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IJMA and MJMA 
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+JMA Magnitude 
Magnitude: a conventional scale of earthquakes that describe how big the event itself. 
There are many definitions for magnitude scale, e. g., ML, Ms, Mb, and MJMA 

Figure 14 Magnitudes from different scales plotted against 
moment magnitude M. (Modified from Heaton et al., 1986) 
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History of Intensity Scale 

Rossi-Forel Scale:  
 1883. Rossi & Forel (10 scale) 
Modified Melcali scale: 
 ????. Mercalli (10 scale) 
 1902. Modified by Cancani (12 scale) 
 1931. Modified by Wood & Neuman 
 1956. Modified by Richter 
MSK scale: 
 1964. Medvedev, Sponheuer & Karnik 
European Macroseismic Scale 
 1998 EMS98 by CONSEIL DEL’EUROPE 
JMA scale: 
 1884. Sekiya (4 scale) 
 1898. JMA (7 scale) 
 1936. Modified. 
 1949. Modified based on Fukui Eq. (8 scale) 
 1996. Modified for automated determination 

http://www.gfz-potsdam.de/pb5/pb53/projekt/ems/ 
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Intensity Scale 

Input 
Ground Motion 

 

System 
Human Being 

Building & Houses 

Output 
Feelings 
Damages 

Input or Output ? 

JMA Intensity Scale is defined as Input, 
however, designed to keep high correlation 
with Output (human feeling, damages, etc). 
It is automated in 1996. 
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In the past, seismic intensity was estimated from a 
compilation of human perception and the resultant 
casualties. 
Since 1 April 1996, it has been measured automatically 
with seismic intensity meters and announced rapidly to 
the public and officials. There are about 600 JMA 
seismic intensity observation stations throughout 
Japan as of April 1996. 
 
 

IMM=1.85・IJMA-2.04 (σ=0.315) 
       by Shabestari & Yamazaki (1998) 
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Accelerometers for JMA Intensity Determination 

By the collaboration with 
municipalities and NIED, the 
number of Accelerographs used for 
Intensity determination has been 
increased. 
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Calculated Value JMA Intensity (keisoku Shindo) 
0~0.4 Intensity 0 
0.5~1.4 Intensity 1 
1.5~2.4 Intensity 2 
2.5~3.4 Intensity 3 
3.5~4.4 Intensity 4 
4.5~4.9 Intensity 5 Lower 
5.0~5.4 Intensity 5 Upper 
5.5~5.9 Intensity 6 Lower 
6.0~6.4 Intensity 6 Upper 
6.5~ Intensity 7 
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JMA Seismic Intensity is now divided into 10 scales. 

Because "intensity 5" or "intensity 6" didn't necessarily 
correspond to the same degree of damage, "intensity 
5" and "intensity 6" have been divided into two scales : 
"intensity 5 Lower" and "intensity 5 Upper" and 
"intensity 6 Lower" and "intensity 6 Upper" respectively, 
since 1 October 1996. The intensity is now divided into 
10 scales as a result. 

7 scales to 10 scales, in 1996 
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Principle of Seismometer 
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Apparatus 

Detection Record

Seismoscope

Seismograph
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The first Seismoscope in the history 

張
衡
的
地
動
儀
（
復
元
模
型
） 

河
北
省
唐
山
市
地
震
記
念
館 



14 

The first modern seismograph was made by 
Ewing, Gray and Milne, the British teachers 

invited by Japanese government.  
They started  observation of earthquakes in 1872. 

Tokyo Meteorological Observatory started the 
routine observation in 1875. 

The Seismological Society of Japan was 
established at that time due to the experience of 

the Yokohama Earthquake (1880)  
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http://neic.usgs.gov/neis/seismology/history_seis.html 

The Early History of Seismometry (to 1900) 
By James Dewey and Perry Byerly 
 
Their survey is limited in literatures of Europe and 
Regions Influenced by Europe. 
Until Medieval Period, Europe had been in the 
backwardness. The survey ought to be done in 
literatures of Arabs, Turkey, India, China and so on. 

http://neic.usgs.gov/neis/seismology/history_seis.html
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What devil is it? 
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Two Important Technical Terms 
for Seismographs 

+ Dynamic Range 
+ Frequency Characteristics 
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Dynamic Range 

Largest Recoverable Level 

Largest Recoverable Level 

Time 
Smallest Recoverable Level 

Smallest Recoverable Level 

Clipping 

System noise 
Ambient noise 
Resolution of A/D converter 

Upper limit of 
Seismometer 
Amplifier 
A/D converter 

Within this range 
the signal recorded 
can be recovered  



19 

Dynamic Range 

Definition 
The Largest recoverable Level 

The Smallest recoverable Level 

Usually described by [db] 

20log  ( Ratio )   [db] 
10 

+6 db ～ 2 times 
120 db ～ 1,000,000 times 
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Wide Dynamic Range System 

Strong Motion Seismograph 
Instruments which can record the ground motion  
so strong as destructive one without clipping. 

Seismograph (high-magnification or sensitivity) 

Instruments which can record the ground motion  
so small as teleseismic one or microtremor without  
distortion. 

Observation systems or Observatories which can  
record from very small vibration to strong motion 
simultaneously without distortion. 
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Two Important Technical Terms 
for Seismographs 

+ Dynamic Range 
+ Frequency Characteristics 
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Most popular type of seismometer is composed of a  
pendulum, and there are some different types which  
show an importance in the seismology.  
Particularly, the moving coil seismometer connected  
to an electric amplifier has obtained the majority  
due to its simplicity in operation.  
 
The main target of this text is such type of seismograph. 
 
For this purpose, a step-by-step explanation is preferable. 
 * Dynamics of Pendulum 
 * Mechanical Seismograph 
 * Moving Coil Type Electro-magnetic Seismometer 
 * Feed Back Seismometer 
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Dynamics of Pendulum 

Simple Mass-Spring Pendulum 

Equation of equilibrium  
   Mg=k(LM-L0) 

equilibrium  
point 

Exerted force 

Gravity 

Stable situation 

This gives the spring constant 
k= Mg/(LM-L0) 
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Dynamics of Pendulum 

Simple Mass-Spring Pendulum 

Exerted force 

Gravity 

The mass is displaced a little. 

Exerted force 
( ){ }k L L kxM − +0

Equation of motion 

( ){ }M d x
d t

Mg k L L kxM

2

2 0= − − + ,

By using the relation for k 

M d x
d t

kx or d x
d t

k
M

x
2

2

2

2= − = − .Eq. (1) 
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d x
d t

k
M

x
2

2 = −

To solve the second order differential equation 

assume that the time dependence of x is sinusoidal with a constant x0 and 
angular frequency ω0,. 

x x ei t= 0
0ω

Then, 
− = −ω0

2 x k
M

x

This require 
 

ω0 = ±
k
M

and 

T M
k0

0

2 2= =
π

ω
π Natural Period of Pendulum 

Natural Angular frequency of Pendulum 
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Dynamics of Pendulum 

Simple Mass-Wire Pendulum 

mg 
mgsinθ 

mgcosθ 

When the pendulum is displaced to  
a small angle θ ,the force of gravity 
mgsinθ with arm length L  exerts  
a moment about O equal to-( mg Lsinθ).  
As the inertial moment of the mass is 
mL2 , the equation of motion is  
 
 
For values of θ small enough that θ   
is negligible compared to, then 
 
 
The equation of motion  
 
 
The natural period of this pendulum is  

mL d
d t

mgL2
2

2

θ θ= − sin .

sin .θ θ θ θ θ= − + ≈
3 5

6 120


mL d
d t

mgL or d
d t

g
L

2
2

2

2

2

θ θ θ θ= − = − .

T L g0 2= π
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Dynamics of Pendulum 
Horizontal Pendulum 

Resolve the gravity force mg acting  
at the center of mass into components 
parallel to the rotation axis, mgcosi,  
and perpendicular to this direction,  
mgsini.  
When the mass is in the plane  
determined by the vertical and the  
axis of rotation, called the neutral  
plane, this pendulum is in equilibrium.  

mg 

mgcos i 

mgsin i 

mgsinicosθ 

mgsinisinθ 
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Dynamics of Pendulum 

mgsin i 

mgsinicosθ 

mgsinisinθ 

When the pendulum is displaced from the  
neutral plane through an angle θ about the  
axis of rotation, the latter component with  
arm length, r, gives the restoring moment 
-mgrsinisinθ.  
Thus, the equation of motion is 
 

K d
d t

mg i r
2

2

θ θ= − ⋅sin sin .

Using the assumption of small θ, this is  
approximated in 

K d
d t

mgr i
2

2

θ θ= − ⋅sin .

The natural period is 

T K
mgr i0 2= π

sin
.

Horizontal Pendulum 
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Dynamics of Pendulum 
Hinge having finite stiffness 

If the pivot at O is not perfectly flexible, but  
consists of a thin metal strip, an additional  
restoring moment is exerted by this hinge.  
Such strip is equivalent to another spring  
of which equivalent stiffness is kH connected  
at the point two thirds of the strip length, l,  
from the pivot point. The equivalent stiffness  
is given by the flexural stiffness EI. 
 k E lH I= 3 3/
The equation of motion is 

K d
d t

mg i r k l
H

2

2

22
3

θ θ θ= − ⋅ − 





sin sin sin .

Then, 

K d
d t

mgr i E
lI

2

2

4
3

θ θ= − + 











sin .

Horizontal Pendulum 



30 

Dynamics of Pendulum 
Hinge having finite stiffness 

The natural period of the pendulum with hinge strip of finite stiffness is 

T K mgr i E
lI0 2 4

3
= + 











π sin .

Even though the inclination angle, i, is very small or zero, the stiffness of such  
strip makes the natural period finite. If the strip is enough stiff, the inclination  
of axis can not give a considerable influence to the natural period.  
Zero-stiffness hinge is achieved by Zöllner suspension.  
This can make the natural period infinite when the rota- 
tion axis becomes vertical. In such case, the system can  
not be in the equilibrium therefore unstable. The maxi- 
mum stable period achieved by a standard instrument is  
around 30 seconds. 

Horizontal Pendulum 
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Suppose that the supporting spring is vertical 
for simplicity. 
The gravity force acting at the center of  
mass, C, at distance r from the center of  
rotation, O, gives a moment which tends  
to pull down the pendulum. This moment  
is the product of the force component  
mgcosθ and arm length r.  
The elongated spring gives a restoring  
moment, k1a(L-L0)+k1a2sinθ.  
Suppose the system is in equilibrium when the bar lays horizontally, then 
mgr=k1a(L-L0) .  
The equation of motion with the assumption of small θ 

Dynamics of Pendulum 
Spring Supported Hinged Bar 

mg 

r 

mgcosθ 

k1 

a O 

C 

K d
d t

k a
2

2 1
2θ θ= − .
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Dynamics of Pendulum 
Spring Supported Hinged Bar 

 If the pivot consists of an elastic strip, the equation of motion is 
 

K d
d t

k a E
lI

2

2 1
2 4

3
θ θ= − +( ) .

This shows the difficulty to realize a long natural period, i.e.,a big mass 
and very soft spring and strip are required. Therefore  much effort has  
been paid in the history of seismometry to obtain a long period pendulum. 
Ewing type and La Coste type pendulum are examples of the results. 

The natural period of the pendulum with hinge strip of finite stiffness is 

T K k a E
lI0 1

22 4
3

= +π ( ) .
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Dynamics of Pendulum 
Damping 

Pendulum suspended by  
a parallel arrangement of  
spring and dashpot  
representing the damping.  

Damping is the phenomenon in that the  
oscillation slows down due to dissipation  
of the oscillation energy. 

The portion of the force causing the damping,  
which is proportional to the mass velocity, is  
called the viscous damping. Its proportionality  
factor is the coefficient of viscous damping.  
This can be represented by a dashpot. 
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Dynamics of Pendulum 
Damping 

Measure of damping 

v a a a a= = =1 2 2 3 

Damping Ratio 

Damping Factor 

e ( )2log11 vh π+=

Coefficient of viscous damping=2hω0 



35 

Dynamics of Pendulum 
Damping 

The equation of motion damped pendulum is 

d x
dt

x h dx
dt

or

2

2 0
2

02= − −ω ω ,

d x
dt

h dx
dt

x
2

2 0 0
22 0+ + =ω ω .
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Dynamics of Pendulum 
Damping 

h < 10. Under damped 

( ) ( ) ( ) ( )
( ) ( )

x t h t A i h t B i h t

C h t h t

= − ⋅ − + − −





= − ⋅ − +

exp exp exp

exp sin .

ω ω ω

ω ω φ

0
2

0
2

0

0
2

0

1 1

1
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Dynamics of Pendulum 
Damping 

h = 10. Critically damped 

( ) ( )[ ]x t t C C t= − +exp .ω0 1 2
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Dynamics of Pendulum 
Damping 

h > 10. Over damped 

( ) ( ) ( ) ( )x t h t C h t C h t= − − + −





exp cosh sinh .ω ω ω0 1
2

0 2
2

01 1
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Dynamics of Pendulum 
Forced Oscillation of a Damped Pendulum 

Earth = Frame 

Ref. P. 

x 

y 

Steady Point 

Everything including the frame fixed to the  
ground moves and gives the influence to  
the pendulum, when seismic waves arrive.  
This situation is of the forced oscillation. 
Such influence is given as the additional  
inertial force due to the acceleration of the  
ground or the frame .  
 
The equation of motion is 
 

− M d y
dt

2

2

d x
dt

h dx
dt

x d y
dt

2

2 0 0
2

2

22+ + = −ω ω .
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Dynamics of Pendulum 
Forced Oscillation of a Damped Pendulum 

Steady Point and Response 

If the mass of the pendulum can keep its position stable even in the vibrating  
circumstance, it would be possible to know the ground motion by measuring  
the relative motion of pendulum with respect to the frame.  
Once upon a time, such steady or approximately steady pendulum mass had  
played very important role in the design and principle of seismometers.  
Today, we think that the relation between the ground motion as the input and  
the mass motion relative to the frame as the output is important in the  
seismometry instead of such steady point.  
 
Such relation is called the response. In the frequency domain, it is easy to  
obtain the response by calculating  
the ratio of the relative mass motion to the ground displacement. 
 

Input that we want to measure. Output that we can measure. 
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Dynamics of Pendulum 
Forced Oscillation of a Damped Pendulum 
Response in the Frequency Domain 

To know the rough feature of the response at each frequency, we assume  
that the ground displacement, y, is a sinusoidal function with angular  
frequency, ω, (y=ymexp(iωt)).  The relative displacement of the mass, x,   
may also be a simple oscillation (x=xmexp(iωt)). Then, the equation of  
motion gives 

− + + =ω ω ω ω ω2
0 0

2 22x ih x x ym m m m .
Then, 

( ) ( )
− =

− −
x y

ihm m
1

1 2 0 0
2ω ω ω ω

.

Or 
( ){ } ( )

( ) ( )
( )

− = − +

− = −
−

−









 +−

x y h

x y
h

N

m m

m m

1 1 4

2
1

2

0
2 2

2
0

2

1 0

0
2

ω ω ω ω

ω ω
ω ω

π

,

arg tan .

Amplitude Response 
Characteristics 

Phase Response 
Characteristics 

ω0 is the fixed value for 
each seismometer 
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Dynamics of Pendulum 
Forced Oscillation of a Damped Pendulum 

Low Frequency Range.  
When the ground moves forth and back very slowly at a period much longer  
than the natural period of the pendulum, the mass follows exactly the  
movement of the ground. There is not any relative motion between the mass  
and the frame.  
In other words, when the period of the ground vibration increases towards  
infinite, the amplitude or the relative movement (pendulum versus frame)  
tends towards zero.  
 
Put                    is much larger than 1.  
 
Then,                2 is much smaller than                4 and 
 

( )ω ω0

( )ω ω0 ( )ω ω0
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( )

( ) ( ) .2tan2tanarg

,

1

0

1

2
0

π
ωω

ωω

≈








∞−
−

−≈








−
−

−≈−

≈−

−− hhyx

yx

mm

mm

Namely, 
( ) ( )− ≈ 〈〈x y i atm m ω ω ω ω0

2
0 .

( ){ } ( )

( ) ( )
( )

− = − +

− = −
−

−









 +−

x y h

x y
h

N

m m

m m

1 1 4

2
1

2

0
2 2

2
0

2

1 0

0
2

ω ω ω ω

ω ω
ω ω

π

,

arg tan .

( ) ( )

( ) ( )
( )

.22tanarg

,41

2
0

01

2
0

24
0

π
ωω

ωω

ωωωω

Nhyx

hyx

mm

mm

+









−=−

+=−

−

( ) ( ) ( )

( ) ( ) .22tanarg

,11

0

1

2
0

2
0

4
0

π
ωω

ωωωωωω

Nhyx

yx

mm

mm

+







−=−

===−

−

( ) ( )( ) .1 2
0

2 ωω mm yix −≈
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Dynamics of Pendulum 
Forced Oscillation of a Damped Pendulum 

 
 
This means that the response tends to zero as the frequency becomes smaller  
and is proportional to the ground acceleration.  
 
Also this shows that the sensitivity of the pendulum to acceleration at the low  
frequency is proportional to the square of its natural period because T0=2π/ω0.  
 
A long natural period was achieved by a very small value of k, i.e., a very soft  
spring. Unfortunately, such soft and sensitive spring suffers a considerable  
influence of temperature variation and of the Brownian motion of air molecule. 
The natural period of such pendulum can not be stable. Thus, the sensitivity of the  
pendulum to acceleration at the low frequency neither can be stable. This makes 
difficult to recover the ground motion in the low frequency range.  
Therefore, long period pendulum was the most important and difficult problem  
of instrumental seismology for many years. 

( ) ( )( ) .1 2
0

2 ωω mm yix −≈ ( ) ( ).1
2

2

2
0

tytx
dt
d⋅−≈

ω
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Dynamics of Pendulum 
Forced Oscillation of a Damped Pendulum 

Intermediate frequency range. 
If the period decreases, the amplitude increases and at the natural period the  
amplitude reaches its maximum value. This phenomenon is the resonance and  
the natural period is also called the resonant period.  
The reciprocal of resonant period is the resonant frequency. The natural  
angular frequency is 2π times of it. 
Put                       and                                              in the formula.  
Then,  
 

( )ω ω0 1≈ ( ) ( )1 20
2

0− 〈〈ω ω ω ωh

( ){ } ( )

( ) ( )
( )

− = − +

− = −
−

−









 +−

x y h

x y
h

N

m m

m m

1 1 4

2
1

2

0
2 2

2
0

2

1 0

0
2

ω ω ω ω

ω ω
ω ω

π

,

arg tan .

( )

( ) ( )
.2

0
2tanarg

,41

01

2
0

2

π
ωω

ωω

Nhyx

hyx

mm

mm

+





 −

−=−

=−

−

( ) .
20

2tanarg

,2

1

0

π

ωω

=






−

−≈−

≈−

− hyx

hyx

mm

mm
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Dynamics of Pendulum 
Forced Oscillation of a Damped Pendulum 

If h is much smaller than 1, the response has a big value near the natural  
frequency. This is known as the resonance.  
 
The condition 
 
 
limits the value of                 as 

( ) ( )1 20
2

0− 〈〈ω ω ω ωh

( )ω ω0

( ) hhhh ++〈〈〈〈−+ 2
0

2 11 ωω

The greater value of h gives the wider frequency range in which the relative  
displacement is proportional to the velocity of the ground motion with the  
factor 1/2h. 

( ) ( ) .2 00 ωωωω ≈≈− athiyx mm
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Dynamics of Pendulum 
Forced Oscillation of a Damped Pendulum 
High frequency range.  
If we further decrease the period, namely, increase the frequency of the ground  
motion above the natural frequency, the pendulum’s mass lags behind the  
ground vibrations and the amplitude again decreases. At the very high  
frequency, namely, short period of the ground motion, the mass does not move  
at all.  
This means that the relative movement between the mass and the frame is  
equal to the ground motion itself.  
Put                 is much greater than 1 in the  formula. Then, 
 

( )ω ω0

( )− ≈ − ≈ −
−








=−x y x ym m m m1 0
1

01, arg tan

Namely,  
-xm=ym.  
The relative displacement is proportional to the ground displacement in this  
frequency range, or the mass of pendulum is steady in this frequency range. 
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Dynamics of Pendulum 
Forced Oscillation of a Damped Pendulum 

In High Frequency Range. 
Proportional to the ground displacement with 
the constant 1. 

Intermediate frequency range. 
Proportional to the velocity with the constant 
1/2h. Big value of h makes this frequency  
range wide. 

In Low Frequency Range. 
Proportional to the ground acceleration, with 
the constant proportional to the squre of the  
natural period. 

The Displacement of the mass relative to 
the frame (ground) is: 



49 



50 

Dynamics of Pendulum 

Summary 
The dynamic behavior of simple pendulum described above is the core of the  
principle of seismometer.  
 
+ The natural angular frequency, ω0, and  
+ the damping constant, h,  
 
are two important parameters presented. 
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Mechanical Seismograph 
    

In extremely simple words, the mechanical  
seismograph records the ground motion on  
the paper fixed to the frame with a pen  
connected to the pendulum mass. The  
displacement of the pen is proportional to 
that of the mass and the proportionality  
constant is called the static magnification,  
which defines the characteristics of a  
mechanical seismograph with the natural  
period and the damping constant of the  
pendulum.  
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In High Frequency Range. 
Displacement Seismograph. 
For  

Intermediate frequency range. 
Velocity  Seismograph. 
For 
. 

In Low Frequency Range. 
Accerelation Seismograph. 
For 
 

Mechanical Seismograph is arranged as 

h ≤ 10.

h >> 10.

h ≈ 0 6.

Mechanical Seismograph 
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Optical Seismograph 

The adjustment of the damping depends  
on the mechanical damper which make  
use of the viscosity of silicon oil, air and  
so on. Also, a great effort had been paid  
to minimize the friction between the pen  
and recording paper, which does act as  
solid damper. 
Optical lever which magnifies the mass motion in place of mechanical  
one, could give a solution for the friction of pen. This is called the  
optical seismograph or mechanical seismograph with optical recording system.  

Mechanical Seismograph 
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Electro-Magnetic Seismograph 

h 

The moving coil type seismometer is the  
most popular transducer for seismometry .  
This consists of a permanent magnet and  
a coil of wire of which resistance is R0.  
The former is fixed to the frame and to the  
ground, the latter is firmly connected to the  
inertial mass of the pendulum. The relative  
motion between the two parts produces the  
electromotive force Eem in the coil.  
.  
E G dx

dtem = ⋅

The proportionality factor, G, is called the  
electro-dynamical constant, which is given  
by the product of the flux density of the  
magnetic field and the length of the coil wire in it.  

related to coil resistance 
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When a resistance, Rs, so called the  
shunt resistance, is connected across the  
two ends of the coil, the electromotive force 
induced by the mass motion is proportional  
to the relative velocity of the mass. Thus,  
the current which flows in the coil, I, is  
proportional to the relative velocity of mass  
and inversely proportional to the sum of the  
shunt resistance and that of the coil itself 

I E
R R

G
R R

dx
dt

em

s s

=
+

=
+

⋅
0 0

h 

Electro-Magnetic Seismograph 
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h 

That current induced in the coil simultaneous- 
ly produces the electromagnetic force, Fem,  
which is the electro-dynamical constant times  
of the current itself, i.e., proportional to the  
mass velocity  

F GI G
R R

dx
dtem

s

= =
+

⋅
2

0

This force acts as an additional viscous  
damper (electromagnetic damper) as shown  
in the following. 
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Electro-Magnetic Seismograph 
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h 
The effect of Fem is represented by the  
electromagnetic damping constant, he. 

( )
h G

M R Re
s

=
+

2

0 02 ω

Here after, we use the notation, hm, for the  
damping constant in case of Rs is infinite  
(mechanical damping constant).  
The total damping constant for the entire  
system, h, is the sum of the mechanical  
damping constant, hm and the electro- 
magnetic damping constant, he. 
 h h hm e= +

Electro-Magnetic Seismograph 
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h 

The potential difference across the shunt  
resistance,  
   e(t)=IRs 
, i.e., the output voltage of this seismometer, 
is proportional to the relative velocity of the mass. 
This is because 

e t IR GR
R R

dx
dts

s

s

( ) = =
+

⋅
0

The shunt resistance controls also magnification. 
 
In the open circuit case, the shunt resistance becomes  
infinite and 

Electro-Magnetic Seismograph 

dt
dxGte =)(
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Electro-Magnetic Seismograph is arranged as 
R
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In High Frequency Range. 
Velocity Seismograph. 
For  

Intermediate frequency range. 
Accerelation  Seismograph. 
For 
. 

In Low Frequency Range. 
      Non 

h >> 10.

h ≈ 0 6.

Electro-Magnetic Seismograph 
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Summary 

The electro-dynamical constant, G,  
the value of the coil resistance, R0,  
the shunt resistance, Rs,  and  
the electro-magnetic damping constant, he,  
are introduced.  
 
G plays a similar role for the moving coil type seismometer as the static  
magnification for mechanical ones.  
Rs is the important tool to adjust the electromagnetic damping constant, he.  
R0 is also required to calculate this constant. 
 

Electro-Magnetic Seismograph 
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G 
R0 

Rs 

M 
R0 

1/T0 

hm 
hc 

Rc 
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Electro-Magnetic Seismograph 

Annex-1 
Once upon a time, moving coil type seismometer connected directly or via an  
attenuater circuit to the galvanometer had been widely used in seismometry.  
For such seismometer-galvanometer systems, the relative movement between the  
mass and the ground becomes more complicated because galvanometers itself also  
have oscillatory characteristics of their own.  

Seismometer 
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A seismometer-galvanometer circuit operates as a feedback system so that not only  
the seismometer but also the galvanometer gives influence to the entire appearance  
of the seismogram. Seismologists in old days arranged the frequency characteristics  
of their seismographs nearly optimum for many particular purposes by a proper  
choice of the combination of the seismometer’s constants and the galvanometer’s  
ones. Today, we can achieve easily the optimum frequency characteristics by  
designing electric filter circuit or, if necessary, by applying digital filter to recorded  
seismic signals. The explanation for such seismographs is separated from the main  
description (See Appendix-2) 
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h The simplest feed back circuit is Shunt Resistance. 
Feed back force is produced by the transducer’s 
coil itself. This force is proportional to the velocity of 
the pendulum mass and gives additional damping 
force. 

Feed Back Seismometer 

e t IR GR
R R

dx
dts

s

s

( ) = =
+

⋅
0

( )
d x
dt

h G
M R R

dx
dt

x d y
dts

2

2 0

2

0 0
0

2
2

22
2

+ +
+









 + = −ω

ω
ω .

The maximum value of the damping factor is given by the minimum value of Rs. A 
big value can not be obtained by only one resistor.  
Note Rs=0 gives he=G2/2Mω0R0 that can become just 3~10. 
A possible way to make he bigger is to use the negative shunt resistance. 
Namely, to attach a electronic circuit that make the voltage difference to the 
terminals of seismometer with the opposite sense compared with that caused by 
the relative motion of pendulum. 

he 
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Example:Moriya et al. 1998: 
A specially designed electronic circuit can make this 
additional damping factor as big as 80 or more. Then, 
the output voltage imbalance becomes proportional to 
the ground acceleration over a wide frequency range 
from DC. MTV1C (f0=1.0Hz) obtained new natural 
frequemcy (f0=0.19Hz) by the circuit shown below. 
 
The same principle is used by LE3D/5s manufactured 
by Lennartz Inc. The seismometer actually L22D of 
Mark Product (f0=2.0Hz) is used and obtained the new 
natural frequency (f0=0.19Hz). 

A circuit diagram to obtain a negative resistance 
and secondary natural frequency. 
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Feed Back Seismometer 

The feedback seismometer has two  
transducers.  One is the sensor to  
detect the mass movement, another  
is the feedback coil to give the  
negative feedback force, , to the  
pendulum. The output of the former  
detector is divided in two. One directly  
becomes the output signal of the seismometer, another is sent to the feedback  
circuit. This amplifies, arranges and sends the feedback signal to the feedback  
coil which gives the feedback force to the pendulum. The signal is arranged  
for that this feedback force is proportional to displacement, velocity or  
acceleration of the pendulum mass depending on the purpose. 

( )d x
dt

h dx
dt

x d y
dt

f x
2

2 0 0
2

2

22+ + = − −ω ω .
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Feed Back Seismometer 
If the feedback force is proportional to the  
mass displacement (                         ), this  
force acts as additional restoring force.  
The equation of motion is 
 

( )f x k xd= 2

d x
dt

h dx
dt

k M x d y
dtd

2

2 0 0
2 2

2

22+ + + = −ω ω( / )

This means that the natural period of the pendulum  
apparently becomes shorter. The displacement of  
the mass is proportional to the ground acceleration  
in the frequency range lower than the modified  
resonant frequency (curve b). Since the  
natural period is much shorten, the response flat to  
acceleration is performed in a wide band from DC to the shorten natural period.  
Thus, this seismometer theoretically does not have longer period side limit for  
observation, although the practical limit is given by ambient noise or system noise.  
This type is called also the force balanced type. Most of strong motion seismo- 
graphs commonly in use belong to this type. 
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Feed Back Seismometer 
If the feedback force is proportional to the mass  
velocity (                      ), this force acts as an  
additional viscous damping.  

( )f x k dx
dtv= 2

d x
dt

h k M dx
dt

x d y
dtv

2

2 0
2

0
2

2

22+ + + = −( / ) .ω ω

This means that the damping constant apparently  
becomes big. Thus, the displacement of the mass  
is proportional to the ground velocity in a wide  
frequency range (curve c). 
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Feed Back Seismometer 
If the feedback force is proportional to the ground  
acceleration (                        ), this force acts as an  
additional inertial force.  
 

( )f x k d x
dta= 2

2

2

( )1 22
2

2 0 0
2

2

2+ + + = −k M d x
dt

h dx
dt

x d y
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This means that the natural period apparently  
becomes longer. Choosing an appropriate damping,  
the displacement of the mass is proportional to the  
ground displacement in the range higher than the  
modified natural frequency.  
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Feed Back Seismometer 

Benefits of Force Balanced type seismometer:  
 
The instrumentation for seismology has required highly sensitive at long period  
and stable seismometer for many years. The equation of motion 
 
 
 suggests that bigger M, the heavier mass, and smaller k, which means softer  
spring can compose longer period pendulum. A huge mass suspended by a very  
soft spring seems to be a contradictive requirements. Moreover, pendulum  
consisting of very soft spring is unstable or so sensitive as to be affected by the  
temperature variation and by the Brownian motion of air molecules. 
 

M d x
dt

kx or d x
dt

x where k M
2

2

2

2 0
2

0
2= − = − =ω ω,

Feedback type seismometer gives a solution for this difficulties. For example,  
 
 
means that the natural frequency of a displacement feedback seismometer is  
determined by . 

d x
dt

h dx
dt

k M x d y
dtd

2

2 0 0
2 2

2

22+ + + = −ω ω( / )

Mkd /2 22
0 +ωπ
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Feed Back Seismometer 
If kd

2 is sufficiently bigger than ω0
2M , the apparent natural period is controlled  

almost only by kd
2. As kd

2 is determined only by the feedback circuit, its characteris- 
tics alone control the apparent natural period. Today, the highly developed  
electronics can guarantee the stability for the characteristics of the circuit and  
therefore for the natural period and the sensitivity of such seismometer in long  
period range. Once the sensitivity is stabilized sufficiently, it is very easy to convert  
the output voltage variation to displacement, velocity and acceleration of the ground  
motion by data processing or by other electric circuits. 

Feedback system of force balanced type can stabilize the sensitivity of seismo- 
meter in the frequency range lower than the modified natural period. 
Therefore it makes possible to observe ground motion from modified natural  
frequency to such long period accerelation as DC. 

A BROADBAND SEISMOMETER IS ACHIEVED. 
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Feed Back Seismometer 

The negative feedback force makes the amplitude of the mass motion small.  
Thus, the linearity of the seismometer is bettered and a wide dynamic range  
is achieved. Moreover, a huge pendulum mass is not necessary. Smaller mass 
is more controllable as shown by M at the denominator. 

The feed back seismometer makes possible to achieve small and very sensitive  
seismometers which covers a wide dynamic range and a broad frequency band.  
New types of strong motion seismographs and of long period seismographs  
employ the feed back system.  
 
 
It seems that this type will dominate over the seismic observation in near future.  

This type is getting dominate over the seismic observation today. 
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Pole-Zero Representation 



The substitution of iω with s gives the transfer function in s-domain. 
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Example: Moving Coil Type Seismometer 
The equation of motion for pendulum's displacement of a seismometer  
relative to the ground x(t) induced by the ground motion y(t) is given by 
 
       
 
where ω0 denotes the natural frequency of the pendulum, h the damping factor.  
The response in the frequency domain or the transfer function is given by  
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Example: Moving Coil Type Seismometer 

Transfer function in s-domain is 
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Example: Filter equivalent to a Simple Moving Coil Type Seismometer-2 
 
In previous example, the recursive filter that gives the relative displacement of  
pendulum -xm for ground displacement ym is given. Usually, the data obtained  
by digital recorder are given in Digit and a constant is given for conversion to  
Volts. The potential difference, the output from seismometer is given as follows. 
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where (iω) shows the effect of differentiation due to moving coil type transducer,  
R0 the coil resistance, Rs the shunt resistance, G0 the product of the sensitivity  
of seismometer to the conversion constant of digital recorder. Therefore, the  
system response is 
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This has an equivalent digital filter. The corresponding transfer function in the  
s-domain is 
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Today, many seismic observation organizations open their data in public via Internet  
for that any researcher can make use of them. Some of these organizations provide  
the information of instrumental characteristics with Pole-Zero representation. Then,  
it may be useful to show the way to reconstruct the transfer function in the frequency  
domain from given value of poles and zeros.  

Example: F-NET, NIED 



Exercise: Reconstruction of transfer function from given poles and zeros.  

Suppose that the following data are given  
for an observation system. Actually, these  
are of STS-2 feedback type seismometer. 
 
Normalization factor:  A0=5.42787E+07 
Normalization frequency: 0.02 (Hz) 
Complex zeroes(Rad/sec): 
 i  real part          imaginary part Index           
  0  0.000000E+00  0.000000E+00 X0 
  1  0.000000E+00  0.000000E+00 X1 
Complex poles(Rad/sec): 
  i  real part         imaginary part  Index 
 0 -1.247510E+02  -4.171480E+02 x0 
   1 -1.247510E+02  4.171480E+02 x1 
   2 -4.873870E-02  -1.552120E-02 x2 
   3 -4.873870E-02  1.552120E-02 x3 
   4 -2.513300E+02  0.000000E+00  x4 
Sensitivity:             G0=6.291456E+08 (digit/(M/Sec)) 
Frequency of sensitivity: 0.02 (HZ) 
The normalized amplitude spectra of the transfer function are given as follows  

Re s 

Im s 

X0, X1 

x1 

x0 

x3 

x2 

x4 

Fig. 45.2 Configuration of poles  
and zeros for the example. 



The normalized amplitude spectra of the transfer function are given as follows. 
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Normalizing factor A0 is the reciprocal of this value  at f=0.02 (Hz).   
at f=0.02 Hz. The reconstructed transfer function is given as follows. 
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The first term corresponds to two zeros at the origin. Calculation of these spectra  
can be achieved even with handy calculator.  



Fig. 45.2a Amplitude (Top) and Phase (Bottom) response of STS-2 feed back type  
seismometer. These are calculated by the formulae with poles and zeros data given  
in the page 53. Calculation has been done easily by MicroSoft Excel. 
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Exercise: CMG40T 
Normalizing Factor   Ao= -0.314 
Normalizing Frequency    1.0(Hz)  
Complex Zeros(1/sec) 
       i          Real Part         Imaginary Part 
       0         0.0E+00             0.00E+00 
       1         0.0E+00             0.00E+00 
       2         1.59E+02           0.00E+00 
Complex Poles(1/sec) 
       i           Real Part       Imaginary Part 
      0          -2.356E-2           2.356E-2 
      1          -2.356E-2          -2.356E-2 
      2          -5.00E+01          0.00E+00 
Sensitivity      Go=804 (V/m/s) 
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Exercise: CMG40T 
Normalizing Factor   Ao= -0.314 
Normalizing Frequency    1.0(Hz)  
Complex Zeros(rad/sec) 
       i          Real Part         Imaginary Part 
       0         0.0E+00             0.00E+00 
       1         0.0E+00             0.00E+00 
       2         9.99E+02           0.00E+00 
Complex Poles(rad/sec) 
       i           Real Part       Imaginary Part 
      0          -1.480E-1           1.480E-1 
      1          -1.480E-1          -1.480E-1 
      2          -3.14E+02          0.00E+00 
Sensitivity      Go=804 (V/m/s) 
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3.4.5. Analogue Filters and Their Transfer Function. 
 
There are several electronic filters that are commonly used for seismometry. Their  
transfer functions are introduced in the following. It is matter of course that each  
circuit has its equivalent digital filter. 

Fig.46 Top RC high pass filter. Its circuit, transfer function and the response  
characteristics. Bottom RC low pass filter. 
 



(2) Active filter. 
 
Today, many electronic circuits with known characteristics are widely used for filtering.  
Some of those characteristics have their proper names. The requirements for the  
filters may be flat amplitude characteristics in the pass band, sharp cut off, flat delay  
characteristics in the pass band. The last one means linear phase characteristics,  
because delay is defined as phase differentiated by the angular frequency. 

Fig.47 Schematic circuit for active filter composed of OP amp. and corresponding  
transfer functions. 
 



Butterworth filter has its amplitude characteristics  
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where ωc is the cut off angular frequency. n denotes the order of the filter and the  
slope of amplitude characteristics in the stop frequency band. Namely, n-order filter  
has the decay 20n db/oct.. The transfer function itself is given for low pass filter 
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and for high pass filter 
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where ωc is the cut off angular frequency and other coefficients are given in the  
following table.  



                                       Table 10 Coefficients for Butterworth filter 
 
n Q  Ω0  Ωa  C1 C2 C3 
2 0.707107 1.000000 ---  1.4142 0.7071 --- 
3 1.000000 1.000000 1.000000 1.3926 3.5468 0.2025 
4 0.541196 1.000000 ---  1.0824 0.9239 --- 
 1.306536 1.000000 ---  2.6131 0.3827 --- 
5 0.618034 1.000000 1.000000 1.3541 1.7529 0.4213 
 1.618034 1.000000 ---  3.2361 0.3090 --- 

The value of Cn (n=1, 2, 3) in Table 10 corresponds to the actual value of capacitor  
Ca (a=1, 2, 3) in Fig.47 (right) but normalized one, i.e., Ca=Cn/ωcR, where R is the  
resistance selected in advance. For high pass filter (Fig.47 left), Rn (n=1, 2, 3) are  
calculated by 1/Cn (n=1, 2, 3) in Table 10. The value of the actual resistor Ra  
(a=1, 2, 3) in Fig.47 (left) is given by Ra=Rn/ωcC, where C is the value of the  
capacitance selected in advance.  
 
Butterworth filter has plane amplitude characteristics in the pass frequency band  
and is used for shaping of the spectra. The delay characteristics of this filter,  
however, are not flat even in the pass band. These have a peak of delay around the  
cut off frequency. This means that the shape of the signal around the cut off  
frequency in the time domain is considerably distorted by filtering operation. 



Fig.48 Amplitude and delay of (a) Butterworth filter and (b) Chevyshev filter in the 
 frequency domain. Both are plotted for the case of low pass filter 
 



Chevyshev filter : If we allow the ripple in the pass band, we can perform a sharp  
cut off. Chevyshev filter belongs to this category. The transfer function is given for  
low pass filter 
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and for high pass filter 

( )
( ) ( )( )

( ) ( ) ( ) ( )( )
,,

,,
10

1

2
00

2

2
0

2
00

2

2
0

10/

noddfor
sQss

sT

nevenfor
sQs

sT

ccac

a

cc
Rp

Ω+Ω+

Ω
Π

Ω+
Ω

=

Ω+Ω+

Ω
Π=

ωωω

ωω

The coefficients are given in the following table. 



       Table 11 Coefficients for Chevyshev filter with ripple of 0.25db in the pass band 
 
n Q  Ω0  Ωa  C1 C2 C3 
2 0.809254 1.453972 ---  1.1132 0.4249 --- 
3 1.508026 1.156992 0.767223 1.6110 6.8272 0.0885 
4 0.657249 0.674422 ---  1.9491 1.1280 --- 
 2.536110 1.077939 ---  4.7055 0.1829 --- 
5 1.035932 0.732405 0.436951 2.6625 5.0919 0.3147 
 3.875683 1.046630 ---  7.4060 0.1233 --- 

The delay characteristics of this filter are not flat in the pass band. Then, the filtering  
operation causes a considerable distortion of waveform in the time domain.  



Bessel filter: can perform flat delay characteristics in the pass band. However, the  
cut off is not sharp. The amplitude characteristics are also flat in the pass band. The  
transfer function is given by the same formulas as those of Butterworth filter. The  
coefficients are given in the following table. 

Table 12 Coefficients for Bessel filter 
n Q  Ω0  Ωa  C1 C2 C3 
2 0.577350 1.732051 ---  0.6667 0.5000 --- 
3 0.691047 2.541547 2.322165 0.5647 0.8136 0.1451 
4 0.521935 3.023265 ---  0.3453 0.3169 --- 
 0.805538 3.389366 ---  0.4753 0.1831 --- 
5 0.563536 3.777894 3.646739 0.3601 0.4171 0.1280 
 0.916479 4.261031 ---  0.4302 0.1280 --- 



Fig. 48 (continue) (c) Amplitude and delay of the Bessel filter in the frequency  
domain plotted for low pass filtered case. 



92 

Back Ground Noise 



93 

Microtremor: Background Noise of Ground Motion 
 
Short period microtremor caused by human activities such as traffic and 
industry. This reflects the shallow underground structure of sediment. 
 
Long period microtremor caused by oceanic waves. This reflects the deep 
sedimentary structure. 

Spectra of Ground Noise 

Frequency 

2-3Hz 0.1-0.5Hz 

city 

Country side 

Typhoon 
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Peterson’s Noise Model 

U.S. DEPARTMENT OF INTERIOR GEOLOGICAL SURVEY 
 

OBSERVATIONS AND MODELING OF SEISMIC BACKGROUND NOISE 
Jon Peterson 

Open-File Report 93-322 
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1st step: Select the “good” stations in the world that 
belong to IRIS, IDA, DWWSSN, CDSN, SRO, 
TERRA, RSTN. 
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2nd step: Calculate Station Noise Spectra (Power 
Spectral Density) 

How much of the lower envelope of the overlay in 
Figure 2 is a true representation of Earth background 
noise, and how much of it is shaped by 
instrument noise? 
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3rd step: Define high and low noise envelope 
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For Selection of Seismometer, the followings have to be taken into account. 
 
 Dynamic Range 
  Clipping Level 
  Noise Level 
 
 Frequency (Period) Coverage 
 
 Price  
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CMG-3T (Guralp System Ltd.) 
http://www.guralp.net/products/weak/#3T 

Episensor ES-T (Kinemetrics/OYO) 
http://www.kinemetrics.com/product_Content.asp?newsid=111 
Le-3d (Lennartz Electronic) 
http://www.lennartz-electronic.de/Pages/Seismology/Seismometers/Seismometers.html 
PMD 
http://www.eentec.com/ 

S-13 (Geotech Instruments LLC) 
http://www.geoinstr.com/s-13.htm 

Trillium (Nanometrics Inc.) 
http://www.nanometrics.ca/products/trillium/trillium_1_new.htm 

L4-3D (Mark Products) 
http://www.geoinstruments.com.au/main.htm 

STS-1 VBB & STS-2 (Streckeisen AG) 

Seismometers listed in IASPEI NMSOP Volume II) 

http://www.guralp.net/products/weak/#3T
http://www.kinemetrics.com/product_Content.asp?newsid=111
http://www.lennartz-electronic.de/Pages/Seismology/Seismometers/Seismometers.html
http://www.eentec.com/
http://www.eentec.com/
http://www.geoinstr.com/s-13.htm
http://www.nanometrics.ca/products/trillium/trillium_1_new.htm
http://www.geoinstruments.com.au/main.htm


Relation of Digital world to Analogue world 
 
Z-transform: .ti kez ∆= ω



3.4.3. Z-transform 

Discrete Fourier Transform  
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This Xk has a certain physical meaning. Amplitude and Phase of sinusoidal function. 
Let's change Eq. (14) slightly in the following way.   
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A new variable is introduced as  
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Thus, 

(15) 

(16) 

This new integral transform for discrete system is called z-transform. The  
definition Eq. (15) can be extended to relate the discrete z-transform to  
continuous Laplace transform with s=σ+iω. 
 
                                                          (17) .tsez ∆=
The product with z means the time shift of ∆t toward the future (delay) ,  
whereas that with z-1 toward the past (advance) . 



3.4.4. Filter Operator in the Z-domain 

Suppose x(t) denotes the input time series, X(ω) its Fourier spectrum, y(t) filtered  
output, Y(ω) its spectrum and F(ω) the spectrum of the applied filter. Therefore, 
 
       (18) ( ) ( ) ( ).ωωω XFY =

Suppose the filter spectra can be written, e. g., in the following form for the  
facility of discussion. 
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The inverse Fourier transform of both members gives 

( ) ( ) ( ) ( ) ( ) ( ),22 210210 ttxattxatxattybttybtyb ∆−+∆−+=∆−+∆−+



( )

( )

( ) .
2
1

2
1

)(

tnty

deY

deYz

tnti

tin

∆−=

= ∫

∫
∞

∞−

∆−

∞

∞−

−

ωω
π

ωω
π

ω

ω

Why? 
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This gives the recursive form as follows. 
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Recursive Filter 



Then, the filtered output can be calculated rapidly with defined value of  
coefficients, few precedent data of the input time series, and few precedent data  
of the output. For Eq. (19), 
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This shows an example for a recursive filter operated in the time domain.  

Note, this recursive filter has its own amplitude and phase characteristics. Then, this  
gives phase lag. The causality, however, is always kept. 



To compensate the phase lag, namely, to apply a zero-phase filter, inverse the time  
axis and apply the same filter in such way as 
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It is of course that we can employ more coefficients al and bm if necessary. The  
general form of Eq. (19) may be 
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Pay attention to the direct coincidence of the coefficients of filter wavelet in the  
time domain shown in Eq. (20) and Eq. (21) to the coefficients used in the transfer  
function in the Z-domain that is shown in Eq. (19). This shows that the analysis of  
transfer function in Z-domain gives the value of coefficients for recursive filtering  
in the time domain.  
 
Transfer function given in the frequency domain and that given in s-domain are  
analogue functions, whereas that represented by a recursive filter is applied to  
discrete time series in computer. Z-transform acts as an interpreter at the border  
between two worlds different each other, one continuous world, another digital one.  
 
It may be easy to find appropriate values for the coefficients of the recursive filter 
that is equivalent to a given transfer function, if we know a way to convert the  
transfer function given in s-domain to that in Z-domain. 
 
The relation                       or                              , however, makes the conversion 
complicated. 
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An approximation of Z-transform 
 
 
 
 
is introduced, i. e., so called bi-linear transform. 
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Comparison of Bilinear Transform with Z-Transform
at 100Hz sampling
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Fig.44a Example for comparison of bi-linear transform with z-transform  
for ∆t=0.01 sec. The difference is negligible at frequencies less than 10Hz. 
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Compare it with s=iω  for σ=0. 
 
 
 
Or 
 
 
 
This is mapping of the continuous angular frequency ω onto to the discrete one ωk  
(Fig. 44). 
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The discrete angular frequency ωk  also mapped onto the continuous one.  
 
For z=exp(iωk∆t), the bilinear transform gives 
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Fig. 44 Mapping of the continuous angular frequency ω onto the discrete frequency  
ωk. This is an example of ∆t=0.01, N=1024. The Nyquist angular frequency is π/∆t. 
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The bi-linear transform distorts the frequency axis in non-linear way shown  
in Fig. 44.  
For example, a low pass filter with a cutoff frequency of ωc in the continuous  
transfer function will have a corner frequency   
 
 
 
in the discrete function which is lower than desired. 
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To compensate this distortion, a warped angular frequency,  

( ),2tan2' t
t cc ∆⋅

∆
= ωω       (27) 

 
is introduced.  
Critical angular frequencies of the continuous transfer function are  
converted to the corresponding warped angular frequencies at first,  
then the bi-linear transform using the warped ones is applied to obtain the equivalent  
discrete transfer function.  
 
Eq. (27) shows that ω' tends to ω for small value of 
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f

f
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This means that consideration on the warped frequency is not necessary for the  
frequency much smaller than the Nyquist frequency. The natural frequency of  
seismometer is usually much smaller than the Nyquist frequency, whereas the  
anti-aliasing filter has its cut off frequency comparable with the Nyquist one.  
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Example: Moving Coil Type Seismometer 
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Transfer function in s-domain is 

Let’s introduce the warped angular frequency for ω0 
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Applying the bilinear transformation to Eq. (31) gives the simulated transfer  
function in the z-domain, 
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These coefficients of the recursive filter give approximately equivalent discrete  
transfer function.  



Exercise: Filter Equivalent to a Simple Moving Coil Type Seismometer-1. 

Fig.45.1 Filtered time series and its Fourier spectra obtained by DSEISM.EXE.  
These are equivalent to the impulse response of the relative motion of pendulum  
mass of a seismometer with the natural period T0=0.5 sec, the damping factor  
h=0.71, ∆t=0.05 and the gain G0=1.0. The phase at zero frequency should converge  
to 180 degree. It, however, is forced to be zero to avoid the numerical zero-divide. 



Example: Filter equivalent to a Simple Moving Coil Type Seismometer-2 
 
In previous example, the recursive filter that gives the relative displacement of  
pendulum -xm for ground displacement ym is given. Usually, the data obtained  
by digital recorder are given in Digit and a constant is given for conversion to  
Volts. The potential difference, the output from seismometer is given as follows. 
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where (iω) shows the effect of differentiation due to moving coil type transducer,  
R0 the coil resistance, Rs the shunt resistance, G0 the product of the sensitivity  
of seismometer to the conversion constant of digital recorder. Therefore, the  
system response is 
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This has an equivalent digital filter. The corresponding transfer function in the  
s-domain is 
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The solutions of the equation, i.e., the denominator is equal to zero, are 
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By using the warping frequency, the transfer function is given approximately  
as follows. 
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Exercise: Design of a recursive filter equivalent to a seismometer. 
Moving Coil Type Seismometer
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Relative Motion of Pendulum Mass Output Voltage

Fig. 45-2 Response of the recursive filters.  
Dashed line: Filter equivalent to the relative  
motion of pendulum mass of a simple  
moving coil type seismometer, against  
ground displacement. Solid line: Filter  
equivalent to the voltage change between  
two output terminals of a simple moving  
coil type seismometer, against ground  
displacement. The parameters used are  
T0=0.5, h=0.71. 



3.5. Deconvolution or Inverse Filtering 
Remember that recorded signal is given by the convolution of the instrumental  
characteristics to the ground motion in the time domain and is given by the product  
of them in the frequency domain. The instrumental characteristics are the same as  
the response of instruments to an impulsive signal (Fig.51 top). 
 
       (36) 
 
where r(t), f(t) and g(t) denote the recorded signals, the instrumental response and  
the ground motion in the time domain, R(ω), F(ω) and G(ω) these in the frequency  
domain. 
Deconvolution in the seismology, usually, is the process to remove the effect of the  
instrumental characteristics from the observed data and to recover the true ground  
motion. Mathematically, this is the reverse process of convolution. Deconvolution  
in the time domain corresponds to the quotient in the frequency domain.  
In comparison with the complexity for deconvolution in the time domain, the 
frequency domain operation is composed of only three steps. These are to apply the  
FFT to the instrumental response and the recorded signal, to divide of the recorded  
signal spectra by the instrumental response spectra and to apply the inverse FFT to  
the quotient (Fig.51 middle). 
       (37) 
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The information once lost in the observation or  
processing never can be recovered by any technique,  
even by very sophisticated and efficient ones.  
 
This is because we can not avoid noises that are recorded simultaneously with the  
signal or that invade into the record during the processing. Once the signals weaken  
and become smaller than the noise level, any recovering process just amplifies these  
noises. Such amplified noise can be dominant in the recovered ground motion.  
 
The signals just weaken a little during the recording or the processing can be  
strengthen or recovered by the deconvolution technique.  



Usually, the true ground motion has band limited 
feature at far field and low passed feature at near field, 
whereas the ground noise present at every frequency.  
Let's handle only far filed ground motion just for 
having a simple example.  
Then, G(ω) is band limited. The instrumental 
response F(ω) is also band limited,  
because seismometer is a low cut filter and used with 
a high cut anti-alias filter.  



 
The recovering operator in the frequency domain 
{F(ω)}-1 has big amplitude at the frequency outside 
of this limited frequency band.  
 
 
 



The recorded signal R(ω) is almost band limited but it 
has a little energy at outside of the frequency band of 
G(ω), i.e., the contribution of the noise. By applying the 
inverse filter, i.e., the recovering operator {F(ω)}-1 , this 
small contribution of the noise will be amplified much 
and contaminates the recovered ground motion 
transformed into the time domain by the inverse FFT . 
 



This shows that we have to select the frequency range in that the signal is sufficiently  
larger than the noise in order to prevent the instability at applying the inverse filter.  
We can not recover the ground motion at outside of this frequency band. 
 

The recommendable way, however, is to handle the  
data only within the pass band of the instrumental  
response. Usually, this is given by the natural frequency of the seismometer and  
the cut off frequency of the anti-alias filter. It is possible but not easy to use the  
information at outside of this range. Even within this frequency range, the instability  
problem mentioned above can take place due to smaller frequency band of G(ω).   
Thus, it is also recommendable to observe the shape of R(ω) and select the useful  
frequency band before starting the data processing. 



Example: Inverse Filter for a Simple Moving Coil Type Seismometer 
 
The transfer function that gives the inverse response of the previous example is given  
as follows. 
 
                                                                                      (36) 
 
Fig. 52 shows the amplitude response of this transfer function. 
The solutions of the equation, i.e., the numerator is equal to zero, are . This gives the  
zero position at   
 
                                  ,                                      ,  for h<1.0, under damped case, 
 
                                doubled for h=1.0, critically damped case, 
 
                                  ,                                       , for h>1.0, over damped case.  
 
The denominator, however, gives a tripled pole at (0., 0.).  
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By using the warped frequency, the transfer function is given approximately as follows. 
 
 
 
where, 
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Inverse Filter for Output Voltage
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As simple moving coil type seismometer is a low cut  
filter, its inverse filter makes the component grow in  
the frequency range lower than the natural frequency  
of the seismometer. This causes instability of the  
output from the filter, because the signal to noise ratio  
is small at this frequency range.  

Fig. 52 Amplitude response of the inverse filter for the  
voltage change between two output terminals of a  
simple moving coil type seismometer that is calculated  
by Eq. (36). The parameters used are T0=0.5, h=0.71.  
Theoretically, this filter can convert the output voltage  
change to the ground displacement. However, this  
amplifies much the low frequency components as  
shown clearly in this figure.  



Fig. 53.2 Procedure and output of the example for a real seismogram. 



Example: Filter for Conversion of Seismogram obtained by a Simple Moving Coil Type  
Seismometer to that of Longer Period Seismometer. 
A simple way to avoid the problem mentioned above is to convert the system response with a  
longer period seismometer. 
Suppose that the damping constant and the natural angular frequency of the seismometer used  
in observation are h0, ω0, then its response is 
 
 
 
 Let's convert it with the response of seismometer, of which damping constant and natural  
angular frequency are h1, ω1 . 
 
 
 
The conversing function in the frequency domain is 
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The transfer function in the s-domain is given as follows. 
 
                                          (37) 
 
Then, using the warped frequency gives 
 
 
 
 
 
 
 
where, 
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Fig.54 Amplitude Spectra of the correction filter explained above. 



Ch1.dat Output.dat 

Fig.55.2 Input signal (left): Ch1.dat and output signal (right) of CSEISMO.EXE  
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