
IISEE Lecture on Seismology and Tsunami Course

Computer
- UNIX -

Lecturer
Yushiro Fujii

(This lecture was originally written by Y. Yagi

and modified by Y. Fujii)

1

Why UNIX?
• Weakness

– UNIX is difficult to use; it has cryptic commands and
its interface is non-intuitive.

• Advantage
– UNIX is stable, flexible, and powerful for multiple

users and multitasking. Many packages and
libraries for seismology and geophysics have been
developed in the UNIX system (e.g., win, sac, GMT,
and waveform inversion program).

In this lecture, you will learn how to make use of UNIX’s
command and graphical tools, and familiarize yourself
with the commands you can productively use.

2

Preparation for Lecture
Go to home directory
 $ cd
Make “UNIX” directory
 $ mkdir UNIX (We use this directory for today’s lecture.)
Open editor
 $ cd UNIX
 $ nedit &

Make a simple FORTRAN code like
(7 spaces) real a, b, c
 a=1.0
 b=2.0
 c=a+b
 write(6,*) 'c=',c
 stop
 end
and save as “program.f”

Confirm the program can be compiled and run.
$ g77 program.f
$./a.exe
 c= 3. 3

UNIX Shell
• Once you login, you are working with a program

called a shell.
– default shell for Cygwin, Linux (earth2, ocean): bash
– default shell for SUN: csh

• The differences between the shells are slight. In
this lecture, we will program the csh script.

• Shell prompt:
Shell prompts usually contain $ or %. Shell

OS: UNIX

Computer
4

Syntax of UNIX Commands

• UNIX commands are simple one-word
entries such as the “ls” command. They
can be more complex using various
options. The general format for a UNIX
command is

$ command (options) (file-names)
(e.g., $ g77 –o program program.f: you can find

the program.exe file in the working directory).

5

Options

• Options modify the way in which a
command works.
– Syntax

• Options are often single letters prefixed with a
dash (-).

• Multiple options in a single command line can be
set off individually (-l -a) (in some cases, you can combine
them after a single dash (like -la)).

$ ls -l -a
$ ls -la

6

Unresponsive Terminal

• In case your terminal does not respond to
a command (hung or frozen), please type
(Ctrl)-c. The process is killed, and you will
get a new command prompt.

7

UNIX File System
• Like other systems, a file is the unit of storage in UNIX.

Files are organized into directories (folders). A directory is
a special kind of file where the system stores information
about other files.

• A directory is a place where files are said to be contained,
and you are said to be working inside a directory.
– If you want to check the working directory (Where am I?),

Type
 $ pwd
 Cygwin;
 /cygdrive/c/Documents and Settings/(user ID)/My Documents
 or
 /home/(user ID)

 Linux (earth2 or ocean):
 /home/(user ID)

P.56, 57, Unix in 24 Hours

8

Directory Tree
• All directories in a UNIX system are organized into a

hierarchical structure, which is similar to a family tree.
The parent directory is the root directory and is written as
a forward slash (/).

/

bin usr home etc

local bin

yagi john

program fig

profile.d

Example of a directory
tree.

In this case, the user
directories are
“/home/yagi” or
“/home/john”.

The directory named
“bin” contain some
programs.

In some cases, you
cannot change the file
without accessing your
home directory.

9

Absolute and Relative Paths
Absolute path

An absolute pathname signifies the path of the directories you
need to travel to get from the root to the required directory or
file. In the path name, put slashes (/) between the directory
names.

e.g., /home/yagi/tmp.ps
– the root is the first “/”
– the directory “home” is a subdirectory of root “/”
– the directory “yagi” is a subdirectory of “home”
– the file of tmp.ps is located in the directory “/home/yagi/”

Type
$ pwd
/home/yagi
 You can get the absolute pathname of the working directory.

10

Absolute and Relative Paths
Relative path

A relative pathname gives the location relative to your working
directory. Unless you use an absolute pathname (starting with a
slash), UNIX assumes that you are using a relative pathname.

e.g.,
 go to home directory
 $ cd
 go to “UNIX” directory
 $ cd UNIX
 Make “work” directory
 $ mkdir work
 go to “work” directory
 $ cd work
You can go up the tree by using the shorthand “..” for the parent

directory. Evidently, you can also go down the tree by using the
subdirectory name.

 go up the tree
 $ cd ..
 go up the tree and go down the directory
 $ cd ../UNIX/work

11

P.56, 57, Unix in 24 Hours

P.110 - 112

Listing Files
The “ls” command lists the entries in the directory tree. The syntax is

$ ls (options) (directory-and-filename)
Type
$ ls

You can get the filenames in the working directory.
To get more information about each file, type
$ ls -al
total 104
d rwxr-xr-x 6 yagi none 0 Sep 19 10:28 .
d rwxr-xr-x 4 yagi none 0 Sep 19 10:28 ..
- rwxr-xr-x 1 yagi none 1999 Sep 23 15:40 a.out
- rw-r--r-- 1 yagi none 256 Sep 23 15:40 program.f
d rw-r-xr-x 1 yagi none 0 Sep 23 15:40 work

type access
modes

of
links owner

group
size

modification
date and time name

12

P.50 - 54, 62 - 77, 86 - 93, Unix in 24 Hours

Listing Files
Type

Tells whether the file is a directory “d” or a plain file “-”
Access modes

Specifies three types of users (yourself “u”, your group “g”, and all
others “o”) who are allowed to read “r”, write “w”, or execute “x” files.

If you want to edit the access modes, the “chmod” command is useful.
(e.g., type

$ chmod u-x (file-name)
You cannot execute the “file-name”
$ chmod u+x (file-name)
You can again execute “file-name”

Size (in bytes)
Size of the file

Modification date
Date when the file was last modified.

13

P.94 - 102, Unix in 24 Hours

Listing Files
If you give the pathname to a directory, “ls” will list the

directory, but it will not change your working directory.
$ ls /usr/local/
bin doc etc include lib man share
-F and --color options are useful for detecting the file type.
$ ls –F
a.out* program.f work/
 “/” at the end of each directory name. Files with an execute

status “x”, like programs, are marked with “*”.
$ ls --color
a.exe program.f work
A green filename signifies the execute status, and a blue filename

signifies the directory name.

14

Looking Inside Files
The “cat” command lets you move forward in the

files by any number of pages or lines. The
syntax is
$ cat (files)
………………….…………………
………Inside file…..…………….
………………….…………………

“cat” works for short files containing characters that can

be displayed on a single screen or less. You cannot
go back to view the previous screens.

15

P.134 - 136, Unix in 24 Hours

Looking Inside File
The “less” and “more” commands let you move forward in

the files by any number of pages or lines. The syntax is
$ more (files)
:::::::::::::::::::::::::::::
(file-name)
:::::::::::::::::::::::::::::
………Inside file………………….
:::::::::::::::::::::::::::::
(file-name)
:::::::::::::::::::::::::::::
………Inside file………………….
------More----(50%)
The prompt says that you are 50% of your way through the file.

16

P.136 - 140, Unix in 24 Hours

Looking Inside Files
If you type “h” at the “more” prompt, you can get

the useful “more” commands on your system.
Typical useful “more” commands are as follows:

Command Description
(SPACE) Display next page
z Display next page
(ENTER) Display next page
d or (Ctrl)-D Scroll k lines (k depends on your system)
b or (Ctrl)-B Skip backward k screens of text
q End reading file

17

Managing Your Files
The previous lecture dealt with formulating FORTRAN

programs; for separating the programming files with the
others files, you can create a programming directory
using the “mkdir” command.
$ mkdir (new-directory-names)

Before editing a file, you can save a copy using the “cp”
command.
$ cp (old-file-name) (new-file-name)
e.g., $ cp program.f program2.f
 $ cp program2.f program3.f
If you want to put a copy of the file into a subdirectory, use
$ cp (file-name) (subdirectory-name)
e.g., $ cp program.f work

18

P.110 - 112, Unix in 24 Hours

P.112 - 114

Managing Your Files
You can change the filename using the “mv” command.

Type
$ mv (old-file-name) (new-file-name)
If you want to put a file into a subdirectory, use
$ mv (file-name) (subdirectory-name)
If you do not want to overwrite any old files, use “-i” option for

safety. The syntax is
$ mv -i (old-file-name) (new-file-name)

19

P.114 - 116, Unix in 24 Hours

Managing Your Files
You can remove files using the “rm” command. Type

$ rm (file-name)
Please use “-i” option for safety.
$ rm -i (file-name)
e.g., $ rm -i program2.f
 (press “n” for not deleting a file)

or use alias (like a shortcut in Windows)
$ alias rm=’rm -i’
$ alias mv=’mv -i’
$ alias cp=’cp -i’

You can remove directories using the “rmdir” command. Type

$ rmdir (directory-name)
The directory has to be empty before it is deleted.

20

P.117 - 121, Unix in 24 Hours

P.294 - 296

P.116 - 117

Changing your Environment
On a UNIX system, you can change the environment. When you log

into a UNIX computer, csh refers to the “/home/(user-name)/.cshrc”
file that contains information about the environment, and bash refers
to the “/home/(user-name)/.bcshrc” file. For changing the
environment, type
$ pwd
/home/(user-name)
$ cp /etc/bash.bashrc .bashrc
$ nedit .bashrc &

 In the nedit window, insert the following lines:
 alias rm=’rm -i’
 alias mv=’mv -i’
 alias cp=’cp -i’

$ source .bashrc refer to new environment file

% rehash refresh environment (for csh)

21

Useful Tip 1
If you mistyped on the command line, you do not

need to type the same command again. Push the
up arrow key and modify the command.
e.g.,
$ cpy file-name1 file-name2 (wrong command for “cp”)
$ (push up-arrow key)
$ cpy file-name1 file-name2 (edit command using left- or

right-arrow key)
$ cp file-name1 file-name2

This tip is also useful in case you want to repeat the
same command.

22

Useful Tip 2
Bash or tcsh has a function to interpolate a file or

command name. You do not need to type all the
characters of a long filename.

Push the tab key after you type a few beginning
characters of a file or command name.
e.g.,
There is a file called program.f in the “work” directory.
$ cd work
$ less prog (push the Tab key)
$ less program.f (filename is interpolated!)

23

Managing Your Files
You can create a backup file using the “tar” command. The

syntax is
Create a backup file from files or directory

$ tar -cvf (backup-file-name) (files or directory)

Extract all the files from backup file

$ tar -xvf (backup-file-name)

24

P.376 - 381, Unix in 24 Hours

Exercise

You will create “tmp1” and “tmp2” directories
in your “UNIX” directory; copy the
FORTRAN programs into “tmp1”; go to
“tmp1”; backup the Fortran programs in
“tmp1”; copy the backup files into “tmp2”;
and extract all the files in “tmp2”.

25

Exercise
Go to home directory; create “tmp1” and “tmp2” directories

$ cd UNIX
$ mkdir tmp1 tmp2

Copy the FORTRAN programs into “tmp1”; move “tmp1”
$ cp *.f tmp1/
$ cd tmp1

Backup the Fortran programs in “tmp1”; copy backup file into “tmp2”
$ tar -cvf program.tar *.f
$ cp program.tar ../tmp2

Go to “tmp2”; extract all files in “tmp2”
$ cd ../tmp2
$ tar -xvf program.tar

• “*” (Asterisk) is replaced by any character in a filename (e.g., *.f
representing all the FORTRAN files in the working directory)

• “?” (question) represents any single character in a filename

26

Redirecting Input/Output

Input
The shell takes whatever you type on your keyboard as the

input to the command (after you press (Return) to start
the command)

Input redirection
You can use a given file as the input to a command and/or

a program that does not accept filenames by using the
“<” operator. The syntax is

 $ command < (input-file)

27
P.143 - 146, Unix in 24 Hours

Sample program to use redirecting input (<)

Make a simple FORTRAN code and save it as “program_in.f”
(7 spaces) real a, b, c
 write(6,*) ’a=?’
 read(5,*) a
 write(6,*) ’b=?’
 read(5,*) b
 c=a+b
 write(6,*) ’c=’,c
 stop
 end

Make an input file and save it as “input.dat”
 1.0
 2.0

Confirm that the program can be compiled and run.
$ g77 program_in.f
$./a.exe < input.dat
 a=?
 1.0
 b=?
 2.0
 c=3.

Redirecting Input/Output

28

Redirecting Input/Output
Output
As the command runs, the results are usually displayed on your terminal. The terminal

is the command’s standard output.
Output redirection
You can write the results of a command or/and program to a named file using the “>”

operator. The syntax is
 $ command > (output-filename)
 e.g.,
 $ ls –al > list.dat
 $ cat list.dat

total 104
d rwxr-xr-x 6 yagi none 0 Sep 19 10:28 .
::

 $ echo “Ohayou-gozaimasu” > greeting.dat
 $ cat greeting.dat
 Ohayou-gozaimasu
 echo: display a line of text
 If you created a new-file consisting of file1 followed by file2, type
 $ cat (file1) (file2) > (new-file)
 or
 $ cat (file1) > (new-file)
 $ cat (file1) >> (file2)
 (if you want to add the contents of file1 to the end of file2)

29

“diff” command is useful to check the differences
between text file A and text file B.

e.g.,
$ diff program.f program_in.f
2,3c2,5
< a=1.0
< b=2.0

> write(6,*) 'a=?'
> read(5,*) a
> write(6,*) 'b=?'
> read(5,*) b

Comparing Text Files

program.f

program_in.f

30

Pipes and Filters
You can connect two commands together so that the

output from one command (program) becomes the input
to the next command (program) using the “|” (vertical
bar) operator. Any two commands (programs) can form a
pipe as long as the first program writes to the standard
output and the second program reads from the standard
input. The syntax is
$ command (options) (filename) | command (options)

If you use a filtering program, the pipe is very useful.
Filtering program: grep, sort, more, less

31

P.146 - 149, Unix in 24 Hours

Pipes and Filters
The “grep” program searches for files with lines that have a

certain pattern. The syntax is
$ grep (pattern) (files)
e.g.,
$ grep real *.f
program.f: real a, b, c
program2.f: real a, b, c
program3.f: real a, b, c
filename: lines that have the specified pattern

e.g.,
$ ls –al | grep prog
-rwxr-xr-x 1 fujii None 56057 10 11 10:59 program.exe
-rw-r--r-- 1 fujii None 100 10 11 10:55 program.f
-rw-r--r-- 1 fujii None 158 10 11 10:59 program_in.f
-rw-r--r-- 1 fujii None 100 10 11 10:55 program2.f

First, our example runs “ls –al” to list your directory; the standard output of “ls –al”

is piped to grep, which only outputs the lines that contain the string “prog”.
32

P.153 - 156, Unix in 24 Hours

Pipes and Filters
The “sort” program arranges the lines of text alphabetically or numerically.

The syntax is
$ sort (options) (file)
option Descriptions
-n Sort numerically and ignore blanks and tabs.
-r Reverse the order of sort.
-k Specify the location or field (column) to sort.
e.g.,
$ ls –al | grep prog | sort -k 5 -n -r

-rwxr-xr-x 1 fujii None 56057 10 11 10:59 program.exe
-rw-r--r-- 1 fujii None 158 10 11 10:59 program_in.f
-rw-r--r-- 1 fujii None 100 10 11 10:55 program2.f
-rw-r--r-- 1 fujii None 100 10 11 10:55 program.f

33

P.147 - 149, Unix in 24 Hours

Multitasking
Running a command as a background process
To run a command in the background, add the “&”

character at the end of the command line. The syntax is
$ program < (input-file) > (output-file) &
[1] 12222
The process ID for this command is 12222. To check on a process,

the “ps” command is useful. The syntax is
$ ps (options)
To cancel a process, the “kill” command is useful. The syntax is
$ kill (ID)

34

P.273, 274, Unix in 24 Hours

P.312, 317 - 319

Multitasking
e.g.,
$ nedit &
[1] 3292
$ ps
 PID PPID PGID WINPID TTY UID STIME COMMAND
 2380 1 2380 2380 con 1006 18:05:18 /usr/bin/bash
 432 2380 432 2436 con 1006 19:17:56 /usr/bin/sh
 3764 432 432 168 con 1006 19:17:56 /usr/X11R6/bin/xinit
 3544 3764 3544 240 con 1006 19:17:56 /usr/X11R6/bin/XWin
 2808 3764 2808 1672 con 1006 19:17:59 /usr/bin/xterm
 2136 2808 2136 3904 0 1006 19:18:00 /usr/bin/bash
 3292 2136 3292 1960 0 1006 19:41:49 /usr/X11R6/bin/nedit
 984 2136 984 3040 0 1006 19:41:50 /usr/bin/ps
$ kill 3292
[1]+ Terminated nedit

You can enter an entire sequence of commands separated using semicolons (;).
The syntax is

$ command1 ; command2
 If you want to run a command line in the background, type

$ command &
$ (command1 ; command2) &

35

UNIX offers a “multiuser system” environment.
We can use the same UNIX computer (Linux WS)

simultaneously from any computer (Windows PC).

Cygwin or Ubuntu Linux
running on your laptop

Linux WS

telnet, ftp,
ssh, scp, sftp

earth2.kenken.go.jp
for S course and
Global course

ocean.kenken.go.jp
for T course

Multiuser

36

Connecting to a UNIX Computer
• When you might have a workstation on your

desk, but you need to work from the main
computer at another location, remote login
programs can be useful and powerful.

• We use “ssh” (secure shell) or “telnet” to log into
another computer.
– The syntax for most remote login programs is

$ (program-name) (remote-hostname)
– Type

$ ssh earth2.kenken.go.jp –l (user ID)
or
$ ssh (user ID)@earth2.kenken.go.jp

37
P.423 - 424, Unix in 24 Hours

Connecting to a UNIX Computer
IP address

Almost all machines on a LAN have an Internet Protocol
(IP) address and host name, which are unique to
each machine. IP address is a 32-bit number. The
syntax is ???.???.???.??? (four sets of numbers
separated by “.”).

Domain host name
Domains and host names are usually used instead of IP

addresses.
e.g.,
earth2.kenken.go.jp

host name domain name 38

Connecting to a UNIX Computer
You can confirm whether another computer is alive or not

using the “ping” command. The syntax is
$ ping (host-name or IP-address)

e.g.,
$ ping earth2.kenken.go.jp
Pinging earth2.kenken.go.jp [172.16.21.40] with 32 bytes of data:
Reply from 172.16.21.40 : bytes=32 time=4ms TTL=253
Reply from 172.16.21.40 : bytes=32 time=4ms TTL=253
Reply from 172.16.21.40 : bytes=32 time=4ms TTL=253

(type (Ctrl)-c to stop)

39

Connecting to a UNIX Computer
$ ssh earth2.kenken.go.jp –l (your ID)
 or
$ ssh (your ID)@earth2.kenken.go.jp
Connected to earth2.kenken.go.jp (172.16.21.40).

(user ID)@earth2's password:
[(user ID)@earth2 (user ID)]$

e.g.,
[fujii@earth2 fujii]$:
[fujii@earth2 fujii]$: ls -a
(file names in earth2) ………………….
[fujii@earth2 fujii]$: mkdir UNIX

[fujii@earth2 fujii]$: exit
Connection closed by foreign host.

 You can edit, compile, and run in “earth2” or “ocean” using ssh

through the network. 40

Changing your Password
On a UNIX system, everyone can find your username. If

you type “who”, you can get all the usernames. For your
own safety, please change your password using the
“passwd” command. Type

$ passwd
passwd: changing password for yagi
Enter login(NIS) password: *************
New password: **************

• In general, a password should be something that is easy
for you to remember but difficult for other people to
guess. Please use a combination of alphabets, numbers,
and symbols.

41
P.29 - 32, Unix in 24 Hours

Copying Files between Two Computers (1)

The command “sftp” or “ftp” (file transfer protocol) is a
flexible way to copy files between two computers. The
syntax is
$ sftp (your ID)@(host-name)

Type
$ sftp fujii@earth2.kenken.go.jp
Connecting to earth2.kenken.go.jp...
fujii@earth2.kenken.go.jp's password:
password: **************
sftp>

sftp> type “quit”, “bye”, or “exit” to quit
$

42

P.424 - 429, Unix in 24 Hours

Copying Files between Two Computers (1)
Some sftp commands
command Description
sftp> put (file-name) Copies the file from your local computer to the

 remote computer.
sftp> get (file-name) Copies the file from the remote computer to

 your local computer.
sftp> mput (file-names) Copies the files from your local computer to the

 remote computer.
sftp> mget (file-name) Copies the file from the remote computer to

 your local computer.
sftp> cd (path-name) Changes the working directory on the remote

 machine to path-name.
sftp > ls Lists the remote directory.
sftp > !ls Lists the local directory

Some ftp commands
ftp> bin Tells the ftp to copy the following file without translation.
ftp> asc Transfers plain text file data if needed.

43

Copying Files between Two Computers (2)
The command “scp” is a simple way to copy files between

two computers.
You have to know in advance where the file you want is

located in the remote computer.
The syntax is

$ scp (your ID)@(host-name):(file name with remote directory path)
(local directory)

Type
$ scp fujii@ocean:/home/fujii/work/program.f .

If you want to transfer the entire directory to the current directory, type
$ scp –r fujii@ocean:/home/fujii/work .

If you want to preserve the time stamp of the file, type
$ scp –p fujii@ocean:/home/fujii/work/program.f . 44

Connecting to a UNIX Computer
Using X Window System

If you want to plot a
graphic file into
another computer,
you can plot it using
the “X Window
System”.

45

X Window System
X Window System is a client-server system. The

“client” asks the “server” to offer graphics, and
the “server” can yield a graphical environment.

Your laptop

Client

X Server

Linux WS
(earth2 or ocean)

Client

X Server

You

ssh

xterm, ggv, etc.

46

http://www1.jp.dell.com/content/products/compare.aspx/precn?c=jp&cs=jpgem1&l=jp&s=gem

Open another terminal window
 $ xterm &

New window (for remote WS)

Old window (Local PC)

Log into Linux WS (earth2 or ocean)
 in a “new command window”
 $ ssh –XC (user ID)@earth2.kenken.go.jp

Connecting to a UNIX Computer
Using X Window System

To start X Window System,
select “Xwin Server” icon.

47

Connecting to a UNIX Computer
Using X Window System

In the “old command window”
 (local laptop)

 $ cd /usr/share/ghostscript/9.06/examples
 $ gv tiger.eps &

In the “new command window”
 (remote Linux WS: earth2 or ocean)

 $ evince tiger.eps &

gv

evince 48

Exercise

You will put a PS file (e.g., tiger.eps) into the
Linux WS (earth2 or ocean) using “sftp” or
“scp” command, and plot the PS file in the
Linux WS on your display.

49

Exercise

On the local computer window, type
$ cd /usr/share/ghostscript/9.06/examples
$ sftp (your ID)@earth2.kenken.go.jp
sftp> cd UNIX
sftp> put (PS-file)
sftp> quit
$ ssh -XC (your ID)@earth2.kenken.go.jp

On earth2 or ocean command line, type
$ cd UNIX
$ evince (PS-file)

50

Basic Shell Scripting
“Shell script” is powerful

for automation and
customization.
Shell scripts are little

programs written in the
shell language, which
are similar to BATCH
files on a conventional
PC.

Starting editor
Type
 $ nedit &

nedit

51

Basic Shell Scripting
Write the following in the nedit window:

#!/bin/csh -f
echo “ +++++ working directory +++++ “
pwd
echo “ FILE in working directory, arranging in file size order ”
ls –l | sort -k 5 -n

Save as “print_file.csh”; change to the execute mode; run csh script
$ chmod u+x print_file.csh
$./print_file.csh
+++++ working directory +++++
/home/yagi
FILE in working directory, arranging in file size order
-rw-r--r-- 1 yagi none 578 May 15 18:21 csh.cshrc
-rwxr-xr-x 1 yagi none 1390 Sep 19 14:21 gp7.sh
-rwxr-xr-x 1 yagi none 1392 May 23 12:29 dsmnote.sh
-rwxr-xr-x 1 yagi none 1392 May 23 19:35 test.sh
-rwxr-xr-x 1 yagi none 1576 May 16 09:44 wmaker.sh
-rwxr-xr-x 1 yagi none 1581 May 15 16:45 startxwin.sh

52

Basic Shell Scripting
If you program using FORTRAN, the “do-loop”

command is useful to avoid repetitive tasks. In
the shell script, “foreach” is similar to “do-loop”.

Write the following in the nedit window:

#!/bin/csh -f
foreach i (1 2 3)
echo $i
end

Save as “loop.csh”; change mode; and run

$ chmod u+x loop.csh

$./loop.csh
1
2
3 53

Basic Shell Scripting
If you program using FORTRAN, “if” is useful,

which is also useful in shell scripting. Write the
following in the nedit window:

#!/bin/csh -f
foreach i (1 2 3)
echo $i
if ($i == 2) echo “ two”
end

Overwrite and run
$./loop.csh
1
2
two
3

54

Basic Shell Scripting
The following are the other relational

operators used in “if”.

 < less than
 < = less than or equal to
 == equal to
 != not equal
 > = greater than or equal to
 > greater than

55

Awk Programming (1)
Awk is a programming language designed to search for,

match patterns, and perform actions on files. Awk
programs are generally quite small and are interpreted.

Awk scans the input lines one after the other, searching
each line to see if it matches a set of patterns. The
action is performed when the pattern matches that of the
input line. The simple syntax is

 patterns “{ action }”

56
P.168 - 173, Unix in 24 Hours

Awk Programming (1)
When awk scans an input line, awk divides the line into a

number of fields. The fields are separated by a space,
tab, or special character (you can define special
characters using the -F option). The fields are numbered
beginning at one, and the dollar symbol ($) is used to
represent a field.

For instance, the following line in a file
 “I am seismologist.”
has three fields.
 $1 “I”
 $2 “am”
 $3 “seismologist.”
Field zero ($0) refers to the entire line.
Awk scans the lines from files.

57

Awk Programming (1)
We will consider the most simple awk program. Open nedit

and type
{ print $0 }

There is no pattern to match: only an action is expressed. This means that
for every line encountered, perform the specified action. The action
prints field 0 (the entire line).

Save as “print_infile.awk” and run this program. The syntax is
$ awk –f print_infile.awk (file-name)

Awk interprets the actions specified in the program file print_infile.awk,
and applies it to each line read from the file (file-name). The effect is
to print out each input line read from the file, thereby displaying the
file on the screen (same as the Unix command cat).

As an example, we input “list.dat” that has been created in the

previous step. Type
$ awk –f print_infile.awk list.dat
total 104
d rwxr-xr-x 6 yagi none 0 Sep 19 10:28.
…………………………………………………………………
…………………………………………………………………

58

Awk Programming (1)
Simple Pattern Selection
This involves specifying a pattern to match for each input line scanned.

The following awk program (print_infile.awk) compares the fifth field
($5); if the field is greater than or equal to “50”, the specific action is
performed (the entire line is printed). Modify print_infile.awk as
$5 >= 50 { print $0 }
Note: The operation of the “>=” symbol is the same as the csh

script.
Save and run
$ awk -f print_infile.awk list.dat

-rwxr-xr-x 1 fujii none 80493 Oct 20 19:19 a.exe
-rw-r--r-- 1 fujii none 69574 Oct 21 21:57 cmt.gmt
-rwxr-xr-x 1 fujii none 80493 Oct 20 19:19 program.exe
-rw-r--r-- 1 fujii none 100 Oct 20 19:19 program.f
-rwxr--r-- 1 fujii none 66 Oct 22 11:08 loop.csh

The program prints out all the input lines where the size is greater

than and equal to “50”.
59

P.171, Unix in 24 Hours

Awk Programming (1)

Combining Patterns
 Patterns can be combined to provide more

complex matching. The following symbols are
used to combine patterns.

|| logical “or” (either pattern can match)
&& logical “and” (both patterns must match)
! logical “not” (patterns not matching)
e.g.,

$5 >= 50 && $5 <= 2000 { print $0 }

60

Awk Programming (1)
Printing A Text String
Let us examine how to print some simple text. Consider the following

statement: printf(“size : ”);
The printf statement is terminated by a semicolon. The brackets are

used to enclose the argument, and the text is enclosed using double
quotes. Now, let us combine it into an actual awk program that
displays the location of all 286-type computers. Modify
print_infile.awk as
{ printf (“file name: "); printf $9; printf (“, size: ”); print $5 }
Save and run
$ awk –f print_infile.awk list.dat

file name: , size:
file name:. , size: 0
file name:.. , size: 0
file name: a.exe, size: 80493
:::

61

Exercise

You will get information of Global CMT
(Harvard CMT) solutions from the Web site

 (http://www.globalcmt.org/CMTsearch.html)
and select the event using the awk program.

62

Exercise

Input starting date (2001/1/1)

and ending date (2001/12/31)

63

Exercise

Select “GMT psmeca input” format and
click Done.

64

Exercise

You can get the CMT catalog for
2001.

Please copy the results and save as
“cmt.gmt” using nedit.

65

Useful Tip 3
Copy and paste the text in X Window, between X

Window (e.g., xterm or nedit) and Windows software
(e.g., Word, Excel, or IE).

Copy Paste

X Window Just select
text

Middle
click

Windows
software

Select area
and (Ctrl)-c

(Ctrl)-v

66

Exercise
Please check the CMT file:

$ less cmt.gmt
120.42 19.20 77 -2.08 0.59 1.49 -4.47 -2.02 -9.11 23 X Y 010101A
127.07 6.73 44 1.48 0.19 -1.67 0.57 0.09 -0.37 27 X Y 010101B
127.13 7.12 44 1.00 0.26 -1.26 1.10 -0.96 -0.27 26 X Y 010101D
:::

Information for each field.
$1: longitude of centroid
$2: latitude of centroid
$3: depth of centroid
$4-9: Mrr, Mtt, Mff, Mrt, Mrf, Mtf (moment tensor components in 10*expo. (dyncm))
$10 expo in $4-9

67

Exercise

1. Please search earthquakes near Japan,
and save it as file “japan.cmt”.

Longitude: 120E–150E
Latitude: 25N–45N

2. Please search earthquakes near your
country, and save it as file “country.cmt”.

3. Please search deep earthquakes (over
400 km), and save it as file “deep.cmt”.

68

Exercise
1. Open nedit; type

$1 >= 120 && $1 <= 150 && $2 >= 25 && $2 <= 45 {print $0}

 Save as “japan.awk” and run
$ awk –f japan.awk cmt.gmt > japan.cmt

2. Refer to exercise 1.
3. Open nedit; type

$3 >= 400 {print $0}

 Save as “deep.awk” and run
$ awk –f deep.awk cmt.gmt > deep.cmt

69

Awk Programming (2)
BEGIN and END Statements
The keywords BEGIN and END are used to perform specific actions relative to

the program’s execution.
BEGIN: The action associated with this keyword is executed before the first

 input line is read.
END: The action associated with this keyword is executed after all the input

 lines have been processed.
The BEGIN keyword is normally associated with printing titles and setting

default values, whilst the END keyword is normally associated with printing
the totals. Consider the following awk program, which uses BEGIN to print a
title.

Modify “deep.awk”

BEGIN { print “deep earthquake (over 400 km)” }
$3 >= 400 { print $0 }

Run “deep.awk”
 $ awk -f deep.awk cmt.gmt
 deep earthquake (over 400 km)
 :::

70

Awk Programming (2)
User-defined Variables
Awk programs support the use of variables. We will count

the number of deep earthquakes (over 400 km).
Variables are explicitly initialized to zero by awk, so there
is no need to explicitly assign a value of zero. When each
input line is read, field three ($3) is checked to see if it is
greater than 400. If so, awk variable is incremented (the
“symbol ++” means increment by one).

Open nedit; type
$3 >= 400 { nde++ }
END { printf (“The number of deep earthquakes is ”); print (nde) }

Save as “count.awk”; run “count.awk”;
$ awk –f count.awk cmt.gmt
The number of deep earthquakes is ??

71

Awk Programming (2)
Awk’s Assignment Operators
The following is a summary of awk assignment operators.

+ add
- subtract
* multiply
/ divide
++ increment
-- decrement
^ exponential
+= plus equals
-= minus equals
*= multiply equals
/= divide equals
^= exponential equals

e.g.,
sum= sum + 10 # same as “sum += 10”
sum= sum /10
 72

Exercise
1. Please count the number of earthquakes for

each depth range:
1: (0-30 km)
2: (30-100 km)
3: (100-250 km)
4: (250-400 km)
5: (400-600 km)

2. Please calculate the average depths.

73

Exercise

1. Refer to the previous example.
2. Open nedit; type
 { ne ++; sumdepth += $3 }
 END { av = sumdepth / ne; printf ("The average depth is "); print av }

 Save as “calave.awk; run
 $ awk –f calave.awk cmt.gmt
 The average depth is 57.9521

74

Awk Programming (Appendix)
Awk Built-in Variables
Awk provides a number of internal variables useful to

process files. These variables are accessible by the
programmer.

ARGC number of command-line arguments
ARGV array of command-line arguments
FILENAME name of current input file
FNR record number in current file
FS input field separator
NF number of fields in input line
NR number of input lines

75

Awk Programming (Appendix)
Awks Built-in Functions

sqrt(x) square root of x
cos(x) cosine of x (x in radians)
sin(x) sine of x (x in radians)
atan2(y,x) arctangent of y (x in radians)
exp(x) exponential function of x
int(x) integer part of x truncated toward 0
log(x) natural logarithm of x
rand() random number between 0 and 1

76

An example of shell script
Computations using several or many parameters

e.g. Tsunami simulations for tsunami database

77 Source: http://www.data.jma.go.jp/svd/eqev/data/tsunami/ryoteki.html
(Japan Meteorological Agency’s Web site)

Source points: 1,500
Depths: 6 (0 – 100 km)
Magnitudes: 4 (6.5, 7.0, 7.5, 8.0)

Total: 36,000 cases !!

./

S1 S2 S3 S4

D6 D5

M4 M3

D2

An example of shell script

78

Without shell script

$cd S1
$cd D1
$cd M1
$/home/fujii/tsunami.exe

$cd ../M2
$/home/fujii/tsunami.exe

$cd ../M3
$/home/fujii/tsunami.exe

$cd ../M4
$/home/fujii/tsunami.exe

$cd ../../D2
$cd M1
$/home/fujii/tsunami.exe
 .
 .
 .

With shell script
$./TDB.csh &

#!/bin/csh

@ i = 1
while ($i <= 1500)
set dirS = S$i ; cd $dirS
 @ j = 1
 while ($j <= 6)
 set dirD = D$j ; cd $dirD
 @ k = 1
 while ($k <= 4)
 set dirM = M$k ; cd $dirM
 echo 'Now,' $dirS $dirD $dirM
 /home/fujii/tsnami.exe
 cd ..
 @ k++
 end
 cd ..
 @ j++
 end
 cd ..
@ i++
end

	IISEE Lecture on Seismology and Tsunami Course�Computer�- UNIX -
	Why UNIX?
	Preparation for Lecture
	UNIX Shell
	Syntax of UNIX Commands
	Options
	Unresponsive Terminal
	UNIX File System
	Directory Tree
	Absolute and Relative Paths
	Absolute and Relative Paths
	Listing Files
	Listing Files
	Listing Files
	Looking Inside Files
	Looking Inside File
	Looking Inside Files
	Managing Your Files
	Managing Your Files
	Managing Your Files
	Changing your Environment
	Useful Tip 1
	Useful Tip 2
	Managing Your Files
	Exercise
	Exercise
	Redirecting Input/Output
	Redirecting Input/Output
	Redirecting Input/Output
	Comparing Text Files
	Pipes and Filters
	Pipes and Filters
	Pipes and Filters
	Multitasking
	Multitasking
	Multiuser
	Connecting to a UNIX Computer
	Connecting to a UNIX Computer
	Connecting to a UNIX Computer
	Connecting to a UNIX Computer
	Changing your Password
	Copying Files between Two Computers (1)
	Copying Files between Two Computers (1)
	Copying Files between Two Computers (2)
	Connecting to a UNIX Computer Using X Window System
	X Window System
	Connecting to a UNIX Computer Using X Window System
	Connecting to a UNIX Computer Using X Window System
	Exercise
	Exercise
	Basic Shell Scripting
	Basic Shell Scripting
	Basic Shell Scripting
	Basic Shell Scripting
	Basic Shell Scripting
	Awk Programming (1)
	Awk Programming (1)
	Awk Programming (1)
	Awk Programming (1)
	Awk Programming (1)
	Awk Programming (1)
	Exercise
	Exercise
	Exercise
	Exercise
	Useful Tip 3
	Exercise
	Exercise
	Exercise
	Awk Programming (2)
	Awk Programming (2)
	Awk Programming (2)
	Exercise
	Exercise
	Awk Programming (Appendix)
	Awk Programming (Appendix)
	An example of shell script
	An example of shell script

