 0.135E+04 0.1135E+04 0.1604E+04 0.1604E+04 0.1944E+04 0.1944E+04 0.2088E+04	Usx 0.000 0.018 0.037 0.055 0.072 0.089 0.104 0.119 0.132 0.144 0.155
	■モーメ 変報 Rpa Ryb ■せん断 変形 (cm) Rsx	ント カ(kNcm) Mya Mpa Myb カ(壁パオ カ(kN) Qsx	塑性率 Uya Upa Uyb Upb マル内のせ/ 塑性率 Usx	A 端 B 端 A 端非線形曲(B 端非線形曲(6 断ばね) 非線形せん断	げばね げばね				
	■マルチ 変形(cm)	スプリンク 力(kN)	ブ軸はね(雪 塑性率	壁パネル内の軸	はね11~1	15)			
	C11D (a) C12D (a)	CTTF (a) C12F (a)	C11U(a) C12U(a)	A 端コンクリ- A 端コンクリ-	- トはね 1 1 - トばね 1 2	2			
	C13D(a) C14D(a)	C13F (a) C14F (a)	C13U(a) C14U(a)	A 端コンクリ- A 端コンクリ-	- トはね 1 3 - トばね 1 4	}			
	GT5D(a) S11D(a)	G15F (a) S11F (a)	G15U(a) S11U(a)	A端コンクリー A端鉄筋ばね	ートはね15 11)			
	ST2D(a) S13D(a)	ST2F (a) S13F (a)	S120(a) S130(a)	A 端鉄筋はね	12				
	S14D (a) S15D (a)	S14F (a) S15F (a)	S140 (a) S15U (a)	A 端鉄筋はね A 端鉄筋ばね	14 15				
	C11D(b) C12D(b)	CTTF (b) C12F (b)	C11U(b) C12U(b)	B 端コンクリ- B 端コンクリ-	- トはね 1 1 - トばね 1 2	2			
	C13D(b) C14D(b)	C13F (b) C14F (b)	C13U(b) C14U(b)	B 端コンクリ- B 端コンクリ-	- トはね 1 3 - トばね 1 4	3			
	G15D(b) S11D(b)	G15F (b) S11F (b)	C15U(b) S11U(b)	B 端コンクリ- B 端鉄筋ばね	ートはね15 11	D			
	S12D (b) S13D (b)	S12F (b) S13F (b)	S12U (b) S13U (b)	B 端鉄筋はね B 端鉄筋ばね	12 13				
	S14D (b) S15D (b)	S14F (b) S15F (b)	S14U (b) S15U (b)	B 端鉄筋ばね B 端鉄筋ばね	14 15				
④鉛菌	直ばねの場(今							
	■軸力 変形 Dz(cm)	カ Fz (kN)	塑性率 Uz						
⑤免鶦	寝要素の場合	今							
	■せん断	<u>ה</u>							

ا [[■ C の函) 変形 Dx (cm) Dy (cm)	」 力 Qx (kN) Qy (kN)	塑性率 Ux Uy	X 方向 Y 方向
⑥ダンパー ┃	およびレ〕 ■せん断力 変形	ンガ壁の場] カ の((N))	合 塑性率	v t d
L	JX (GIII)	QX (KN)	UX	丶刀凹

5) ファイル "response_node.txt"

Node NF	number			2						
1F	1 5 9 13 center	2 6 10 14 of a	3 7 11 1 15 1 gravity:	4 8 2 6 17	• Node	number i	n each flo	oor		
	18 22 26 30	19 23 27 31	20 2 24 2 28 2 32 3	1 5 9 3						
<step 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</step 	node 1 0.000 2 0.000 3 0.000 4 0.000 5 0.000 6 0.000 7 0.000 9 0.000 10 0.000 11 0.000 12 0.000 13 0.000 14 0.000 15 0.000 16 0.000 17 0.000 18 -0.683 20 -0.6837 20 -0	dx 10E+00 10	dy 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+01 -0.1689E-17 -0.2763E-17	dz 0.0000E+00	rx 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.3191E-05	ry 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00	rz 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.1790E-20 0.1790E-20	fx 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.5645E-07 0.5645E-07	fy 0.0000E+00	fz 0.0000E+00 0.000E+000E+
	■変(<u>立</u>		xstep 角 node 貧 lx X ly Y lz Z rx X ry Y	解析ステップ 「方向変位(c 「方向変位(c 「方向変位(c 「軸周り回転」 「軸周り回転」	プ数 cm) cm) cm) 云変位 云変位				
	■作月	用力	r f f f	z Z x X y Y z Z	軸周り回転 方向作用力 方向作用力 方向作用力	<u>変位</u> 」(kN) 」(kN) 」(kN)				

58

6) ファイル "max_***.txt"

各部材の最大応力、塑性率および各層の最大応答

① "max_beam.txt" 梁の最大応答

部材番号	変形	力(kNcm)	塑性率		
EL.NO.= 31 MY 1 BE 1 MY 2 BE 2 Q 1	disp -0.2048E-01 -0.1940E-01 -0.1900E-01 -0.1815E-01 -0.1878E-03	force -0.1649E+06 -0.1649E+06 -0.1576E+06 -0.1576E+06 -0.6242E+03	duct -4.34 -5.68 -4.02 -5.31 -0.05	剛域を除く材端 非線形曲げバネ 剛域を除く材端 非線形曲げバネ せん断	(A端) (A端) (B端) (B端)

Elastic element

Nonlinear bending spring

② "max_column.txt" 柱の最大応答

部材番号	変形(cm)	力(kN)	塑性率		
EL.NO.= 1 MY 1 CO 1 CO 2 - CO 3 CO 4 - CO 5 MY 2 CO 1 - CO 2 CO 3 - CO 4 CO 5 Q 1 Q 2 N	disp 0.1892E-01 0.9352E+00 0.6541E-02 0.9370E+00 0.6149E-02 0.4656E+00 0.1627E-02 0.4900E-02 0.8132E-01 0.4907E-02 0.7735E-01 0.3856E-01 0.1113E-03 0.1542E-04 0.5191E+00	force 0.1102E+06 -0.5956E+03 -0.8083E+03 -0.5952E+03 -0.7599E+03 -0.1498E+03 0.6002E+05 -0.6055E+03 -0.5916E+03 -0.5925E+03 -0.5925E+03 -0.1498E+03 0.5848E+03 0.8097E+02 -0.2963E+04	duct 3.91 -7.22 / 0.05 / -7.23 / 0.05 / -3.59 / 0.34 0.04 / -0.63 / 0.04 / -0.60 / -0.30 / 0.03 0.00	dispforceductMX10.2307E-040.6891E+040.0ST10.9352E+000.1243E+047.2ST2-0.6541E-02-0.1408E+03-0.0ST30.9370E+000.1246E+047.2ST4-0.6149E-02-0.1323E+03-0.0ST50.0000E+000.0000E+000.0MX20.1666E-030.1575E+050.0ST1-0.4900E-02-0.1055E+03-0.0ST20.8132E-010.8726E+030.6ST3-0.4907E-02-0.1056E+03-0.0ST40.7735E-010.8431E+030.6ST50.0000E+000.0000E+000.0MX:XXThematifMY:YYThematifST:StSt0.000E+00N:mathQ:td.bs/dN:math	10 22 15 23 15 10 10 14 33 14 10 10

③ "max_wall.txt" 壁の最大応答

部材番号	子 変形(cm)	力(kN)	塑性率				
EL.NO.= 1 MY MXA CO CO CO CO CO CO CO CO CO CO CO CO CO	disp 0.1864E-01 0.1112E-02 0.9742E+01 2.0.8815E+01 3.0.9808E+01 4.0.8881E+01 5.0.9312E+01 60.1106E+01 70.2033E+01 80.1113E+01 90.2040E+01 00.1573E+01 1.0.7014E+01 3.0.3869E+01 4.0.2297E+01 5.0.7595E+00 20.4246E-03 2.0.8031E-02 1.0.4547E+00 2.0.4273E+00 3.0.1051E+00 4.0.9108E-01 5.0.2439E+01 5.0.2439E+00 60.7279E-01 70.1002E+00 80.5600E-01 90.8342E-01 0.1294E+00 3.0.8291E-01 1.0.1759E+00 2.0.2884E-04 30.1539E-04 0.3928E+01 1.0.3928E+01 0	force 0.7382E+07 -0.2847E+04 -0.3252E+03 -0.3212E+03 -0.3212E+03 -0.3212E+03 -0.3224E+04 -0.3224E+04 -0.3224E+04 -0.3224E+04 -0.3224E+04 -0.3224E+04 -0.3224E+04 -0.6697E+03 -0.6697E+03 -0.6697E+03 -0.6697E+03 -0.3193E+03 -0.3271E+03 -0.3271E+03 -0.3271E+03 -0.3271E+03 -0.3271E+03 -0.3286E+04 -0.2682E+04 -0.2682E+04 -0.2386E+04 -0.2386E+04 -0.2386E+03 -0.6697E+04 -0.515E+03 -0.8004E+04	duct 15.69 0.23 -75.17 / -68.02 / -75.68 / -75.68 / 8.53 / 15.68 / 8.59 / 15.74 / 12.14 / -54.12 / -41.99 / -29.85 / -1.86 / -0.36 1.66 -3.51 / -0.86 / 0.77 / 0.56 / 0.43 / 0.64 / 0.64 / 0.60 / -1.36 / 0.64 / 0.62 / 0.00 0.00	disp MXB 1 ST 1 ST 2 ST 3 ST 4 ST 5 ST 6 ST 7 ST 8 ST 10 ST 11 ST 12 ST 13 ST 14 ST 15 MXB 2 ST 15 MXB 2 ST 15 MXB 2 ST 15 ST 4 ST 15 ST 4 ST 15 ST 4 ST 15 ST 14 ST 5 ST 6 ST 7 ST 8 ST 10 ST 11 ST 12 ST 13 ST 14 ST 5 ST 6 ST 7 ST 8 ST 10 ST 11 ST 12 ST 13 ST 14 ST 5 ST 10 ST 11 ST 15 ST 16 ST 17 ST 18 ST 17 ST 18 ST 17 ST 18 ST 10 ST 11 ST 12 ST 17 ST 18 ST 14 ST 5 ST 10 ST 11 ST 12 ST 13 ST 14 ST 15 ST 10 ST 11 ST 15 ST 16 ST 17 ST 18 ST 17 ST 18 ST 10 ST 11 ST 12 ST 13 ST 14 ST 15 ST 10 ST 11 ST 15 ST 16 ST 17 ST 8 ST 10 ST 11 ST 15 ST 16 ST 17 ST 18 ST 17 ST 18 ST 14 ST 15 ST 10 ST 11 ST 15 ST 16 ST 17 ST 18 ST 16 ST 17 ST 18 ST 16 ST 17 ST 18 ST 16 ST 17 ST 18 ST 14 ST 15 ST 10 ST 11 ST 15 ST 16 ST 17 ST 18 ST 16 ST 17 ST 18 ST 16 ST 17 ST 18 ST 16 ST 17 ST 18 ST 10 ST 11 ST 15 ST 10 ST 11 ST 12 ST 11 ST 12 ST 11 ST 12 ST 11 ST 12 ST 11 ST 11 ST 12 ST 11 ST 11 ST 12 ST 11 ST 11 ST 12 ST 11 ST 12 ST 11 ST 11 ST 12 ST 11 ST 11 ST 12 ST 11 ST 11 ST 12 ST 13 ST 14 ST 15 ST 10 ST 11 ST 11 ST 12 ST 11 ST 12 ST 13 ST 14 ST 15 ST 10 ST 11 ST 12 ST 11 ST 11 ST 12 ST 11 ST 11 ST 12 ST 11 ST	force -0.6738E-04 0.9742E+01 0.8815E+01 0.9808E+01 0.8881E+01 0.0000E+00 -0.1106E+01 -0.2033E+01 0.2033E+01 0.2040E+01 0.2040E+01 0.5441E+01 0.5441E+01 0.5441E+01 0.5441E+01 0.5441E+01 0.7595E+00 -0.4866E-03 0.4547E+00 0.4273E+00 0.4273E+00 0.4273E+00 0.4273E+00 0.1051E+00 0.9108E-01 0.0000E+00 0.7799E-01 -0.7590E+01 0.5600E-01 -0.5600E-01 -0.5600E-01 -0.8342E-01 0.0000E+00 0.1759E+00 0.1294E+00 0.8291E-01 0.3639E-01 -0.2038E-01 -0.2038E-01	e duct -0.2847E+04 0.1344E+04 0.1365E+04 0.1358E+04 0.1358E+04 0.0000E+00 0.1241E+04 -0.1255E+04 -0.1241E+04 -0.1263E+04 0.1129E+04 0.1179E+04 0.1179E+04 0.11235E+04 0.11235E+04 0.1235E+04 0.1235E+04 0.1235E+04 0.1049E+05 0.1234E+04 0.1049E+05 0.1235E+04 0.1049E+04 0.9451E+03 0.0000E+00 -0.8893E+03 0.0000E+00 0.1132E+04 0.1129E+04 0.1129E+04 0.1129E+04 0.1129E+04 0.1129E+04 0.1129E+04 0.1129E+04 0.1129E+04 0.3858E+03 0.4950E+03 -0.3858E+03	-0.01 75.17 68.02 75.68 68.53 -8.53 -15.68 -8.59 -15.74 0.00 54.12 41.99 29.85 17.72 5.86 -0.10 3.51 3.30 0.81 0.70 0.00 -0.56 -0.77 -0.43 -0.64 0.00 1.36 1.00 0.64 0.28 -0.16

		④ "m	ax_structu	ıre.txt"	各層0	D最大応答					
F 76 54 32	h 0.4000E+03 0.4000E+03 0.4000E+03 0.4000E+03 0.4000E+03 0.4000E+03	sdx 0.8338E+01 0.8419E+01 0.8432E+01 0.8432E+01 0.8292E+01 0.8030E+01	sdy 0.1201E-13 0.1193E-13 0.1396E-13 0.1195E-13 0.9338E-14 0.7814E-14	ssx 0.7615E+01 0.7705E+01 0.7735E+01 0.7742E+01 0.7666E+01 0.7467E+01	ssy -0.4403E-12 -0.4138E-12 -0.3320E-12 -0.2275E-12 -0.1636E-12 -0.9862E-13	sfx 0.7389E+04 0.1205E+05 0.1582E+05 0.1900E+05 0.2145E+05 0.2349E+05	sfy 0.7157E-10 0.1668E-10 0.1495E-10 0.2080E-10 0.2618E-10 0.2564E-10	dx 0.5600E+02 0.4766E+02 0.3924E+02 0.3081E+02 0.2240E+02 0.1411E+02	dy 0.7426E-13 0.6576E-13 0.5612E-13 0.4258E-13 0.3063E-13 0.2130E-13	dz 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00	rz 0.5729E-15 0.4891E-15 0.4046E-15 0.3193E-15 0.2334E-15 0.1479E-15
ī	0.4000E+03	0.6076E+01	0.1348E-13	0.5813E+01	-0.3974E-13	0.2477E+05	0.2304E 10 0.8779E-10	0.6076E+01	0.1348E-13	0.0000E+00	0.6409E-16

F	層番号(0:は基礎階)
h	(cm)
sdx	X 方向層間変位(cm)
sdv	Y 方向層間変位(cm)
ssx	X 方向層間変位(cm)、せん断成分
ssv	Y 方向層間変位(cm)、せん断成分
sfx	X 方向層せん断力(kN)
sfv	Y 方向層せん断力(kN)
dx	X 方向変位(基礎からの相対変位)(cm)
dv	Y方向変位(基礎からの相対変位)(cm)
rz	Z 軸周り回転角(ねじれ)
	F h sdx sdy ssx ssy sfx sfy dx dy rz

7) ファイル "data_***.txt"

部材番号や部材特性は、ファイル data_***.txt に保存されている。

Member	number for Beam			Im	(total =		178)	涩の部材番号					
15	0 4 11 0 18 0	1 0 8 0 15 0 22	0 5 12 19 0	2 9 0 16 0 23	0 6 13 0 20 0	3 0 10 17 0 24	0 7 14 0 21 0		↓ 柱 梁 柱	-梁—	·杜—	梁—	
IF	0 27 0 34 0 41 0	25 0 31 0 38 0 45	0 28 0 35 0 42 0	0 0 32 0 39 0 0	0 29 0 36 0 43 0	26 0 33 0 40 0 46	0 30 0 37 0 44 0		Ţ				
								J)	
inelastic properties member = 1(type = 1) steel reinforcement (up) 10- at = 11.400 (down) 10- at = 11.400 shear reinforcement 2- at = 5.067 @ 5.000													
material strength Fc = 2.50 Sy = 42.90 Sy(shear) = 42.90 bending-spring No. 1 Mc = 217142.632 My = 651427.895 Rc = 0.258E-05 Ry = 0.258E-02 bending spring No. 2									部材特性				
Dena Ma Ra	Mc = 217142.632 My = 651427.895 Rc = 0.258E-05 Ry = 0.258E-02												
snea Qa Ra	snear-spring No. 1 Qc = 1984.618 Qy = 3969.236 Qu = Rc = 0.204E-03 Ry = 0.102E-02 Ru =								391 0.20	79.15 D4E-0	i9 12		

① "max_beam.txt" 梁の部材データ