Masonry Experimental Database —User's Guide—

This user's guide describes in detail the data conversion of masonry experimental database. Please read this user's guide carefully before using this database. For details of this database and research results, please refer to Reference^{1), 2)}.

CONTENTS

1.	Composition of Whole Sheets
2.	Structure Type of Each Masonry Wall 3
3.	Composition of Each Sheet (1) : Column A ~ Column C 4
4.	Composition of Each Sheet (2) : Column D ~ Column AT
5.	Explanation of Items Which Compose a Sheet
5.1	Materials and dimensions7
5.2	Calculated Value by Evaluation Equation10
5.3	Experimental Values 12
Refe	erences

1. Composition of Whole Sheets

Sheet 1	RMF	Data table for Full-Grout Reinforced Masonry Wall
Sheet 2	RMP	Data table for Partial-Grout Reinforced Masonry Wall
Sheet 3	СМ	Data table for Before-Cast Framed Masonry Wall
Sheet 4	MI	Data table for After-Cast Framed Masonry Wall
Sheet 5	References	List of references (RMF、RMP、CM、MI)

2. Structure Type of Each Masonry Wall

RMF, RMP, CM, and MI are masonry structural formats. (Table1, Fig.1)

Reinforced	Full-Grout Reinforced Masonry Wall (RMF)	All the masonry elements were grouted with concrete.
(RM)	Partial-Grout Reinforced Masonry Wall (RMP)	Only the masonry elements reinforced with reinforcements were grouted.
Framed	Confined Masonry (CM) (Before-Cast Framed Masonry Wall)	Masonry walls were placed before constructing the confining RC frame.
(FM)	Masonry Infill (MI) (After-Cast Framed Masonry Wall)	Masonry walls were placed after constructing the confining RC frame.

Table1Type and Construction of Masonry Walls

**Before-Cast Framed Masonry Wall (CM) is a widely used name for "Confined Masonry," and After-Cast Framed Masonry Wall (MI) for "Masonry Infill" the abbreviations are CM and MI.

Fig.1 Type and Construction of Masonry Walls

3. Composition of Each Sheet (1) : Column A ~ Column C

Column A	"No."	Paper number. For the article number, refer to "List of Papers" in this database.		
Column B	"Specimen"	Specimen name described in the paper		
	"Mode"	"Mode of shear failure (S)"		
Column C		"Mode of floxural failure (E)"		
		Fig.2 shows the hysteresis characteristics for each failure type.		

The experimental data classified as " Shear Failure (S)" includes those with yield points, but the author's judgment of the failure type is respected, and the failure type described in the paper is adopted.

Fig.2 Failure Model of Masonry Walls

Column	English No.	Sign	Description
D	[1]	F_m (N/mm ²)	Compressive strength of masonry unit
E	[2]	F_c (N/mm ²)	Compressive strength of concrete
F	[3]	L (mm)	Length of wall
G	[4]	<i>t</i> (mm)	Thickness of wall panel
Н	[5]	B (mm)	Width of boundary column
I	[6]	D (mm)	Depth of boundary column
J	[7]	<i>h</i> (mm)	Height of inflection point (Shear span)
К	[8]	A_w (mm ²)	Total section area of wall
L	[9]	<i>N</i> (kN)	Axial force
М	[10]	σ_0 (N/mm ²)	Axial stress
			Total section area of vertical reinforcements in
N	[44]	$\Sigma = (mm^2)$	tension (RM)
IN	[11]	$\sum a_t \pmod{\mathrm{mm}^2}$	Total section area of longitudinal
			reinforcements in a tensile column (FM)
	[12]		Tensile reinforcement ratio (RM)
0		p_{te}	Longitudinal reinforcement ratio in tension
			(FM)
			Yield strength of tensile reinforcements (RM)
Р	[13]	σ_y (N/mm ²)	Yield strength of longitudinal reinforcements of
			column in tension (FM)
0	[14]	Σa (mm ²)	Total section area of vertical reinforcements of
Q	[14]	Σa_v (IIIII-)	wall
R	[15]	$\sigma_{vy}~({ m N/mm^2})$	Yield strength of vertical reinforcements of wall
S	[16]	p_{we}	Ratio of lateral reinforcements of wall
Т	[17]	σ_{wy} (N/mm ²)	Yield strength of lateral reinforcements of wall
U	[18]	$_{c}p_{w}$	Ratio of lateral reinforcements of column
V	[10]	σ (N/mm ²)	Yield strength of lateral reinforcements of
v	[19]	O_{CY} (IN/IIIII)	boundary column
W	[20]	V _{max} (kN)	Maximum resistant force
Х	[21]	$\overline{\tau_{max}}$ (N/mm ²)	Maximum strength
Y	[22]	R_{max} (×10 ⁻³ rad.)	Deformation angle at maximum strength

4. Composition of Each Sheet (2) : Column D ~ Column AT

Z	[23]	R_u (×10 ⁻³ rad.)	Deformation angle at limit state
AA	[24]	V _{cr} (kN)	Resistant force at cracking
AB	[25]	$ au_{cr}~(\mathrm{N/mm^2})$	Strength at cracking
AC	[26]	$ au_{cr}/F_m$	Normalized strength at cracking
AD	[27]	R_{cr} (×10 ⁻³ rad.)	Deformation angle at cracking
AE	[28]	$V_{\mathcal{Y}}$ (kN)	Resistant force at flexural yielding
AF	[29]	$ au_y$ (N/mm ²)	Strength at flexural yielding
AG	[30]	τ_y/F_m	Normalized strength at flexural yielding
AH	[31]	R_y (×10 ⁻³ rad.)	Deformation angle at flexural yielding
AI	[32]	τ_{max}/F_m	Normalized maximum strength
	1221		Variable to express tensile strength of
AJ	[၁၁]	$\sqrt{F_m}$	masonry unit
AK	[34]	h/L	Shear span ratio
AL	[35]	A_c/A_w	Ratio of section areas of column and wall
<u> </u>	[26]	σ / E	Ratio of axial stress of wall to compressive
	[30]	O_0/T_m	strengths of masonry unit
	[37]	E /E	Ratio of compressive strengths of concrete
	[37]	Γ_{c}/Γ_{m}	and masonry unit
AO	[38]	$p_{te} \cdot \sigma_y / F_m$	Normalized strength of tensile reinforcements
AP	[39]	$p_{we} \cdot \sigma_{wy} / F_m$	Normalized strength of lateral reinforcements
A.O.	[40]	m . c /E	Normalized strength of lateral reinforcements
AQ	Q [40]	$_{c}\rho_{w}\cdot o_{cy}/F_{m}$	of column
AR	[41]	V _{su} (kN)	Resistant force at shear failure
AS	[42]	V _{mu} (kN)	Resistant force at flexural failure
<u>Λ</u> Τ	[42]		Ratio of calculated strengths of shear to
	[43]	$ au_{su}/ au_{mu}$	flexure

5. Explanation of Items Which Compose a Sheet

The following explains each item that needs to be confirmed, especially the definition and calculation method. Fig.3 shows the symbols of the equation. In addition, as the mechanical unit that expresses the strength of the wall, the unit "kN" is "Resistant force," and the one divided by the area is "Strength". And "Deformation angle " is the deformation angle divided by [7]Height of inflection point (Shear span) h.

5.1 Materials and dimensions

[1]	Compressive strength of masonry unit F_m	It refers to an aggregate consisting of bricks and mortar joints that make up a masonry structure.		
[7]	Height of inflection point (Shear span) <i>h</i>	The experimental results are two force methods: anti- symmetric loading and cantilever loading. (Fig.4)		
[8]	Total section area of wall A_w	$[RM]$ $A_w = L \times t$ $[FM]$ $A_w = (L - 2 \times D) \times t + 2 \times B \times D$ A_w : Total section area of wall (mm²) L : Length of wall (mm) t : Thickness of wall panel (mm) B : Width of boundary column (mm) D : Depth of boundary column (mm)		
[10]	Axial stress σ_0	$\sigma_0 = \frac{N \times 10^3}{A_w}$ $\sigma_0 : \text{ Axial stress (N/mm^2)}$ N : Axial force (kN)		

[12]	Tensile reinforcement ratio (RM) Longitudinal reinforcement ratio in tension (FM) <i>p</i> _{te}	$p_{te} = \frac{\sum a_t}{A_w}$ Tensile reinforcement ratio (RM) p_{te} : Longitudinal reinforcement ratio in tension (FM) Total section area of vertical reinforcements in tension (RM) Σa_t : Total section area of longitudinal reinforcements in a tensile column (FM) (mm ²)
[16]	Ratio of lateral reinforcements of wall p_{we}	$p_{we} = \frac{a_{we}}{t \times s_{we}}$ $p_{we} : \text{Ratio of lateral reinforcements of wall}$ $a_{we} : \text{Section area of lateral reinforcements of wall}$ $a_{we} : \text{of a pair (mm^2)}$ $s_{we} : \text{Space of lateral reinforcement of the wall}$ (mm) We However, in the case of framed masonry wall (FM), the width <i>t</i> should be read as the equivalent thickness of wall panel <i>t_e</i> . $t_e = \frac{A_w}{L}$
[18]	Ratio of lateral reinforcements of column cPw	$cp_{w} = \frac{c^{a_{w}}}{B \times c^{s_{w}}}$ $cp_{w} : \text{ Ratio of lateral reinforcements of column}$ Section area of lateral reinforcement of column (mm ²) $cs_{w} : \text{ (mm)}$

(a) Reinforced Masonry (RM)

(b) Framed Masonry (FM)Fig.3 Masonry Wall Sections

(a) Anti-symmetric Loading

- (b) Cantilever Loading
- Fig.4 Loading Systems

5.2 Calculated Value b	y Evaluation Equation
------------------------	-----------------------

		$V_{su} =$	$\left\{\frac{0.0}{1}\right\}$	$\frac{053p_{te}^{0.23}(F_m + 18)}{h/L + 0.12} + 0.85\sqrt{p_{we} \cdot \sigma_{wy}} + 0.1\sigma_0 \bigg\} \times 0.9 \times L \times \frac{A_w}{L}$	
		Here, the compressive strength of concrete F_c of concrete is read as the			
		compressive strength of masonry unit F_m of the masonry.			
		V _{su}	:	Resistant force at shear failure (kN)	
	Resistant force at			Tensile reinforcement ratio (RM)	
[44]		p_{te}	•	Longitudinal reinforcement ratio in tension (FM)	
[41]		F_m	:	Compressive strength of masonry unit (N/mm ²)	
	V su	h/L	:	Shear span ratio	
		p_{we}	:	Ratio of lateral reinforcements of wall	
		σ_{wy}	:	Yield strength of lateral reinforcements of wall (N/mm ²)	
		σ_0	:	Axial stress (N/mm ²)	
		L	:	Length of wall (mm)	
		A _w	:	Total section area of wall (mm ²)	
			Vm	$_{\iota} = \left(\Sigma a_t \cdot \sigma_y + 0.5\Sigma a_v \cdot \sigma_{vy} + 0.5N\right) \times 0.9 \times L/h$	
		V _{mu}	:	Resistant force at flexural failure (kN)	
	Resistant force at flexural failure			Total section area of vertical reinforcements in tension	
				(RM)	
		Σa_t	:	Total section area of longitudinal reinforcements in a	
				tensile column (FM)	
				(mm ²)	
				Yield strength of tensile reinforcements (RM)	
[40]		σ_y		Yield strength of longitudinal reinforcements of column	
[42]			:	in tension (FM)	
	V _{mu}			(N/mm ²)	
		Π	:	Total section area of vertical reinforcements of wall	
		Σa_v		(mm ²)	
			:	Yield strength of vertical reinforcements of wall	
		σ_{vy}		(N/mm ²)	
		Ν	:	Axial force (kN)	
		L	:	Length of wall (mm)	
		h	:	Height of inflection point (Shear span) (mm)	

[43]	Ratio of calculated	The ratio of strength at shear failure τ_{su} to bending strength at flexural
		failure τ_{mu}
	strengths of shear	$(0.052m^{0.23}(E + 10))$
	to flexure	$\tau_{su} = \left\{ \frac{0.053p_{te} (r_m + 16)}{h(l + 0.12)} + 0.85\sqrt{p_{we} \cdot \sigma_{wy}} + 0.1\sigma_0 \right\} \times 0.9$
	T _{SU} T _{mu}	(n/L + 0.12)
	-547 •mu	$\tau_{mu} = \left(\Sigma a_t \cdot \sigma_y + 0.5\Sigma a_v \cdot \sigma_{vy} + 0.5N\right) \times 0.9/h/t_e$

5.3 Experimental Values

[24]Resistant force at cracking $V_{cr_{x}}$ [27]Deformation angle at cracking $R_{cr_{x}}$ [28]Resistant force at flexural yielding $V_{y_{x}}$ [31]Deformation angle at cracking $R_{y_{x}}$ [20]Maximum resistant force $V_{max_{x}}$ [22]Deformation angle at maximum strength $R_{max_{x}}$ [23]Deformation angle at limit state R_{u} is an experimental value obtained by a structural experiment.

In this database, the hysteresis characteristics of the masonry wall were modeled from the research by Elwood³⁾ and Zavala⁴⁾. (Fig.5) The hysteresis characteristics of the masonry wall are composed of cracking, yielding, maximum strength, and ultimate state, and the stiffness changes at each point. The ultimate state was the strength decreased to 80%.

[24]	Resistant force at cracking V_{cr}	If the value of the experimental result in the papers, that value is adopted.
[27]	Deformation angle at cracking R_{cr}	If the value of strength or deformation was in the papers, find the unknown data from the
[28]	Resistant force at flexural yielding V_y	graph. (Fig.6) * This database and Reference ^{1), 2)} . is no
[31]	Deformation angle at cracking R_y	distinction between the data written in the reference and the read data.
[20]	Maximum resistant force V_{max}	If the value of the experimental result in the papers, that value is adopted. If there was no value in the papers, find the value from the graph. When finding the values
[22]	Deformation angle at maximum strength <i>R_{max}</i>	from the graph, classified them into 4 patterns the experimental results. (Fig.7) $_{\circ}$ \approx This database and Reference ^{1), 2)} . is no
[23]	Deformation angle at limit state R_u	distinction between the data written in the reference and the read data. And this database and Reference ^{1), 2)} . is no distinction between the four patterns shown in Fig.7.

(Pattern 1)	The experiment was completed without reaching the maximum strength. The maximum strength V_{max} and the deformation at maximum strength R_{max} were the strength and deformation at the end of the experiment. The deformation at the ultimate state R_u was the deformation at maximum strength R_{max} .	
(Pattern 2)	After the experiment reached maximum strength, the strength dropped sharply, and the specimen broke. The maximum strength V_{max} and the deformation at maximum strength R_{max} were at the maximum point. The deformation at the ultimate state R_u was the deformation at maximum strength.	
(Pattern 3)	After the experiment reached the maximum strength, the strength decreased, and the test specimen broke. The maximum strength V_{max} and the deformation at maximum strength R_{max} were at the maximum point. The deformation at the ultimate state R_u was the strength decreased to 80%.	
(Pattern 4)	After the experiment reached the maximum strength, the strength gradually decreased, and the experiment ended or broke before the strength decreased to 80%. The maximum strength V_{max} and the deformation at maximum strength R_{max} were at the maximum point. The deformation at the ultimate state R_u was the value when the experiment was ended or broke.	

Fig.7 Experimental Envelope Curve Pattern (*V_{max}*, *R_{max}*, *R_u*)

[25]	Strength at cracking τ_{cr}	The value of [24]Resistant force at cracking V_{cr} ,		
		[28]Resistant force at flexural yielding V_y , and		
[29]	Strength at flexural yielding τ_y	[20]Maximum resis	tant force V_{max} obtained by	
10.41		papers divided the value of [8]Total section area of		
[21]	Maximum strength τ_{max}	wall A_w .		
[26]	Normalized	$ au_{cr} = V_{cr} \cdot 10^3$		
	Strength at cracking τ_{cr}/F_m	$\overline{F_m} = \overline{A_w \cdot F_m}$	The strength divides by the	
[30]	Normalized strength	$ au_y = V_y \cdot 10^3$	material strength because it	
	at flexural yielding τ_y/F_m	$\overline{F_m} = \overline{A_w \cdot F_m}$	eliminates the effect of the	
[32]	Normalized	$ au_{max} V_{max} \cdot 10^3$	material strength.	
	maximum strength τ_{max}/F_m	$\overline{F_m} = \overline{A_w \cdot F_m}$		

References

 Shunsuke SUGANO, Yuri OTSUKA, Tatsuya AZUHATA : Strength and deformation of masonry walls subjected to lateral forces – Review of existing test data in Japan and overseas –, Building Research Data, 2022.3 (in Japanese) (The English version will be published as a BRI Research Paper by the Building Research

Institute.)

- 2) Sugano S., Otsuka Y., Azuhata T. : Strength and deformation of masonry walls subjected to lateral forces review of existing test data, 17WCEE, 2021.9-10
- Riahi Z., Elwood K.J., Alcocer S.M. : Backbone model for confined masonry walls for performance-based seismic design, Journal of Structural Engineering, Vol.135(6), pp.644-654, 2009.6
- Diaz M., Zavala C., Flores E., Cardenas L. : Development of analytical models for confined masonry walls based on experimental results in Lima city, Journal Tecnia, Vol.29, No.2, pp.23-29, 2019.7