
 1

               Tsunamis and Storm Surges  

Yoshinobu Tsuji 
              Earthquake Research Institute, University of Tokyo 

Tel. 03-5842-5724, e-mail: tsuji@eri.u-tokyo.ac.jp 

 

１．Basic Equations in Fluid Mechanics 

1.1  Basic Equations in Fluid Mechanics 
  Ocean water and the air act mainly in the Ocean and in the Atmosphere.  The 
word “fluid” is used both liquids such as the water in an ocean as well as for air.  A 
liquid is defined as a body as changing its shape continuously time to time, while that a 
solid body (or a rigid body) hardly changes its shape. 
   There are two methods that can be used to describe the motion of fluids 
mathematically. 

One method is called the “Eulerian method.” Here, we first take a fixed three- 
dimensional coordinate system ),,( zyx . Then, a velocity vector ),,( wvuur  and a 
normal pressure p（or stress tensor in which case we also consider a tangential stress 

τ  if the influence of viscosity is also considered）are expressed as subordinate 
variables of independent variables of ),,( zyx  and time t .  

  The other method is called the “Lagrangian method”. In this method, we consider  
the initial location ),,( cba  of a fluid particle at an initial time 0=t  to be  
independent variables. The location of the particle ),,( zyx and pressure p (in the 

form of subordinate valuables) are then considered to be 
 ),,,(),,,,(),,,,( tcbaztcbaytcbax , and ),,,( tcbap .  

  In reality, the Eulerian method is usually preferred for solving most of the problems  
in coastal engineering, ocean physics, and meteorology.   It is well known that there 
are only two problems that can be solved better by using the Lagrangian method.   

In this study, we derive the basic equations of fluid dynamics by using the Eulerian 
method. 
 
 ［Equations of motion］ 
   First, we derive the equations of motion of a perfect fluid, after neglecting its 
viscosity.  A “Perfect fluid“ is a fluid in which the stress (pressure p ) acts only in a  

perpendicular direction to any surface in the fluid, and there is no tangential 
component. 
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    Newton’s Second Law of Motion gives the relationship between a force F
r

 and the 
induced acceleration αr  for a solid particle; it is expressed given mathematically as 
follows: 

       αr
r

mF =                                   (1) 
Let us transfer this equation of motion into the equations of motion for a fluid.  

First, we consider the x -component xα  of the acceleration vector αr  of a fluid.  We 
assume that a water particle is located at a point ),,( zyxP  at a time tt = , and that 
it has a velocity of ),,( wvuur .   In an infinitesimally small time tδ  after the initial 
time, this particle moves to the point ),,( twztvytuxP δδδ +++′ ; hence, xα  is given 

by  

     
t

tzyxutttwztvytuxu
tx δ

δδδδα δ
),,,(),,,(lim0

−++++=    (2) 

We expand the part of ),,,( tttwztvytuxu δδδδ ++++  in the form of Taylor’s 

series as 
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By substituting this into equation (2), we obtain acceleration xα  in the Eulerian style 

as follows; 
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 in this equation appears frequently in fluid 

mechanics, and we write it in brief  
Dt
D  (called “Lagrangian time differential” or 

simply “Lagrangian differential.”)  Physically, this operator is equivalent to “a change 
in any physical value” (velocity, pressure, temperature, density of salt (salinity), etc.)    
observed by a hypothetical dwarf “kobito or Songo-ku” riding on the particle.  By using 
this operator, （3） can be expressed simply  

    
Dt
Du

x =α         (3-b) 

  Then we can naturally interpret that equation (3) implies that the change (with 
time ) in the particle velocity represents the acceleration.   

Next, we discuss the force F
r

 and the mass m  given in equation (1).  We 
consider a small rectangular parallelepiped body of a size dzdydx ××  (See Fig. 1).   

The mass of the brick m  is given by 
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    dxdydzm ρ=                 （4） 

 
            ),,,( tzyxp        ),,,( tzydxxp +  
                    
                 dz      dy  

                    dx          x  
 
                          Fig. 1 Force balance in x direction 

The x -component of the force F
r

, xF  can be estimated by considering the 

difference in pressure between the right and left surfaces, plus the body force coming 
from “horizontal gravity X” (if it exists).  xF  is expressed as follows: 
    { } dxdydzXdzdyxpdxxpFx ρ×+××−+−= )()(   
Since dxxpxpdxxp ×∂∂+=+ )()(  approximately, Fx becomes 

    dxdydz
x
pFx ∂

∂−= ＋ Xdxdydz     （5） 

By substituting (3-b), （4）,  and （5）into （１）, and eliminating the common factor 
dxdydz , we derive the following equation, which is called “the equation of motion for a 

fliud” or “Euler’s equation.” 
Identical equations can be derived for the y and z components as well and we have 

The follows: 
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  （6-a, b , c）     

Since we are considering the Earth, the force field due to acceleration of gravity is  
),0,0( g− ; therefore, in such a case, the Euler’s equations become; 
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      (6’-a, b, c）  

 ［Conservation of Mass］   
In problems in the fluid mechanics, subordinate variables (=unknowns) are three 

components of the particle velocity ),,( wvu  and pressure p ; hence, we can not solve 

them by using only three equations (6-a, b, c). An additional equation is required, 
which is obtained from the condition of mass conservation, sometimes referred to “the 
equation of continuation” in fluid mechanics.   

We can classify the various possible conditions into the following three categories: 
  Case A:  For sea waves such as wind waves, tsunamis, and storm surges, we can 
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consider the density of sea water ρ to be constant for the entire region. We refer to 
this case as “Case A” or “the case of constant water density.” 
 Case B: For internal waves,  that is a two-layer system in the sea region at a river 
mouth, we must consider the stratification (layer structure) of the density of the sea.  
Here, we cannot neglect the change in density ρ  with depth, however, in many cases, 

we can neglect the influences of diffusion and mixing, which cause possible change in  
salinity, and the temperature of a particle.  In such a case, we can neglect the 
influence of diffusion, and the water density ρ  is assumed to be constant for every 
particle, even if it is not constant for position and time ( ),,,( tzyxρρ = ).  We refer to 

this case as “Case B” or “non-diffusive case”. Here, a dwarf on a particle will not 
observe any change in density, and so 

       0=
Dt
Dρ                           (7) 

is satisfied. 
Case C: For the vertical mixing of water in a stratified ocean, we must consider the 
influences of the diffusions of salinity S and water temperature T. Here, we must 
introduce the diffusion equations for salinity and temperature as; 

      SK
Dt
DS

s
2∇=   (8)  and TK

Dt
DT

T
2∇=   (9), 

Here, Ks and KT are the diffusion constants for salinity, and temperature, respectively, 
and in general, KT > Ks.  Here, we have seven subordinate valuables 

),,,,,,( ρTSpwvu , and the usable equations are the equations of motion (6-a, b, c), the 

mass conservation equation, two diffusion equations (8) and (9), and in addition, 
Knussen’s density formula given as 
    ),,( TSpρρ =      (10) 

Case C represents the most general case for ocean problems. 
Next, we consider the mathematical formulation for mass conservation condition 

for Case A. 
 In Fig. 2, the volume      z  
of the brick is given by 

dzdydx ×× , 

                 
 
                ｙ   
                              ｘ 
                           Fig. 2 
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If we assume that the density is ρ, and that the change in mass in a short time  dt 
is dm , we have 

       dxdydz
tdt

dm
∂
∂= ρ

     （11） 

If we consider the mass to be entering the left surface of the brick and leaving the brick 
through the right surface, the total mass balance can be expressed as follows:  (We 
substitute )(xUu ≡ρ , and we consider only the x -direction for simplification),  

    
( ) dxdydz

x
udxdydz

x
UdydzxUdxxU

∂
∂−=

∂
∂−=−+− ρ)}()({    （12-a） 

The same equations are satisfied for zy,  directions as well. The sum of the three- 

mass balances should be equal to the increase in mass dm . Hence, the mass 
conservation condition is formulated as follows; 
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Eq. (13) is the general form of the mass conservation condition. It is possible to  
re-write this equation as 
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                    (13-b) 

 
[Mass conservation condition for non-diffusive case] 
   As mentioned above, for the cases A and B (non-diffusive cases), equation (7) is 
satisfied. Therefore, along with (13-b), we find that the following equation is the 
equation of mass conservation for these cases. 

      0=
∂
∂+

∂
∂+
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∂
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                        (14) 

For case B, we have five unknowns ),,,,( pwvu ρ , and five equations: the three 

equations of motion (6-a, b, c), the non-diffusion equation (13), and the mass 
conservation equation (14).  

For case A, i.e., the case that the water density is absolutely constant, we have four 
unknowns ),,,( pwvu  and four equations: the equations of motion (6-a, b, c), and the 

equation of mass conservation (14). 
 
［Diffusion Equation］ 
 Let us consider the concept of diffusion.  Diffusion, such as diffusion of heat, 
diffusion of sugar in a coffee cup, can be defined as “such a motion that in the case heat 
(or density of sugar in a coffee cup) is inhomogeneous at the initial stage, makes 
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uniform by making (heat or sugar) flux from densely distributed part to less 
distributed part”.  Flux of heat (or sugar) is in general proportional to the gradient of 
heat (or density of sugar). 
  Let us consider the one-dimensional case (Fig. 3).  We assume that metal cubes are 
arranged one dimensionally (in a line), and that the initial temperature of the i-th cube 
is iT . Let us discuss the change in temperature of each metal cube. 
       iT  1+iT  
         qqqq q  
                x  

          Fig. 3 
If we assume that the temperatures of the i -th, and 1+i -th cubes are 1, +ii TT , then 
the heat flux q  between these two cubes is given by 

  
x

TTKSq ii

∆
−−= +1   (15)  or 

x
TKSq

∂
∂−=            (15-b) 

where the negative ”-“ implies that heat flows from a hot cube to a cold one. S  is the 
surface area of these cubes and K  is the diffusion constant. 
       T  
   →)(xq   )( xxq ∆+→  
                x  

          Fig. 4 
Next we consider the temperature-change T∆  of a cube (Fig. 4). We can calculate this 
by estimating the balance between the incoming and outgoing heat, that is, 

   { } x
x
qxqxxq

t
Tmc ∆

∂
∂−=−∆+−=

∂
∂ )()(              (16) 

where m  is the mass of the cube and c  is the specific heat. Since the mass of cube is 
given by xSVm ∆== ρρ ,  

     
x
q

cSt
T

∂
∂−=

∂
∂

ρ
1

                           (17) 

By differentiating (15-b) with respect to x , and substituting it into (17), q  is 

eliminated, and we have 

     2

2

x
T

c
K

t
T

∂
∂=

∂
∂

ρ
                           (18) 

If we apply TKcK =ρ , we finally obtain the equation of diffusion for a one 
dimensional case as follows; 

     2

2

x
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t
T

T ∂
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∂
∂

                             (19) 



 7

For a three-dimensional case, the equation of diffusion is expressed as follows; 

    T
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∂
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             (20) 

Equation (20) is the diffusion equation for heat in a solid body, that is, for the case that 
the cube itself does not move.  For the case that heat or sugar in fluid, the media 
(particle) itself moves, the left-hand side tT ∂∂  of these equations should be replaced 
by DtDT  (Lagrangian differentiation). 

 T
zyx

K
Dt
DT

T ⎟⎟
⎠

⎞
⎜⎜
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            (21) 

 
 In the case of an actual ocean or atmosphere, the diffusion coefficient K  is not 

always constant across the entire region under consideration, moreover, and 
moreover it takes different values in the horizontal and vertical directions in the 
discussions of geophysical phenomena. For such cases, we introduce horizontal and 
vertical diffusion coefficients VH KK ,  which are different to each other.  For such  

cases, the equation of diffusion takes the following form: 

   
z
TK

zy
TK

yx
TK

xDt
DT

VHH ∂
∂

∂
∂+

∂
∂

∂
∂+

∂
∂

∂
∂= ()()({ ）｝   (22)    

Equation (22) is generally used while discussing oceanic or atmospheric problems. 
 

1.2    Kinematic Conditions at Boundaries 
We next consider the fluid conditions at boundaries, such as the sea bottom or  

surface of a sea.  We assume that a sea surface can be expressed in the form 
),( yxfz =  at a time tt = . Since such a function is  a multi-valued function of z ,  

it is better to express it in the style of an implicit function CzyxF =),,( , in general. 
This function is only a snapshot image at a time tt = . 
For more general cases, we can express the boundary function to be in the form of 
  CtzyxF =),,,(                                (23) 

We assume that a particle is situated at a point ),,( zyx  on the boundary at a time 
tt = .  If we substitute these values ),,,( tzyx , in (23),  (23) must be satisfied 

because the particle is situated on the boundary.  An infinitesimally small time dt 
after the initial time, the particle moves with flow ),,( wvu  to the point 
P’ ),,( wdtzvdtyudtx +++ , where the particle is still on the boundary, unless the 

particle is “separated” from the boundary in some manner.  Thus, the next condition 
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will be satisfied. 
     CdttwdtzvdtyudtxF =++++ ),,,(                (24) 

We expand the left-hand side of (24) in the form of a Taylor series, and we have 

    Cdt
t
Fwdt

t
Fvdt

t
Fudt

x
FtzyxF =

∂
∂+

∂
∂+

∂
∂+

∂
∂+),,,(     (24-b) 

By comparing (23) with (24-b), we have 
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∂
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  that is,   0=
Dt
DF

   (25) 

This equation is called the “kinematic boundary condition,” and it should be satisfied 
both for a rigid boundary (such as a sea bed) and a free surface (such as a sea 
surface).  

If the sea surface is expressed in the form ),,( tyxz ζ= , we can re-write it as 
0),,( =− tyxz ζ .  Then, (23) becomes 0),,,( =−= CtyxzF ζ .  We substitute this 

into (25), and thereby obtain, 

    0=+
∂
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that is, 
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∂
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                         (26) 

This is the kinematic boundary condition for sea surface waves. The 

operator
y

v
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u
t ∂

∂+
∂
∂+

∂
∂

 can be written as a two-dimensional Lagrangian operator, i.e., 

tDD2 , then (26) is then written as follows 

    
Dt

Dw ζ2=                                          (27) 

If the sea bed is expressed as ),( yxbz = , we use b  instead of ζ.  

   
y
bv

x
buw

∂
∂+

∂
∂=                                          (28) 

is then the sea bed kinematic condition. For a two-dimensional case (no change in theｙ
direction), (28) becomes 

   
dx
dbuw =   (29)   or 

dx
db

u
w =    (29-b) 

 
1.3  Conservation of Vorticity 
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Definition of Vorticity 
  We introduce the definition of a “vortex vector” ωr .  

If we assume that the velocity field is given by  ),,( wvuur , we define a vorticity 

vector by operating the rotation operator (∇×)  on the velocity vector ur .  
A “rotation operator” is expressed by the outer product (★外積) of the nabla operator 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

∂
∂

∂
∂=∇
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,, , and thus, we have 

 

),,( ζηξωr = ( )yxxzzy uvwuvw
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⎟
⎟
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⎜
⎜
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∂
∂

∂
∂

∂
∂ ,,

rrr

        (30) 

Here, kji
rrr

,,  are the unit vectors in the ,, yx  and z directions, respectively.  Each 

component of the vorticity vector is written as 

ξ＝ zy vw − , η＝ ,xz wu −  ζ＝ yx uv −     (31-a, b, c). 

    Let us consider the meaning of the z-component ζof the vorticity vector. 
ζ can be regarded as the sum   
of the y differential of -u    y differential of u−   
and the ｘ-differential of v,   R                          Q 
                             x-differential of v  
                               

 
                                        P 
which is equal to twice the average of the  change speed with the directions OX and 

OY  around the origin O.   If we assume that an ant is placed at O, we see that the 
water particle Q on the x-axis moves around O with an angular speed xv , while the 

water particle Ｒ on the y-axis moves around O with an angular speed yu− . Thus, 

ζ-value means a local rotation around O (for the ant), and the value of ζ denotes 
the local rotation （= the speed of the change in the local direction of the next-door 
particles） at the point O.  Hence, it is possible to use ζ to express “vorticity”.  

Conservation of Vorticity 
Let us assume that the water density is constant.   

  First differentiating the y-component of the Euler’s equation（6-b） by ｘ and、 the 
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x-component （6-a） by ｙ,  and then subtract the results. In this manner, the pressure 
term p  on the right-hand side is eliminated and after a rather long and complicated 

calculation, we arrive at the following.  
(Note: We use the condition of continuity (14) in this calculation ) 
 

    ζηξζ
zzz wvu

Dt
D ++=   (32-c) 

Similarly, the following equations can be derived for the x and y- component of the 
vorticity ξ, η  

   ..........ζηξξ
xxx wvu

Dt
D ++= (32-a)   

  ζηξη
yyy wvu

Dt
D ++=    (32-b). 

 
Let us consider the meaning of the equations （32-a, b, c）.  If there is no vorticity at 

an initial time 0=t , that is, if 0=== ζηξ  at t = 0, then the right-hand side of  

equations(32-a,b,c) becomes zero.  The left-hand side expresses the change in the 
local rotation for the ant on the particle. Thus, equations (32-a, b, c) imply that the 
vorticity remains zero value even with an increase in time. In other words, “If  there 
is no vortex initially in a perfect fluid having constant density, there will be no vortex 
even after time elapses.”  

  Moreover, we can also prove that “If vorticity exists at an initial time, it will never 
vanish.”  There two assertations are called “The Lagrangian theory of vortex 
conservation.” 

We can say that, even if when we deal with problems on wind waves or tsunamis, no 
vorticity exists at any time if the waves are generated initially from still sea.  

 We refer to such a motion of liquids with no vorticity as “non-vortex motion.”    
 
1.4  Existence of the Velocity Potential Function φ  

In the case of non-vortex motion, that is, when ξ ＝ η ＝ ζ ＝０ has to be 
satisfied, we can introduce a velocity potential scalar function φ  for the fluid motion 
and the components of the velocity vector  ),,( wvuur , .are given by the gradient of 
φ . 

    
z

w
y

v
x

u
∂
∂−=

∂
∂−=

∂
∂−= φφφ ,,                    (33) 
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Note: In the present discussion, we set “－“ at the top of the right hand side.  This is 
because we intend to use the analogy of the relation between contour lines and rain 
drops (a stream over the surface of a hill). However, in many other text books, “－“ is 
not introduced.  This does not lead to any essential problem. 
  The two lemmas can be phrased as follows:   
   Lemma  A:  The flud is non-vortex nature. 
   Lemma  B:  A velocity potential function exists. 
Here, we can easily prove that B ⇒A as follows: 
   We substitute (33) into the z -component of the vorticity ζ; then we have      

 ......0
22

=
∂∂

∂+
∂∂

∂−=
∂
∂−

∂
∂=

yxxyy
u

x
v φφζ             (34) 

Similarly, it can be shown that both ξ and η are zero; hence, and the flow is proved 
to be a non-vortex motion.   
   However, the proof of A B⇒  requires a slightly longer discussion, which is beyond 
the scope of this book. (refer a textbook of “vector analysis”).  

  In this study, let us simply agree on this. 
Note: When density is not constant (i.e., the case of a stratified fluid), the vorticity 

conservation law is not satisfied, and hence, we cannot introduce the velocity potential 
function φ for such cases. 

 
1.5   Bernoulli’s Theory 

We proved that it is possible to represent the flow distribution ),,( wvuur  by using 
a scalar function ),,,( tzyxφ  for a non-vorticity fluid with constant density.  By 

using the velocity function φ, the equation of continuity (14) can be re-written in the 
following form: 

 

   ......02

2

2

2

2

2

=
∂
∂+

∂
∂+

∂
∂

zyx
φφφ       (35) 

The operator 222222 zyx ∂∂+∂∂+∂∂  is called “Laplacian Operator”, and is 

sometimes written simply as “ 2∇ ” or “ ∆ .”  The formula that satisfies the above 
equation is called “harmonic function” and takes the following general form: 
 (1) For an x, y, and z coordinate system 

  A product of sinusoidal and exponential functions  
   0: 222 =++= mlkeee mzlykcφ   

(2) For a cylindrical coordinate system ),,( zr θ  

       A product of sinusoidal and Bessel’s functions 
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      )(cos krJn n×= θφ  

(3) For a spherical coordinate system  
       A product of sinusoidal and Legendre’s Functions. 
 
 Next, we re-write the equations of motion (Euler’s equations) by using the 
velocity potential function φ.  We re-write ),,( wvu  in (6-a) by (33), and we 

obtain 

  )36.....(1
xxzzxyyxxxxt p

ρ
φφφφφφφ −=+++−  

Note the following relations 

  ( ) xxxxxx u )
2
1(,

2
1 22 == φφφ , ( ) ,)

2
1(

2
1 22

xxyxyy v== φφφ  

and 

  ( )
x

xzxzz w ⎟
⎠
⎞

⎜
⎝
⎛== 22

2
1

2
1 φφφ  

Since, all the terms in equation (36) are those that were differentiated with 
respect to x , so, we can integrate it by x, yielding 

  ( ) ),,(
2
1

1
222 tzyFpwvut =++++−

ρ
φ      (37-a) 

where ),,(1 tzyF  in the right-hand side is an arbitrary function of tzy ,, . 
Similarly, begin from equations (6-b) and (6-c); we finally obtain (37-b) and (37-c). 

  ( ) ),,(
2
1

2
222 tzxFpwvut =++++−

ρ
φ      (37-b) 

  ( ) ),,(
2
1

3
222 tyxFgzpwvut +−=++++−

ρ
φ   (37-c) 

Note that （37-a）, (37-b), and (37-c) are independent of each other even though 
they have similar forms, and they must be satisfied independently.  To satisfy 
all these three equations, we introduce an arbitrary function )(tF  and write 

it in the form of the following equation.  

( ) )(
2
1 222 tFpgzwvut =+++++−

ρ
φ           (38) 

By doing this, equations (37-a,b,c) are all satisfied simultaneously.  
Equation (38) is called  “Bernoulli’s Law.” 
［Bernoulli’s theory as taught to high school students］ 
  In high school, “Bernoulli’s Law”.is usually taught as part of the Physics 
course. It is taught that “In the case of steady flow, at two points 1 and 2 on one 
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streamline, the next value is constant” 

    2
222

2
111 2

1
2
1 VghpVghp ρρρρ ++=++     (39) 

where p  is pressure, ｈ is height, and Ｖ is velocity.   We can derive (39) by 

assuming that the energy of a unit volume is  constant.  (39) and (38) are very 
similar to each other, and (39) is also called “Bernoulli’s formula.” 
However, note that the assumptions of A and B are different, and we should 

apply them to different problems. 
(38) Not steady, not always on a stream line, non-vorticity 
(39) Steady, two points on a stream line, vorticity might exist 

 
Area (38) 

      
                  Area (39) 
 
 
Please determine which equation(s) is(are) applicable for solving the following 
problems: 
１．Ocean waves   
２．Blood flow in a human body 
３．Coffee rotating in a tea cup 
４．Flow in a river  
５．Brake oil in a car 
６．Flow in a water supply pipe  
７．Thin water layer on a pavement on a rainy day 

 
 

 


