Instruction
 - Analysis of SPAC Method -

April. 05, 2021
IISEE, BRI, Japan

By T. Yokoi

Revision from SPAC2020 to SPAC2021 is minor.

Acknowledgments:
The revision for the 2021 version was partly supported by Japan Science and Technology Agency (JST) and Japan International Cooperation Agency (JICA) under the "Science and Technology Research Partnership for Sustainable Development (SATREPS): Integrated Research on Great Earthquakes and Disaster Mitigation in Nepal Himalaya (FY2016-2021)".

Procedures of analysis

Note: This version was developed on Linux: Ubuntu 19.10 (Eoan Ermine) on VirtualBox version 6.1.0 r135406on Windows10 Home 64bit (Build 14393) for 64bit PC, using gfortran compiler.

Operation on other OS may require additional revision or modification by users themselves.

Execution of commands is conducted as

```
./bin/executable_file_name.exe
or
sh shell_script_file_name.sh
If it is necessary to leave log file of execution, for example,
./bin/executable_file_name.exe 2>&1 | tee ./spacwkf/log/log_file_name.log
or
sh shell_script_file_name.sh 2>&1 | tee ./spacwkf/data/log/log_file_name.log
```

```
- bin
- doc
* etc
\square source
spacwkf
data
- resampled_files
* results
```



```
        gnuplt_script
```


Folder Structure

Every necessary programs and files are stored under the folder "SPAC2021". The command operation must be conducted in the same folder, where shell script files are stored.

The source codes of the programs are stored in the subfolder "source", document files including this instruction manual in "doc", executable ones in "bin".

The subfolder of work space "spacwkf" contains the subfolder "prm" for parameter files that includes script files of GNUPLOT and the subfolder "data" for data files including graphic ones.

The compressed file "spacwkf.tar.gz" keeps subfolder structure of "spacwkf" and all parameter files in "spacwkf/prm".

Some files of GNUPLOT scripts are stored under the subfolder
"./spacwkf/prm/gnuplt_scripts"
These can be loaded on GNUPLOT as load '????'
Some programs create the scripts of GNUPLOT that include the command

'set terminal x11',

This works on the GNUPLOT on Ubuntu and may be that on Windows.
If any problem on Windows, it is worth to try to replace it with
'set terminal wxt'.

Note: Executable files

The folder "SPAC2021" includes a sub-folder "bin" where several executable files are stored. Their source code files are stored in the subfolder "./source". Then, the following command is required to re-compile them if necessary. In the folder SPAC2021, type in the following command.
gfortran ./source/???.for -o ./bin/???.exe
Or,
make all
to compile all necessary source codes at once as shown below.

Note: Shell script files

The folder "SPAC2021" includes several shell script files.
They are composed of few executing commands to reduce the typing tasks in data processing.
The following command can execute the shell script files.
sh shell_script_file_name.sh
As the contents of the shell script files contained in this program package are simple, they can work as batch files. However, it is necessary to activate batch files using the following.
chmod u+x shell_script_file_name.sh
For execution as a batch file, shell_script_file_name.sh

Note: Cleaning up the subfolders

- Use
sh clean_all.sh
in the folder "SPAC2021" to delete all files of input data, interim outputs and results for a new processing task.
- Use
sh clean_sg2.sh
in the folder "SPAC2021" to delete all input files of sg2 format under "./spacwkf/data/sg2_files".
- Use
sh clean_Is.sh
in the folder "SPAC2021" to delete all input files of win format under "./spacwkf/data/ls_files", but subfolder structure is kept.

Note: Format of Data Files

- Basically, users themselves are responsible to convert the format of the input data files to one of those acceptable formats by this program package.
- The acceptable format is "*.cdm" described in the section "1. Resampling".
- The following two format converters are provided:
- sg2 (seg2 standard of IEEE) \rightarrow./spacwkf/multiplexed_files/*.dat
- Is (Win format of Hakusan-Kogyo)
\rightarrow./spacwkf/cdm_files/*.cdm

Build SPAC2021

```
makefile:
FC = gfortran
store= 2>&1 | tee -a ./spacwkf/log/make_all.log
all: clean_log
    ${FC} ./source/cf_panel1.for -o ./bin/cf_panell.exe ${store}
    ${FC} ./source/comparison_plt.for -o ./bin/comparison_plt.exe ${store}
    ${FC} ./source/disp_err1.for -o ./bin/disp_err1.exe ${store}
    ${FC} ./source/disp_sma1_2.for -o ./bin/disp_sma1_2.exe ${store}
    ${FC} ./source/distazi.for -o ./bin/distazi.exe ${store}
    ${FC} ./source/fourier_plt.for -o ./bin/fourier_plt.exe ${store}
    ${FC} ./source/geometry.for -o ./bin/geometry.exe ${store}
    ${FC} ./source/interim_plt.for -o ./bin/interim_plt.exe ${store}
    ${FC} ./source/lstocdm2.for -o ./bin/lstocdm2.exe ${store}
    ${FC} ./source/mk_title.for -o ./bin/mk_title.exe ${store}
    ${FC} ./source/multi_pre.for -o ./bin/multi_pre.exe ${store}
    ${FC} ./source/multipx6.for -o ./bin/multipx6.exe ${store}
    ${FC} ./source/prm_maker.for -o ./bin/prm_maker.exe ${store}
    ${FC} ./source/resämple5.for -o ./bin/resample5.exe ${store}
    ${FC} ./source/resample6.for -o ./bin/resample6.exe ${store}
    ${FC} ./source/resample_pre.for -o ./bin/resample_pre.exe ${store}
    ${FC} ./source/results_plt.for -o ./bin/results_plt.exe ${store}
    ${FC} ./source/seeblk1.for -o ./bin/seeblk1.exe ${store}
    ${FC} ./source/seewav7.for -o ./bin/seewav7.exe ${store}
    ${FC} ./source/seg2read.for -o ./bin/seg2read.exe ${store}
    ${FC} ./source/vel_model_plt.for -o ./bin/vel_model_plt.exe ${store}
    ${FC} ./source/zcorrrel5_3.for -o ./bin/zcorrrel5_3.exe ${store}
clean:
    cd ./bin/; rm *.exe; cd ..
clean_log:
    rm -f ./spacwkf/log/make_all.log 2>/dev/null
```


0 . Format conversion

0.1. seg2 standard format

Shell Script used:
sh seg2read.sh
Program and parameter file used:
seg2read.exe + ./spacwkf/prm/seg2read.prm
seg2read.exe is prepared for the field data files of seg2 standard format.

Terminology
Multiplexing:
To sort the data individually stored in single channel files into a multi-channel file of the time-sequential format.

Here, seg2 standard (multiplexed binary) format (IEEE) is explained.

The expected input files of $\operatorname{seg} 2$ format are, for example, those obtained in the field using multi-channel data logger designed for the exploration geophysics.
seg2read.exe

+ Convert data format from seg2 standard format (binary \& multichannel) in the sub-folder "spacwkf/data/sg2_files" to cdm format (ascii text, multi-channel),
+ Channel pivoting and extraction
+ Store the output files into "spacwkf/data/multiplexed_files"

First: Copy all the seg2 format files to be converted into the subfolder "spacwkf/data/sg2_files".

Example:


```
seg2read.sh:
#!/bin/sh -x
cd spacwkf/data/sg2_files
ls *.sg2 > sg2file.lst
cd ../../..
./bin/seg2read.exe | tee spacwkf/log/seg2read.log
cd spacwkf/data/multiplexed_files
rename 's/^....../ss/' *.dat
ls *.dat > mltfile.lst
cd ../../..
    ./bin/mk_title.exe
```

Shell script executes "ls *.sg2 > sg2file.lst" in this sub-folder and existing sg2 files are listed in the newly created file "sg2file.lst".
All the files listed in it that have the extension specified in the 3rd line of the parameter file "seg2read.prm".

Finally, the first line of "seg2read.prm" is copied to "graph_title.txt" in the subfolder "./spacwkf/prm".

Example: seg2read.prm

All the files listed in "sg2file.Ist" that have the extension specified in the 3rd line are converted to the output files that have the extension given in the 4th line. Edit the file "sg2file.lst" using "gedit" or other text editor if necessary.
seg2read.prm

```
Iwaki City Hall, radius=25m, McSeis/SW, L22 X 7 points Dec. 23 2012 :comment(a70)
    0.055 :(A12) scaling factor (for output files in mkine(1.e-3cm/s)/gal(1.e cm/s^2))
sg2 : extension of input seg2 format files(a3)
dat : extension of output ascii text files(a3)
0 3 0.1 1.0 1.5 :nfilter(=1:apply),nchara=3:bandpass),fl,fh,fs
pvlist 7 6 5 4 3 2 1
```


Explanation: seg2read.prm

All the files listed in "sg2file.Ist" that have the extension specified in the 3rd line are converted to the output files that have the extension given in the 4th line. Edit the file "sg2file.lst" using "gedit" or other text editor if necessary.
seg2read.prm

```
1st line : comment (a70)
2nd line : scaling factor (use the value that makes the unit of the output files
    "mkine" (1.e-3 cm/s))
3rd line : extension of input seg2 format files(a3)
4th line : extension of output ascii text files(a3)->Fix it ".dat"
5th line : nfilter(=0:pass, =1:apply, =2:DC & Trend removal),
    ncharacter(=2:lowpass,=3:bandpass),fl,fh,fs
6th line : Channel Pivoting
    'normal' : no pivoting, all channel used
    'rev_al' : all channel used but in reversed order
    'rev_fh' : all channel used but former half in reversed order
    'rev_lh' : all channel used but latter half in reversed order
    'pvlist 2 1 3 4 6 23 24' : Pivoting list.
```

Examples of the 6th line of seg2read.prm

```
Use all channels without pivoting:
    normal : Channel Pivoting
Use all channels but reversed order:
    reverse : Channel Pivoting
Use the first 7 channels of the input files without changing order:
    pvlist 1 2 3 4 5 6 7 : Channel Pivoting
The same as above but 7th channel moved to the first:
    pvlist 7 1 2 3 4 5 6 : Channel Pivoting
Use only odd numbered channels among 24 without changing order:
    pvlist 1 3 5 7 9 11 13 15 17 19 21 23 : Channel Pivoting
```

If a channel number in pvlist is negative, the polarity of that
channel is reversed.

Note: Be sure to put " '(blank) before ' \because '(colon), otherwise the program can have an error in detecting the end of line.

Execution

```
yokoi@eoan-ermine:~/Desktop/SPAC2020$ sh seg2read.sh
./spacwkf/prm/seg2read.prm
    5.49999997E-02 mkine
./spacwkf/data/sg2_files/sg2file.lst
sxiw3001.sg2
./spacwkf/data/sg2_files/sxiw3001.sg2
./spacwkf/data/multiplexed_files/sxiw3001.dat
    :32bit floating point.
nch= 7 dt= 0.002 nn= 16384
    7 0.0020 0.5500E-01 16384 mkine
Iwaki City Hall, radius=25m, McSeis/SW, L22 X 7 points Dec. }23201
sxiw3002.sg2
./spacwkf/data/sg2_files/sxiw3002.sg2
./spacwkf/data/multiplexed_files/sxiw3002.dat
    :32bit floating point.
nch= 7 dt= 0.002 nn= 16384
    7 0.0020 0.5500E-01 16384 mkine
```

Input files are copied in ‘./spacwkf/data/sg2_files'. Multiplexed outputs are stored \&./spacwkf/data/multiplexed_files". Log file is stored in ‘spacwkf/log/seg2read.log'

The converted files are stored in "./spacwkf/data/multiplexed_files"

Note: The converted files are already multiplexed and stored in the subfolder "./spacwkf/data/multiplexed_files" with the extension ".dat". For these files, the next step is resampling.

Format of output files

in ./spacwkf/data/multiplexed _files:

 Users who use single channel recorders or data loggers must multiplex the record files in the following format by themselves.| 7 | 0.0020 | $0.5500 \mathrm{E}-01$ | 16384 | mkine | | | |
| ---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Iwaki City Hall, radius=25m, | McSeis/SW, L22 | x 7 points | Dec. 23 | 2012 | | | |
| 0.000000 | $-0.3943280 \mathrm{E}-05$ | $0.9517429 \mathrm{E}-05$ | $-0.2661598 \mathrm{E}-06$ | $-0.7497172 \mathrm{E}-05$ | 0.34044 | | |
| 0.002000 | $-0.4349669 \mathrm{E}-05$ | $0.9327264 \mathrm{E}-05$ | $0.5046593 \mathrm{E}-06$ | $-0.8176097 \mathrm{E}-05$ | 0.3524 | | |
| 0.004000 | $-0.4659054 \mathrm{E}-05$ | $0.9203497 \mathrm{E}-05$ | $0.5160243 \mathrm{E}-06$ | $-0.8879738 \mathrm{E}-05$ | 0.3599 | | |
| 0.006000 | $-0.4855397 \mathrm{E}-05$ | $0.9563433 \mathrm{E}-05$ | $-0.1432124 \mathrm{E}-06$ | $-0.9843301 \mathrm{E}-05$ | 0.37105 | | |
| 0.008000 | $-0.6745830 \mathrm{E}-05$ | $0.1001426 \mathrm{E}-04$ | $-0.5579629 \mathrm{E}-06$ | $-0.1409490 \mathrm{E}-04$ | 0.3776 | | |

1st line: Number of channels, $\Delta \mathrm{t}(\mathrm{sec})$, scale, number of samples, unit (mkine or gal) 2nd line: Comment (less than 50 characters)
3rd line: Time, 1st-ch sample, 2nd-ch sample, 3rd-ch sample,
In the next step (resamplec.for reads this file as follows) read(1,*)nch00,dt00,scale00,ndata00, cunit
read(1,'(a50)')comment
read($1,{ }^{*}$, end=10) $x d u m,(x(i, j), j=1, n c h)$

Warning!

seg2read.exe can handle less than or equal to 25 channels and less than or equal to 500,000 samples in every channel.
Exceedance may result in a significant error.
It is recommendable to split the input data file if too long, for example, into several files of 1 hour or 30 minutes data.

Ref:
500,000 samples correspond to 1.38 hours for 100 Hz sampling,
1.11 hours for 125 Hz sampling, 41.6 minutes for 200 Hz sampling, 33.3 minutes for 250 Hz sampling 16.6 minutes for 500 Hz sampling.

Output files is stored in
"./spacwkf/data/multiplexed _files"

Jump to "1.2. Plot Waveform".

0 . Format conversion 0.2. win format for LS8800

This is the example of individually recorded data using a tri-axial sensor and three channel data logger at each observation point. Format conversion \& Multiplexing must be done by the users prior to the analysis for the case of individual recording at each site.
Here win format is explained. The win format data files are created, e.g., LS8800 of Hakusan Kogyo.

The converted files must be written in a format that is readable in the next step: multiplexing.
As it is impossible to cover all existing formats in the world, it is strongly recommended for users to make their own program for format conversion.

Format conversion is conducted using
sh lstocdm2.sh
in the folder "SPAC2019".
Note: Usage of 4 seismographs in a site is assumed.
Preparation:

1) Edit the parameter file "prm_maker.prm"

Sitename_	: site name (a9)
$3 \quad 3$: numbers of obs_ponts and channels
10	: duration of each connected file in min.(integer)
17091511.45	: first file name (yymmddhh.mm)
20	: number of output connected files (integer)

2) Copy the data files (binary) of LS8800 into the subfolders of
"spacwkf/data/ls_files" as follows:
"nol" \leftarrow files from seismograph No. 1
"no2" \leftarrow files from seismograph No. 2
"no3" \leftarrow files from seismograph No. 3
"no4" \leftarrow files from seismograph No. 4
```
Istocdm2.sh
#!/bin/sh -x
./bin/prm_maker.exe | tee spacwkf/log/prm_maker.log
./bin/lstocdm2.exe | tee spacwkf/log/lstocdm2.log
cd ./spacwkf/data/cdm_files
rm *.cdm 2>/dev/null
cd ../../..
mv ./spacwkf/data/ls_files/Combined_Data/*.cdm ./spacwkf/data/cdm_files
```

Execution:
./bin/prm_maker.exe
\rightarrow "lstocdm2.prm" is created in "spacwkf/prm".
./bin/lstocdm2.exe
\rightarrow All converted and separated files are stored in

> "./spacwkf/data/ls_files/Combined_Data".

All converted and separated files are automatically stored in
"spacwkf/data/ls_files/Combined_Data".
Then, the subfolder "./spacwkf/data/cdm_files" is cleaned.
Finally, by the command "mv" at the last line all of the cdm files are moved from
"./spacwkf/data/ls_files/Combined_Data" to "./spacwkf/data/cdm_files".

Example:

Istocdm2.prm: automatically created by Istocdm2.sh

3		: case numbers : This blank line is necessary
City_Hallno1		: Data Folder Name(a12)
794. 792.	798.	: \#1 T44002 Sensitivity (V/M/s)
NS EW V		: channel labels
0.15646E-06		: voltage per Least Significant Bit (V/LSB)
V1 10		: (a2) channel identifier of name; duration(min); of output file
3121		: channel pivoting, channel selection (0=all, 1=1st channel only)
17091511.45	20	: 1st File name(a11), number of output files
		: This blank line is necessary
City_Hallno2		: Data Folder Name(a12)
798. 798.	796.	: \#2 T44003 Sensitivity (V/M/s)
NS EW V		: channel labels
0.15646E-06		: voltage per Least Significant Bit (V/LSB)
V2 10		: (a2) channel identifier of name; duration(min); of output file
3121		: channel pivoting, channel selection (0=all, 1=1st channel only)
17091511.45	20	: 1st File name(a11), number of output files
		: This blank line is necessary
City_Hallno3		: Data Folder Name(a12)
796. 794.	798.	: \#3 T44004 Sensitivity (V/M/s)
NS EW V		: channel labels
0.15646E-06		: voltage per Least Significant Bit (V/LSB)
V3 10		: (a2) channel identifier of name; duration(min); of output file
3121		: channel pivoting, channel selection (0=all, 1=1st channel only)
17091511.45	20	: 1st File name(a11), number of output files
Constants		
794. 792.	798.	: \#1 T44002 Sensitivity (V/M/s)
798. 798.	796.	: \#2 T44003 Sensitivity (V/M/s)
796. 794.	798.	: \#3 T44004 Sensitivity (V/M/s)
pivoting		
1231		: NS output
2311		: EW output
3121		: V output

```
yokoi@eoan-ermine:~/Desktop/SPAC2020$
yokoi@eoan-ermine:~/Desktop/SPAC2020$ sh lstocdm2.sh > output
yokoi@eoan-ermine:~/Desktop/SPAC2020$ sh lstocdm2.sh
Parameter file: ./spacwkf/prm/lstocdm2.prm
Name of the site: City_Hal
No. of station: no1
Sensitivity(M/s): 794.000000 792.000000 798.000000
Components: NSEWV
voltage per Least Significant Bit 1.56460004E-07 (V/LSB)
    1.97052905E-05 1.97550507E-05 1.96065157E-05
Output 1 channel V
Start from: 17091511.45 , 10 file
Output file: ./spacwkf/data/ls_files/Combined_Data/V1151145.cdm
Input file: ./spacwkf/data/ls_files/no1/17091511.45
Output file: ./spacwkf/data/ls_files/Combined_Data/V1151155.cdm
Input file: ./spacwkf/data/ls_files/no1/17091511.55
Output file: ./spacwkf/data/ls_files/Combined_Data/V1151205.cdm
Input file: ./spacwkf/data/ls_files/no1/17091512.05
Output file: ./spacwkf/data/ls_files/Combined_Data/V1151215.cdm
Input file: ./spacwkf/data/ls_files/no1/17091512.15
```

©○○ yokoi@ubuntu: ~/CCA2017/CCA2017/Istocdm2 All zero for $0.5 b y t e ~ d a t a ~ 15122932 c h-0$ All zero for $0.5 b y t e$ data 15122933 ch- 0 All zero for $0.5 b y t e$ data 15122934 ch- 0 All zero for $0.5 b y t e$ data 15122935 ch- 0 All zero for $0.5 b y t e$ data 15122936 ch- 0 All zero for $0.5 b y t e$ data 15122937 ch- 0 All zero for $0.5 b y t e$ data 15122938 ch$\begin{array}{llllllllll}\text { All zero for } 0.5 b y t e ~ d a t a ~ & 15 & 12 & 29 & 39 & \text { ch- } 0 \\ \text { All zero for } 0.5 b y t e ~ d a t a ~ & 15 & 12 & 29 & 40 & \text { ch- } 0\end{array}$

 All zero for 0.5 byte data 15122941 ch- 0 $\begin{array}{ll}\text { All zero for } 0.5 b y t e ~ d a t a ~ & 15 \\ 12 & 29 \\ \text { All zero for } 0.5 b y t e ~ d a t a ~ & 15 \\ 12 & 29 \\ 43 & \text { ch- } 0 \\ 0\end{array}$ All zero for 0.5 byte data 15122943 ch- 0 | All zero for $0.5 b y t e ~ d a t a ~$ |
| :--- |
| 15 |
| All zero for $0.5 b y t e ~ d a t a ~$ |
| 15 |
| 12 |
| 29 |

 All zero for $0.5 b y t e$ data 15122946 ch- 0
 All zero for $0.5 b y t e$ data 15122949 ch- 0 All zorn for 0 Lhvta data 1513 20 $50 \mathrm{ch}-0$
This error message means the clipping of data. Check the time and eliminate the corresponding part.

File name (E1151145.cdm) includes the following information: $1^{\text {st }}$ letter: component $2^{\text {nd }}$ letter: numbering of seismograph (=numbering of station) $3^{\text {rd }} \& 4^{\text {th }}$: Date in (i2)
$5^{\text {th }} \& 6^{\text {th }}$: hour in (i2) $7^{\text {th }} \& 8^{\text {th }} ;$ minutes in (i2)

Example of a converted file

The created single channel file by this format conversion program will be read in the next step using "multipx6.exe" as follows.

```
"multipx6.for"
    character cline(3)*80, cdum*13,cdummy*8 ! Declare three
    do i=1,3
        read(1,'(a80)')cline(i) ! Read 3 lines header
    enddo
    do i=1,nst0-1
        read(1,*)cdummy ! Skip first nst0 sec data
    enddo
    do i=1,ndur0
c read input data
        read(1,*,end=10)cdummy,cdum,xdum
        x(i,j)=xdum/scale
        enddo
    10 ndur0=i-1
        ! Adjust number of samples
```

Character strings cline(3) are not used further. Neither cdummy nor cdum.

Preparation for Multiplexing

- In the next step, multipx6.sh is used with the parameter file "multipx6.prm".
- For automatic editing of multipx6.prm, multi_pre.sh is prepared.
- Edit the following "multi_pre.prm" in "spacwkf/prm" and run "sh multi_pre.sh".

```
CityHall 3P-Array l=35m 2017/09/11:45-2H20M :comment(A50)
    10 : duration of each connected file in min.(integer)
V1151145 : first file name (yymmddhh.mm)
cdm : extention (A3)
1230 : station pivot (0=4th_ch_not_used)
    20 : number of output connected files(integer)
```

- $1^{\text {st }}$ line: Comment but later used as the title of all graphs showing the results of analysis.
- $2^{\text {nd }}$ line: Duration of connected files same as the $3^{\text {rd }}$ line of "prm_maker.prm".
- $3^{\text {rd }}$ line: The eariest file name for the $1^{\text {st }}$ position (A8)
- $4^{\text {th }}$ line: Extension of the name of files in the folder "cdm_files", i.e., cdm.
- $5^{\text {th }}$ line: Station pivoting list.
- $6^{\text {th }}$ line: Number of connected files same as the $5^{\text {th }}$ line of "prm_maker.prm".

Execution

```
yokoi@eoan-ermine:~/Desktop/SPAC2020\$ sh multi_pre.sh
    Working Folder=./spacwkf/prm/
    Default Settings:
            dt = 0.0
            \(\mathrm{np}=3\)
            tst \(=0.0\)
            file_out=CC**.dat
```

V1151145 V2151145 V3151145
V1151155 V2151155 V3151155
V1151205 V2151205 V3151205
V1151215 V2151215 V3151215
V1151225 V2151225 V3151225
V1151235 V2151235 V3151235
V1151245 V2151245 V3151245
V1151255 V2151255 V3151255

Automatically created multipx6.prm which will be used in the next step.

Edit it in an appropriate way if necessary.

Note: Example for the instruction below

An example that consists of three arrays of different sizes is shown below.

+ SS-1 Array: 7 points equilateral triangle array with the center
+ MM-1 Array: 4 points equilateral triangle array with the center
+ LL-1 Array: 4 points equilateral triangle array with the center
Note: these are different from the examples of the data format conversion shown in the previous slides.

1. (Multiplexing \&) Resampling

Flow of the data processing for the conventional SPAC

Field measurement
Single channel files

Individual Recording

Multi-channel files

Resampling \& Screening
 multi-measurement file

Huddle test

Single channel files

Multi-channel \& multi-measurement file Resampling \& Screening

System Correction

Multi-channel files

1. Multiplexing \& Resampling

1.1. Multiplexing (Optional)

Single channel files are combined into a multi-channel file (This step is not necessary for the multi-channel recording cases) multipx6.sh + ./spacwkf/prm/multipx6.prm

First step is to edit the parameter file multipx6.prm.
However, it is recommendable for users to make own conversion program from her/his original format files directly to multiplexed files of the format explained below.

Terminology

Multiplexing:

To sort the data individually stored in single channel files into a multichannel file of the time-sequential format.

Huddle test:

Common input motion recording to determine the difference of the system characteristics among the recording system and/or channels.
The seismometers used in field measurement are put close each other like a huddle and simultaneous recording is conducted.

Re-sampling:

It can be done to thin the data out in order to reduce the size of data files and the load to PC for processing. This can cause the aliazing effect. Then, it Is necessary to apply the digital anti-alias filter that has high cut characteristics before thinning out.

System correction:

The difference of the characteristics among the recording system can be corrected using the data obtained by huddle tests.

Multiplexing the single channel files

Simultaneously \& individually recorded data

Multi-channel files

Warning:

The program multipx6.sh does not have the functionality to adjust the time difference among the single channel files. The input files must have the same timing.

Confirm the following:

+ All input files have the same sampling interval.
+ All input files have their first datum that are sampled at the same time.

multipx6.prm

3

```
40.01 :Number of Channels,dt
    0.0 163.83
    1.e11 mkine
    0 3 0.005 1.0 1.5
    4 .cdm
2 ~ M M ~ : n \_ o u t ( A 1 2 ) , c o u t ~ ( " * * . d a t " ~ i s ~ a t t a c h e d )
    MM-1, Iwaki City Hall, Dec.22, 2012 :comment(A50)
    218 :number of measurement in the same array configuration,n_character
    sxm21001 sxm21002 sxm21003 sxm21004
    ...
    sxm23601 sxm23602 sxm23603 sxm23604
    :This blank is necessary
    :Number of Channels,dt
    C0.002 llon
    3.16e2 mkine :scale(input data is divided by this scale)
    0 3 0.005 1.0 1.5 :nfilter(=1:apply), ncharacter(=2:lowpass,=3:bandpass),fl,fh,fs
    4 .cdm :nattach, cattach
    2 SS :n_out(A12),cout ("**.dat" is attached)
    SS-1, Iwaki City Hall, Dec.22, 2012 :comment(A50)
    30 8 :number of measurement in the same array configuration,n_character
    sxs10101 sxs10102 sxs10103 sxs10104 sxs10105 sxs10106 sxs10107
    sxs13001 sxs13002 sxs13003 sxs13004 sxs13005 sxs13006 sxs13007
    :This blank is necessary
    40.01 :Number of Channels,dt
    0.0 163.83
    3.16e10 mkine
    0 3 0.005 1.0 1.5 :nfilter(=1:apply), ncharacter(=2:lowpass,=3:bandpass),fl,fh,fs
    4 .cdm :nattach, cattach
    2 LL :n_out(A12),cout ("**.dat" is attached)
    LL-1, Iwaki City Hall, Dec.22, 2012 :comment(A50)
    28 8 :number of measurement in the same array configuration,n_character
    sxl21001 sxl21003 sxl21005 sxl21007
```



```
    sxl24601 sxl24603 sxl24605 sxl24607
1st case
2nd case
3rd case
-

\section*{multipx6.prm}

multipx6.prm
Output file name: SS01.dat for the \(1^{\text {st }}\) measurement. '01' shows the numbering of measurement.

SS30.dat for the \(30^{\text {th }}\) measurement. ' 30 ' shows the numbering of measurement.
These output file names consist of the character string 'MM' of 2 characters as indicated in the \(8^{\text {th }}\) line. The following two integers show the numbering of measurement. '.dat' is attached to all automatically.

The data from tst to tst+tdur are processed in every files.
Values read from the input files are divided by the scale factor given in the \(5^{\text {th }}\) line. This value must be selected to make the unit of data in the output file is 'mkine', i.e., 1.0E-5 M/sec for ground velocity. For ground acceleration 'gal', i.e., \(1.0 \mathrm{E}-2 \mathrm{M} / \mathrm{sec}^{2}\) should be used. Otherwise the amplitudes of the data will be erroneously shown in the output figures.

\section*{sxm21001.cdm:}

Example: format of input file ( \(\mathrm{dt}=0.01 \mathrm{sec}\) ) of single channel data in ./spacwkf/data/cdm_files
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{3}{|l|}{File=01001.cdm \({ }_{\text {unit }}\) ch. 1} & 3 lines for header \\
\hline \multicolumn{4}{|c|}{V} \\
\hline \multicolumn{4}{|c|}{\(000: 00: 00.000-0.1396391 \mathrm{E}+11\)} \\
\hline \multicolumn{4}{|c|}{1 00:00:00.010 -0.1513392E+11} \\
\hline \multicolumn{4}{|c|}{\(200: 00: 00.020-0.1472600 \mathrm{E}+11\)} \\
\hline \multicolumn{4}{|c|}{\(300: 00: 00.030-0.1314799 \mathrm{E}+11\)} \\
\hline \multicolumn{4}{|r|}{\(400: 00: 00.040-0.7706377 \mathrm{E}+10\) [ Data lines:} \\
\hline \multicolumn{4}{|c|}{5 00:00:00.050-0.3947473E+10} \\
\hline 16383 & 02:43.830 & \(-0.7844215 \mathrm{E}+10\) & \\
\hline \begin{tabular}{l}
Numbering, \\
(A8)
\end{tabular} & time, (A13) & \begin{tabular}{l}
data \\
(e16.7)
\end{tabular} & \\
\hline
\end{tabular}

\section*{Example of execution (from the folder SPAC2021):}
```

~\$sh multipx6.sh
Working Folder=./spacwkf/prm/
Nch= 4 dt= 9.99999978E-03
Scale Factor= 9.99999980E+10
Does this scale convert the unit of data mkine ?
Please change the value if not.
0 3 4.99999989E-03 1.00000000 1.50000000
MM-1, Iwaki City Hall, Dec.22, }201
1 -th measurement: 4
sxm21001 sxm21002 sxm21003 sxm21004
16383
./spacwkf/data/multiplexed_files/MM01.dat
2 -th measurement:
4
Normal End

```

\section*{Example of output file (stored in the subfolder ./spacwkf/data/multiplexed_files}

\(70.0020 \quad 0.3160 \mathrm{E}+03 \quad 16382\) mkine SS-1, Iwaki City Hall, Dec.22, 2012 :
\begin{tabular}{rrrrrrrr}
0.000000 & \(-0.0000000 E+00\) & \(-0.0000000 E+00\) & \(-0.0000000 E+00\) & \(0.0000000 E+00\) & \(-0.0000000 E+00\) & \(0.0000000 E+00\) & \(-0.0000000 E+00\) \\
0.002000 & \(-0.8961562 E-04\) & \(0.5361709 E-05\) & \(-0.2044998 E-04\) & \(0.1081865 E-03\) & \(-0.1978091 E-05\) & \(0.2530022 E-04\) & \(-0.4171700 E-04\) \\
0.004000 & \(-0.1640327 E-03\) & \(0.8138977 E-04\) & \(-0.1974745 E-04\) & \(0.1997052 E-03\) & \(0.2068763 E-04\) & \(0.4874512 E-04\) & \(-0.9626019 E-04\)
\end{tabular}
\(1^{\text {st }}\) line: channel number, \(d t\), scale factor, number of samples, unit
\(2^{\text {nd }}\) line \(\& ~ b e l o w: ~ t i m e, ~ 1 c h, 2 c h, 3 c h, . . ., 7 c h\).

\section*{Warning!}
- The declared array size for input data in multipx6.for is \(1,200,000\). This gives the constraint: tdur/dt < or \(=1,200,000\)
- Similarly \(n c h<\) or \(=15\)

\section*{For much longer data file:}
"multipx6.for" can handle 1200,000 samples of 15 channels at once. If you have data of longer recording time, it is recommendable to separate them beforehand.
An alternative may be the following way of using "tst" and "tdur" in "multipx5.prm" can let you utilize the data fully.

For the 1st operation:
\(0.0 \quad 3600.0\)
3600.01 3600. 0
:tst(start time)), tdur (duration) in sec.
For the 3rd operation:
7200.013600 .0
:tst(start time)), tdur (duration) in sec.

Namely, "multipx6.for"skips int(tst/dt) data and then starts reading the next data.

\section*{Example Data files: These are already multiplexed.}
multi_SS.tar.gz
multi_MM.tar.gz
multi_LL.tar.gz
Copy these three compressed files into the subfolder "./spacwkf/data/multiplexed_files" for exercise with these example Data files.

\subsection*{1.2. Plot Waveform}

\author{
seewav7.sh+ ./spacwkf/prm/seewav7.prm
}

\section*{Flow of the data processing for the conventional SPAC}


Field measurement Single channel files

Individual Recording
 Multi-channel files

Resampling \& Screening


Multi-channel \& multi-measurement file


Post Script files
Paste-up of Waveform

\section*{Multi-channel file: SS01.dat}
```

7 0.0020 0.3160E+03 16382 mkine
SS-1, Iwaki City Hall, Dec. 22, }201
0.000000-0.0000000E+00 -0.0000000E+00-0.0000000E+00 0.0000000E+00-0.0000000E+00 0.0000000E+00 -0.0000000E+00
0. 002000 -0.8961562E-04 0.5361709E-05 -0. 2044998E-04 0.1081865E-03-0.1978091E-05 0. 2530022E-04 -0.4171700E-04
0.004000-0.1640327E-03 0.8138977E-04 -0.1974745E-04
0.1997052E-03 0.2068763E-04
0.4874512E-04-0.9626019E-04

```


SS01.ps
Figures in Multi-page Post Script file. Post Script file can be opened, for example, by "gv \&", where "gv and " \(\&\) " stand for "ghost view" and background operation.

If "ghost view" is not installed yet: sudo apt-get install gv
dtl denotes the time duration that corresponds
to 1 cm along the time axis.
In one page, \(28^{*} \mathrm{dtt} / \mathrm{dt}\) time step can be plotted. If the file has more, new pages are automatically

\section*{seewav7. prm} added as much as necessary and multi-page PS file is created.

Band Pass Filter
Amplification


This BPF does not affect to the data files. \({ }^{53}\)

\section*{If the records have significant DC-offset (base line shift due to DC component)}

\section*{seewav7. prm}
\(\begin{array}{cl}1.0 & : \mathrm{nfilter}, \mathrm{fl}, \mathrm{fh}, \mathrm{fs} \\ \mathrm{dtl} / \mathrm{sec} / \mathrm{cm})\end{array}\)

This program plots at once all data files listed in ./spacwkf/data/multiplexed_files/mltfile.Ist .

Set nbandpass = 1 and fs>Nyquist frequency


Waveform plots with DC-offset correction, but without applying bandpass filter, are given.

Number of channels is read from the first line of the data files.

\section*{Example of execution:}
yokoi@eoan-ermine:~/Desktop/SPAC2020\$ sh seewav7.sh
./spacwkf/data/multiplexed_files/mltfile.lst
./spacwkf/prm/seewav7.prm
11.00000000
20.0000000
25.0000000

79 measurement
./spacwkf/data/multiplexed_files/LL01.dat
DC-offset removed \& tapered;
\(0.870511591 \quad 1.00000000\)
./spacwkf/data/results/fig_wave/LL01.ps
LL01.dat 1-st page
LL01.dat 2-nd page
LL01.dat 3-rd page
Output files:
PostScript files are stored in the folder:
./spacwkf/data/results/fig_wave
with extension "ps". Use "gv \&" to draw it.


\subsection*{1.3. Re-sampling \& Screening}

Re-sampling \& Screening
resample_pre.sh
resample5.sh + ./spacwkf/prm/resample5.prm

Or
resample6.sh + ./spacwkf/prm/resample6.prm

Then, check the selected time blocks using
seeblk1.sh + seeblk1.prm

Note: Modify the file "./spacwkf/prm/graph_title.txt", if you have not started the processing from "sh seg2read.sh". This means that your original data files are not seg2 format.
The contents of the file "./spacwkf/prm/graph_title.txt" is used for the title of various graphs produced in further processing. It is recommendable to give an appropriate title to the figures to prevent potential confusion.

\section*{Re-sampling \& Screening}

Multi-channel data files from the same array configuration


Resampled \& screened multi-channel \& multi-measurement data file

\section*{Screening: Step-1}

Parameter: ajudge


If the maximum amplitude in a time block exceeds the product of the "ajudge" parameter to RMS amplitude of the same time block, this time block is not used in analysis.
This is a countermeasure against impulsive noise due to traffic, i. e., vehicles passing near by seismometers.
The bigger value of "ajudge" means looser screening. The smaller value means fewer available time blocks.

\section*{Screening: Step-2}

Parameter: a_sgm
If the RMS amplitude in a time block deviates more than the "a_sgm" parameter multiplied to the standard deviation from the average, this time block is not used in analysis, where the average and the standard deviation are calculated over the all time blocks that survived in the screening Step-1.

This is a countermeasure against outliers.
The bigger value of "a_sgm" means looser screening. The smaller value means fewer available time blocks.

\section*{Warning:}

Be sure to use the same resampling interval and the same block size, in case of the combination of arrays of various sizes. Otherwise, a heavy problem will take place in the further step of analysis, namely, the determination of dispersion curves.

The declared array size for input data in resample5.for and resample6.for is \(\mathbf{7 5 0 , 0 0 0}\).
This gives the constraint: \(\quad\) tdur \(/ \mathrm{dt}<\) or \(=\mathbf{7 5 0 , 0 0 0}\)
Similarly nch< or =11
and number of data in one time block < or \(=8192\)
It is recommendable to make a multiplexed data file for every \(\mathbf{3 0}\) minutes or shorter duration, in order to avoid the problem due to the exceedance of input data quantity.

\section*{resample5.prm or resample6.prm}
70.00210 :nch,dt,number of Channels,dt,nskip
7.01 .5 :ajudge,a_sgm
0.032 .766

IWSS-1.dat
:tst,tdur
:output file name
1024
:number of data in one time block after resampling

> sh resample_pre.sh
activates pre-processor to modify resample5.prm and/or resample6.prm easier.
\(1^{\text {st }}\) line: Channel number, sampling interval, skip data number
\(2^{\text {nd }}\) line: ajudge, a_sgm: parameters for two step screening
\(3^{\text {rd }}\) line: start time and duration for processing
\(4^{\text {th }}\) line: Output file name
\(5^{\text {th }}\) line: number of data in one time block after resampling. resample5.for divides all the data into the time blocks that have this number of data allowing overlapping of \(50 \%\) between neighboring blocks.
\(6^{\text {th }}\) line: number of measurement in the same array configuration. Example1 is the single measurement case.

\section*{Example of execution: Output file is}
stored in ‘./spacwkf/data/resampled_files’

\section*{data}

\section*{cdm_files}
```

yokoi@eoan-ermine:~/Desktop/SPAC2020\$ sh resample5.sh
./spacwkf/prm/resample5.prm
Working Folder=./spacwkf/prm/
Band-Pass:fl= 0.100000001 fh= 20.2499981 fs= 22.4999981
Nch= 7
Nskip= 10 f(Nyquist)= 24.9999981 fs= 22.4999981
ajudge= 7.00000000 a_sgm= 1.50000000
0.00000000 32.7659988
First screening (peak/rms< 7.00000000):
1 -th measurement:./spacwkf/data/multiplexed_files/SS01.dat
2 blocks remained among 2 blocks
2 -th measurement:./spacwkf/data/multiplexed_files/SS02.dat
0 blocks remained among 2 blocks
3 -th measurement:./spacwkf/data/multiplexed_files/SS03.dat
0 blocks remained among 2 blocks

```

multiplexed_files- \(\square\) resampled_files
IWMM-1.dat
IWSS-1.dat


\section*{Resampled \＆screened multi－channel \＆multi－measurement data file}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline 7 & 27 & 1024 & （i8，f16．4，7e15 & 7）mkine & \multicolumn{5}{|r|}{\(\rightarrow 1^{\text {st }}\) line：file parameters} \\
\hline 1 & & 0． 0000 & 0． \(0000000 \mathrm{E}+00\) \\
\hline 菦 2 & & 0.0200 & －0．6542959E－10 & 0．6730985E－10 & 0．8688813E－11 & －0．9121746E－10 & 0．3278066E－10 & 0．3681669E－10 & －0．2157925E－10 \\
\hline 产 \(\begin{array}{r}\text { ¢ }\end{array}\) & & 20． 4600 & 0．6798404E－01 & 0．8341893E－01 & 0．7360612E－01 & －0．3876965E－01 & 0．1080229E＋00 & －0．9545929E－01 & －0．1346539E＋00 \\
\hline 당 1 & & 10． 2400 & －0．1701506E＋00 & 0．9676924E－01 & 0．3960467E－01 & －0．3436972E＋00 & 0．1931517E＋00 & 0．1742720E－01 & 0．8249036E－01 \\
\hline 号 1024 & & 30． 7000 & －0．4059438E－01 & 0．2059561E－02 & 0．2788787E－01 & \(-0.1173913 \mathrm{E}+00\) & 0．2213649E－01 & －0．1785946E－01 & －0．9963673E－01 \\
\hline 1 & & 0.0000 & 0．0000000E＋00 & 0．0000000E＋00 & 0．0000000E＋00 & 0． \(0000000 \mathrm{E}+00\) & 0．0000000E＋00 & 0． \(0000000 \mathrm{E}+00\) & 0． \(0000000 \mathrm{E}+00\) \\
\hline
\end{tabular}

The file includes mmblk＝27 time blocks of nch＝7 channel data．
Each time block is composed of nblk＝1024 data．
Each line corresponds to a time step．The format used to store each line is cform3＝＇（i8，f16．4，7e15．7）＇．
The unit for these data is＂mkine＂．
These file parameters are stored in the \(1^{\text {st }}\) line．
As all of the data are delimited by space，this file can be read using free format．

For MM-1 array: resample6.prm
\begin{tabular}{ll}
40.012 & :nch,dt,number of Channels,dt,nskip \\
4.02 .0 & :ajudge,a_sgm \\
0.0163 .83 & :tst,tdur \\
IWMM-1.dat & :output file name \\
1024 & :number of data in one time block after resampling
\end{tabular}

Execution:
~SPAC2021\$ sh resample6.sh
./spacwkf/prm/resample6.prm
Working Folder=./spacwkf/prm//
Band-Pass:fl= 0.100000001 fh \(=20.2500000\) fs \(=22.5000000\)
Nch= 4
Nskip \(=2 \mathrm{f}(\) Nyquist \()=25.0000000 \quad \mathrm{fh}=20.2500000\)
ajudge \(=4.00000000 \quad\) a_sgm \(=2.00000000\)
\(0.00000000 \quad 163.830002\)
First screening (peak/rms< 4.00000000 ):
1 -th measurement:./spacwkf/data/multiplexed_files/MM01.dat
Band-Pass:fl1 \(=5.00000007 \mathrm{E}-02 \mathrm{fh} 1=1.00000000 \mathrm{fs} 1=1.50000000\)
14 blocks remained among 14 blocks
21 -th measurement:./spacwkf/data/multiplexed_files/MM21.dat Band-Pass:fl1 = 5.00000007E-02 fh \(1=1.00000000\) fs \(1=1.50000000\)
14 blocks remained among 14 blocks
Data stored in the temporary file
./spacwkf/data/resampled_files/IWMM-1.dat
Second screening (\{rms-average(rms)\}/sigma< 2.00000000 ):
280 blocks remained among 294 blocks
~SPAC2021\$

\section*{What's special of resample6.exe in comparison with resample5.exe}


```

Output files:
IWSS-1.dat \& resample5.exe
IWMM-1.dat \& resample6.exe
IWLL-1.dat < resample6.exe

```

Resample6.prm is edited after obtaining IWMM-1.dat
\begin{tabular}{|c|c|c|c|c|}
\hline < > < spacwkf & data resamp & files & Q \# & \# \\
\hline \begin{tabular}{l}
© Recent \\
© Home \\
- Desktop \\
- Documents \\
- Downloads \\
dठ Music \\
- Pictures \\
- Videos \\
© Trash
\end{tabular} & IWLL-1.dat & IWMM-1.dat & IWSS-1.dat & \\
\hline
\end{tabular}

\section*{Check the selected time blocks}
```

Parameter file:
./spacwkf/prm/seeblk1.prm
00.0051.01.5 3 :nfilter,fl,fh,fs,nchara(=2:lowpass, =3:bandpass)
110 :n_mea,n_character
IWSS-1.dat

```

Example of execution: Output file is stored in ./spacwkf/data/results/fig_wave'
```

~SPAC2021\$.sh seeblk1.sh
./spacwkf/prm/seeblk1.prm
./spacwkf/data/resampled_files/lWSS-1.dat
28 10
28 20
4.42062318E-03 4.99999989E-03
./spacwkf/data/results/fig_wave/IWSS-1.ps
~SPAC2021\$

```



IWSS-1.dat 1-st page。

\subsection*{1.2 Calculation of Inter station Distance and Azimuth \& Plot Geometry of array}

Programs used: distazi.sh
that controls:
distazi.exe + ./spacwkf/prm/distazi.prm
geometry.exe + ./spacwkf/prm/distazi.prm

A temporary file is used: temp0.dat


Coordinates

distazi.sh
\#!/bin/sh
rm ./spacwkf/data/results/temp0.dat
\# rm ./spacwkf/data/results/distazi.dat
\# rm ./spacwkf/prm/
./bin/distazi.exe
./bin/geometry.exe
gnuplot -e "
load 'geometry.plt' ;
gnuplot is used for plotting.
If not yet installed, sudo apt-get install gnuplot -x11 pause-1

\section*{Example:SS-1 Array}

\section*{distazi.prm}



\section*{dist_azi.dat}
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|c|}{City Hall, SS-1} \\
\hline \multirow[t]{2}{*}{} & st1 & & tance & azimuth \\
\hline & 2 & 27 & 12.500 & -150. 000 \\
\hline & 24 & 4 & 12. 500 & 90.000 \\
\hline & 36 & 67 & 12.500 & -30.000 \\
\hline & 4 & 12 & 21.651 & -60.000 \\
\hline & 51 & 16 & 21.651 & -120.000 \\
\hline & 62 & 23 & 21.651 & -60.000 \\
\hline & 72 & 24 & 21.651 & -120.000 \\
\hline & 82 & 2 & 21.651 & 180.000 \\
\hline & 93 & 3 & 21.651 & 180.000 \\
\hline 10 & 04 & 45 & 21.651 & -180.000 \\
\hline 11 & 14 & 46 & 21.651 & 120.000 \\
\hline 12 & 25 & 56 & 21.651 & 60.000 \\
\hline 13 & 31 & 17 & 25.000 & -90.000 \\
\hline 14 & 4 & 37 & 25. 000 & 150.000 \\
\hline 15 & 5 5 & 5 & 25.000 & 30.000 \\
\hline 16 & 6 & 4 & 37.500 & -90.000 \\
\hline 17 & 72 & 25 & 37.500 & -150.000 \\
\hline 18 & 8 & 3 & 37.500 & 150.000 \\
\hline 19 & 91 & 13 & 43. 301 & -60.000 \\
\hline 20 & 0 & 15 & 43. 301 & -120.000 \\
\hline 21 & 13 & 3 & 43.301 & \(-180.000\) \\
\hline
\end{tabular}

The same image is saved simultaneously in a PostScript file in the subfolder "./spacwkf/data/results/fig_geometry/".

\section*{distazi.prm}
\begin{tabular}{|c|c|}
\hline TwakT Ciey & SS-T : Explanation (a45) \\
\hline & :Type \(X-Y(=0)\), Lat-Long (=1), Dist-Angle (=2) \\
\hline  & Number of stations, Title of figure \\
\hline \(25.0 \quad 90.0\) & 1 \\
\hline 12.50 30.0 & 2 \\
\hline \(25.0-30.0\) & 3 \\
\hline 12.50-90.0 & 4 \\
\hline \(25.00-150.0\) & 5 \\
\hline 12.50 150.0 & 6 \\
\hline \(0.0 \quad 0.0\) & 7 \\
\hline
\end{tabular}

The \(1^{\text {st }}\) line \(\&\) the \(2^{\text {nd }}\) parameter of the \(3^{\text {rd }}\) line are read and used later.

For Lat-Long (=1):
The statement for reading in distazi.for is:
read( \(1,{ }^{*}\) ) xla(ista),ylo(ista),id(ista)

Example of execution:
~SPAC2021\$ sh distazi.sh
Dist-Azimuth coordinates are selected X-axis toward East, Y-axis toward North.
\(1 \quad 25.0 \quad-0.0\)
\(\begin{array}{lll}2 & 6.2 & 10.8\end{array}\)
\(\begin{array}{lll}3 & -12.5 & 21.7\end{array}\)
\(4-12.5 \quad-0.0\)
\(5-12.5-21.7\)
\(6 \quad 6.3-10.8\)
\(7 \quad 0.0 \quad 0.0\)
\(1221.6506348-59.9999962\)
\(\begin{array}{llll}6 & 7 & 12.5000010 & -30.0000038\end{array}\)
./spacwkf/data/
./spacwkf/data/results/distazi.dat
127 12.500-150.000
\(21 \quad 3 \quad 5\) 43.301-180.000
Iwaki City Hall, SS-1
7 SS-1
25.0000000 -9.99999997E-07
\(6.25000000 \quad 10.8253174\)
\(-12.5000000 \quad 21.6506348\)
-12.5000000 -9.99999997E-07
-12.5000019 -21.6506348
\(6.25000095-10.8253174\)
\(0.00000000 \quad 0.00000000\)

Q日○ Gnuplot


Plot appears in a pop-up window


Output files
./spacwkf/data/results/distazi.dat
./spacwkf/data/results/geometry.dat
./spacwkf/prm/gnuplt_script/geometry_SS-1.plt
geometry.plt
Contents of 'geometry.plt' load './spacwkf/prm/gnuplt_script/geometry_SS-1.plt'
./spacwkf/data/results/fig_geometry/geometry_SS-1.ps

\section*{Example: MM-array}
distazi.prm
Iwaki City Hall, MM-1 :Explanation (a45)
2 :Type \(X-Y(=0)\), Lat-Long(=1),Dist-Angle(=2)
4 MM-1 :Number of stations, Title of figure
\begin{tabular}{ccc}
37.5 & 90.0 & 1 \\
37.5 & -30.0 & 2 \\
37.5 & -150.0 & 3 \\
0.0 & 0.0 & 4
\end{tabular}

Then run distazi.sh
distazi.dat
Iwaki City Hall, MM-1
4 :number of station
ID \(\quad \mathrm{X} \quad \mathrm{Y}\)
137.500000 -0.000002

2 -18.750000 32.475952
3-18.750002-32.475952
\(4 \quad 0.000000 \quad 0.000000\)
id st1 st2 distance azimuth
\(\begin{array}{lllll}1 & 1 & 4 & 37.500 & -90.000\end{array}\)
\(2 \begin{array}{lllll}2 & 4 & 37.500 & 150.000\end{array}\)
\(\begin{array}{lllll}3 & 3 & 4 & 37.500 & 30.000\end{array}\)
\(4 \quad 1 \quad 2 \quad 64.952-60.000\)
5 1 3 64.952-120.000
623 64.952-180.000

\section*{2. Calculation of SPAC coefficient}

Program used:
zcorrel.sh
that controls
./bin/zcorrel5_3.exe + ./spacwkf/prm/zcorrel5_3.prm and
./bin/interim_plt.exe + ./spacwkf/prm/zcorrel5_3.prm for plotting the results

\section*{Calculation of SPAC coefficients}

Resampling \& Screening


\section*{zcorrel5_3.prm}

Iwaki City Hall, SS-1 \(\longleftarrow 1^{\text {st }}\) line is used as the title of figures created
0.1 10.0 0.020. 2502 :fmin, fmax, dt, bw (>3.71/Td), n_huddle, nhide HDSS-1. dat 11 :Huddle test file name (A12), n_coh_hud, n_pow_hud
IWSS-1 dat \(11 \quad\) : input file name (A12), n_coh, n_pow
5


For the inter-station distance, 12.5m, 3 pairs namely stations (\#2,\#7),(\#4,\#7),(\#6,\#7) are averaged.

In the program \(\mathrm{nn}=\mathrm{nn}\) _org* \(n\) nide is conducted, where nn _org denotes length of a time block in the input data file. This means the zero padding in order to shorten the interval of frequency for the calculation of FFT.
Time window length including padded zeros is given by \(\mathrm{Td}=\mathrm{nn} \_\)org*nhide*dt
\(1^{\text {st }}\) line
Parameters: fmin, fmax, bw, n_huddle

bw: bandwidth of Parzen Window that is used for smoothing the averaged cross- and auto- correlations. The bigger value of "bw" corresponds to smoother SPAC coefficient. bw=0.0 means exection without applying Parzen Window.
n_huddle: Flag for executing the system correction using the huddle test data ( \(0=\) no effect, \(=1\) conducting system correction). Correction using the huddle test data is usually not necessary when the array is composed of the seismographs of the same type.

2nd line
Parameters: Huddle test file name (A12),n_coh_hud,n_pow_hud

Resampled \& screened Multi-channel \& multi-measurement file of the huddle test data
huddle.dat

Flag for outputing the coherence file of the huddle test data \(0=\) no effect
\(1=\) output
huddle_coh.dat

Flag for outputing the power spectra file of the huddle test data
\(0=\) no effect
1 = output
huddle_psp.dat

This line is read but not used in the analysis if \(n \_h u d d l e\) in the \(1^{\text {st }}\) line is " 0 ".

3rd line
Parameters: input file name (A12),n_coh,n_pow


Flag for outputing the power spectra file of
Input.dat

Flag for outputing the coherence file of the huddle test data
\(0=\) no effect
1= output
Input_cor_coh.dat
the huddle test data
\(0=\) no effect
1= output
Input_cor_psp.dat

The coherence and the power spectra of the field data without the system correction are output as default.

> Input_coh.dat
> Input_psp.dat

\section*{Example of execution:}
~SPAC2021\$ sh zcorrel.sh
[Program zcorrel5_3.for ./spacwkf/prm/zcorrel5_3.prm Huddle Test Skipped.
nn= 2048
\(28 \quad 10\)
28
20
power and cross spectra for field data calculated. Block Averaging has been done. ./spacwkf/data/results/IWSS-1_psp.dat Output:./spacwkf/data/results/IWSS-1_psp.dat ./spacwkf/data/results/IWSS-1_coh.dat ./spacwkf/data/results/SPCSS1.dat

Look the next page



Procedure for MM-1 Array
+ Edit ./spacwkf/prm/resample6.prm for MM-1 Array
+ \$ sh resample5.sh
\(\rightarrow\) resampled \& screened file IWMM-1.dat
+ Edit ./spacwkf/prm/seewav6.prm for MM-1 Array
+ \$ sh seewav6.sh
\(\rightarrow\) Waveform plot files MM??.ps
+ Edit ./spacwkf/prm/distazi.prm for MM-1 Array
\(+\$\) sh distazi.sh \(\rightarrow\) geometry plot file geometry_MM-1.ps
+ Edit ./spacwkf/prm/zcorrel5_3.prm for MM-1 Array
\(+\$\) sh zcorrel.sh \(\rightarrow\) SPAC coefficient file SPCMM1.dat etc.


Power spectra
All Coherence functions

These figures are automatically stored as PS files in ./spacwkf/data/results/fig_interim

Procedure for LL-1 Array
+ Edit ./spacwkf/prm/resample6.prm for LL-1 Array
+ \$ sh resample6.sh \(\quad \rightarrow\) resampled \& screened file IWLL-1.dat
+ Edit ./spacwkf/prm/seewav6.prm for LL-1 Array
+ \$ sh seewav6.sh
\(\rightarrow\) Waveform plot files LL??.ps
+ Edit ./spacwkf/prm/distazi.prm for LL-1 Array
\(+\$\) sh distazi.sh \(\rightarrow\) geometry plot file geometry_LL-1.ps
+ Edit ./spacwkf/prm/zcorrel5_3.prm for LL-1 Array
\(+\$\) sh zcorrel.sh \(\rightarrow\) SPAC coefficient file SPCLL1.dat etc.


\section*{Power Spectra}
\(10^{*} \log _{10}\) (Fourier Coefficient *Td* omg**2) of each frequency is plotted in PostScript file spacwkf/data/results/fig_interim/IWMM-1_psp.ps in the unit \(10 * \log 10\left(\mathrm{M}^{* *} 2 / \mathrm{Sec}^{* *} 4 / \mathrm{Hz}\right)\) Also output into spacwkf/data/results/IWMM-1_psp.dat that is CSV format file.

IWMM-1_psp.dat
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \# Period & 1-ch & 2-ch & 3-ch 4 & 4-ch Power Spc & 1-ch & 2-ch & 3-ch & h 4- & D. \\
\hline 0.100 & -122.523 & -121.038 & -123.098 & -122.525 & -123.525 & \multicolumn{2}{|l|}{-121.061 -} & \multicolumn{2}{|l|}{-123.484-122.815} \\
\hline 0.100 & -121.617 & -120.174 & -122.290 & -121.659 & -122.703 & \multicolumn{2}{|l|}{-120.218-1} & -122.836 & -122.091 \\
\hline 0.101 & -120.964 & -119.546 & -121.741 & -121.039 & -122.073 & \multicolumn{2}{|l|}{-119.536-1} & \multicolumn{2}{|l|}{-122.445-121.599} \\
\hline & & & & & & & & & \\
\hline
\end{tabular}

10*Log10 (Fourier Coefficient * Td * omg**2)
10*LOG10(sqrt(variance of Fourier Coefficient)*Td*omg**2)
where omg=2 \(\pi /\) period
When Velocity Fourier Amplitude Spectral Density is required, type sh fourier.sh
in the folder SPAC2017. fourier_plt.exe convert the above mentioned psp to
Fourier Amplitude Spectra.

Example: Up to this slide the red part of the below shown diagram has been performed for SS-1 Array (7 points). The next step is to do the same procedure for MM-1 Array ( 4 points), i.e., the blue part of the diagram below. Then, the green part.


SPCSS1.dat, SPCMM1.dat, SPCLL1.dat are used in the next step of analysis.

\section*{3. Determination of Dispersion Curve}

Programs used:
cf_panel1.sh
that controls
./bin/cf_panel1.exe + cf_panel1.prm
for fitting to Bessel function, plotting SPAC coefficient and determination of dispersion curve using the imaging technique.
For plotting

> vel_model.sh
that controls
./bin/vel_model_plt.exe + vel_model_plt.prm

All input files must have the same \(\mathrm{df}=1 / \mathrm{Td}\) SPCSS1.dat SPCMM1.dat SPCLL1.dat

comparison.dat


The same file name is used for every case

\section*{Determination of dispersion curve} \(1^{\text {st }}\) step:
+ The fif-th order polynomial that approximates the inverse function of \(J_{0}(x)\) \(y=-6.0803 x^{5}+9.2477 x^{4}-3.9322 x^{3}+0.1815 x^{2}-1.7079 x+2.4121\)
is used to calculate the tentative values of the phase velocity \(c(r, \omega)\), where \(y=k r=r \omega / c(r, \omega)\), \(x=\rho(r, \omega)\).
+ The wave lengths are estimated from the observed SPAC coefficients through this tentative phase velocity.
+ The frequency range for analysis is narrowed below the frequency that corresponds to the spacial Nyquist wave length, i.e., 2 times the minimum interstation distance.
+ The frequency range for analysis is again narrowed above the frequency of the maximum value of SAC coefficient curves.
\(2^{\text {nd }}\) step:
+ Imaging technique is applied to determine the phase velocity of each frequency. The misfit function is set for the SPAC coefficient curves.

\section*{Example:}
cf panel1.prm

\(\longrightarrow\) The list of inter-station distances must be coincident to the contents of the SPAC coefficient's file.
The minimum and maximum frequency for fitting can be specified, if not \(f_{\text {min }}\) and \(f_{\text {max }}\) in the \(3^{\text {rd }}\) line will be used in place of them.

\section*{Example of execution:}
```

\$ sh cf_panel1.sh
n_message= 0 n_comparison= 1 nfskip= 0 0.200E+00
Range of Analysis: from 0.10(Hz) to }5.00(\textrm{Hz}
and from }50.00(\textrm{m}/\textrm{s})\mathrm{ to }1000.00(\textrm{m}/\textrm{s}
Number of files= 3 for SPAC Coef. curves.
1 SPCSS1.dat
2 SPCMM1.dat
3 SPCLL1.dat
No. Distance min_fr max_fr

	m	Hz	Hz
1	12.50	1.47	3.56
2	21.60	1.42	2.86
3	25.00	1.10	2.32
4	37.50	1.07	2.03
5	43.30	1.05	1.93
6	37.50	1.10	2.34
7	65.00	0.24	1.81
8	75.00	0.34	1.81
9	130.00	0.17	1.51

Range of analysis: fmin= $0.561999977 \quad$ fmax $=3.56399989$
./spacwkf/prm/gnuplt_script/SPAC_coef.plt
./spacwkf/prm/gnuplt_script/cf_panel1.plt
Hit return to continue
These figures are automatically stored as PS files in
./spacwkf/data/results/fig_results

```

\(-0.431769,-0.686482\)

Gnuplot

\(2.04079,108.929\)

Wave_Length \(\lambda=\) Phase_Velocity \(\mathbf{c} /\) Frequency f
Nyquist_Wave \(\longrightarrow \lambda_{\text {min }}=2 \mathbf{r}_{\text {min }}\)
\(\lambda_{\max }<7 \mathbf{r}_{\text {max }}\) : longer side limit of the critical range
\(<3 r_{\text {max }}\) : limit between the critical and the acceptable ranges
\(<\mathbf{r}_{\text {max }}\) : limit between the acceptable and the reliable ranges (After Cornou et al., 2006)


\section*{Example of Output}
vel_model.dat for the determined dispersion curve


\section*{Comparison.dat}
for checking the glade of fitting


Plot the determined dispersion curve:
Execution: After editing ./spacwkf/prm/vel_model_plt.prm for the graph title, [fmin,fmax] and [vmin, vmax]
./spacwkf/prm/vel_model_plt.prm
```

Iwaki City Hall SS,MM,LL Arrays 2012/09/15 :title(a50)
0.5 4.0 :fmin,fmax
80. 1000. :vmin,vmax
1 : n_mod
+++
1st line: title of phase velocity plot
2nd line: fmin and fmax for plotting
3rd line: vmin and vmax for plotting
4th line: n_mod
=1: wavelength/3 - Vs will be plotted in Vs structure plot
otherwise not plotted.

```

\section*{File: vel_model.dat}
- [fmin, fmax] described in vel_model_plt.prm and used by vel_model_plt.exe and cf_panel.exe are not reflected to the contents of the file vel_model.dat.
- It is recommendable to edit vel_model.dat manually to select the frequency range used in the next step.
- Don't leave a blank line at the end of the file vel_model.dat after editing.
- Run vel_model_plt.exe after editing it. \(\rightarrow\) sh .vel_model.sh
~SPAC2021\$ sh vel_model.sh ./spacwkf/prm/gnuplt_script/vel_model.plt

This figure is automatically stored as PS files in
./spacwkf/data/results/fig_results


Plot the SPAC coefficient curve fitting:

\section*{Execution:}
\$ sh comparison.sh
Type in the frequency that you want to select.
./spacwkf/prm/gnuplt_script/comparison.plt


Simultaneously the same imge is saved in a PostScript file: ./spacwkf/data/results/fig_results/comparison.ps

\section*{4. Heuristic Search of Vs Structure}

Programs used:
inversion.sh
that controls
./bin/disp_sma1_2.exe + ./spacwkf/prm/disp_sma1_2.prm
./bin/disp_errl.exe
results.sh
that controls
./bin/results_plt.exe


\section*{inversion.sh}
\#!/bin/sh -x
rm ./spacwkf/data/results/temp*.dat 2>/dev/null
./bin/disp_sma1_2.exe | tee spacwkf/log/disp_sma1_2.log
./bin/disp_err1.exe | tee spacwkf/log/disp_err1.log
rm ./spacwkf/data/results/temp*.dat
results.sh
\#!/bin/sh -x
./bin/results_plt.exe
gnuplot -e "load 'results.plt' ; pause -1"

Combination of the Down Hill Simplex Method (Nelder \& Mead (1965)) and the Very Fast Simulated Annealing method (Ingber, 1989).

DHSM: Down Hill Simplex Method (Nelder \& Mead (1965)) An efficient algorithm to find "local minimum". Faster than Geiger's method. Partial derivatives are not necessary. Result is controlled by given initial values and easily captured by local minimum.
Example of application to the microtremor array: Ohori et al(2002)

VFSA: Very Fast Simulated Annealing method (Ingber, 1989)
One of the heuristic search methods.
Analogy of cooling and crystallization process of metals.
Results can escape from local minimum and can get global minimum with some probability.
Time consuming due to the probabilistic search for each parameter.
Example of application to the microtremor array \& appropriate values of parameters for this purpose: Yamanaka (2004)

\section*{Example: disp_sma1_2.prm}
\begin{tabular}{|c|c|}
\hline 11.0 .61 .31000 & 005 :idum,t0,a,c,ntemp,j0 \\
\hline 0.0025 & :eps0 \\
\hline 11 & :n_roh,n_vp \\
\hline 101 & :ini_flg,ndsp_flg,n_err \\
\hline 01 & :kflg,jflg \\
\hline 00 & :n_vs,n_th \\
\hline str_range.dat & :File name for the initial velocity model (a25). \\
\hline vel_model.dat & :File name for the obseved dispersion relation (a25) \\
\hline vel_cal.dat & :File name for the estimated velocity structure (a25) \\
\hline disp_cal.dat & :File name for the calculated dispersion relation (a25) \\
\hline
\end{tabular}
```

Control parameter for the simulated annealing method
idum :Random seed (integer): As the result may depend on the initial velocity model given by random number, it is strongly recommended for
users to apply this program several times with various values of random seed and to grasp the scatter of result.
t0, a,c :Initial Temperature, Coefficients for T=T0* }\operatorname{exp(-\mp@subsup{c}{}{*}\mp@subsup{k}{}{**}a), where k is iteration number. T0=1.0, a=0.6 \& c=1.3 are of the fastest schedule
ntemp :Maximum number of temparature change
j0 :Number of iteration for each temperature
threshold for conversion
eps0 : threshold of misfit function
flags for roh and vp
n_vp : 1=by Ludwig et al(1970): vp=1.11*vs+1.29; 0=fixed to the initial values
n_roh : 1=by Kitzunezaki et al(1990): roh=1.2475+0.399*vp-0.026*vp**2; 0=fixed to the initial values
flags for output to Display
ini_flg : Initial Velocity Structure Model. 1=yes
ndsp_flg: Observed Dispersion Relation. 1=yes
n_err : Error at each iteration, 1=yes
kflg : Missfit at each temp. change, 1=yes
jflg : Missfit at each itration with the same temp. 1=yes
n_vs : Vs value (n_vs=layer number, 0=no output)
n_th :Thickness value (n_th=layer number, 0=no output)
n_err

Example: str_range.dat \leftarrow Initial Search Range

(hmin, hmax) : Search range for layer thickness.
(vmin, vmax) : Search range for Vs (Shear Wave Velocity)

Example of execution(1): inversion.sh

```
$ sh inversion.sh Opening
+------------------------------------------------------
+ +
+ Disp_sma1 +
+ +
+ Program to obtain the optimum undeground velocity +
+ structure for the given dispersion relation of +
+ Rayleigh wave. +
+ +
+ The used method is a combination of the down hill +
+ simplex method (Nelder & Mead (1965)) and the +
+ very fast simulated annealing method (Ingber +
+ (1989)).
+
+ +
+ The subroutine DSPRAY and DSPMRX published in +
+ "Seismological Algorithm" are used directly. +
+ AMOEBA and AMOTRY published in "Numerical Recipe" +
+ are also used, but with significant modification +
+ for the adaptation with the very fast simulated +
+ annealing method. +
+ +
+ By the combination with the down hill simplex +
+ method, the very fast simulated annealing method +
+ is gotten much faster. +
+ +
+ July 6, 2005+
+ CopyRight by Toshiaki Yokoi, IISEE, BRI, Japan.+
+-----------------------------------------------------
./spacwkf/data/results/progress.dat }\longrightarrow\mathrm{ Interim output
./spacwkf/prm/disp_sma1_2.prm
./spacwkf/prm/str_range.dat
Initial values randomly produced
```


Example of execution(2):

Output-1

progress.dat: Structure Models of every j0 iterations are stored. err_estm.dat: Data for error estimation (Next Step) are stored.

Example of execution(3): inversion.sh

Error estimate by disp_err1.exe

Output-1

Vel_cal.dat: Optimum Solution				
Thicknes (Km) Density $\left(\mathrm{g} / \mathrm{cm}^{\wedge} 3\right)$	$\mathrm{Vp}(\mathrm{Km} / \mathrm{sec})$	$\mathrm{Vs}(\mathrm{Km} / \mathrm{sec})$		
1	0.021996	1.755735	1.401826	0.100744
2	0.006866	1.784393	1.490328	0.180476
3	0.006150	1.850516	1.699537	0.368953
4	0.146807	1.861471	1.734910	0.400820
5	0.027075	2.031596	2.314106	0.922618
6	999.000000	2.101820	2.572326	1.155249

disp_cal.dat: Observed \& Calculated Dispersion Curves
\# Frequency(Hz) Observed Velocity Calculated Velocity

0.561	0.951	0.957	0.165
0.586	0.950	0.942	0.158
0.610	0.941	0.925	0.153
0.635	0.914	0.903	0.140
0.659	0.883	0.880	0.130
0.684	0.846	0.853	0.117
0.708	0.804	0.827	0.107
0.732	0.767	0.801	0.098
0.757	0.731	0.775	0.090
0.781	0.709	0.750	0.084
0.806	0.686	0.726	0.079

Output-2

vel_cal_err.dat: Optimum Solution with estimated error (SD).

	nes(Km)	Roh(g/cm^3)		$\mathrm{Vp}(\mathrm{Km} / \mathrm{sec})$		$\mathrm{Vs}(\mathrm{Km} / \mathrm{sec})$		SD
1	0.022	0.000	1.756	0.000	1.402	0.000	0.101	0.000
2	0.007	0.000	1.784	0.002	1.490	0.005	0.180	0.004
3	0.006	0.006	1.851	0.013	1.700	0.043	0.369	0.039
4	0.147	0.011	1.861	0.003	1.735	0.010	0.401	0.009
5	0.027	0.131	2.032	0.222	2.314	0.795	0.923	0.717
6	999.000	0.000	2.102	0.041	2.572	0.154	1.155	0.139

sensitivity.dat: results of sensitivity analysis of structural parameters (h \& vs) to Vs.

Graphical Output: sh results.sh ./spacwkf/prm/gnuplt_script/disp_cal.plt ./spacwkf/prm/gnuplt_script/cal_cf_panel.plt ./spacwkf/prm/gnuplt_script/vs_structure.plt Hit return to continue Hit return to continue

Iwaki City Hall: SS-1, Mill-1, LL-1
Q日○ Gnuplot

© © (Gnuplot

4.07562, 1090.35

Set n_mod=0 in 'vel_model_plt.prm' to eliminate green circles.

These figures are automatically stored as PS files in ./spacwkf/data/results/fig_results

A way to find the optimum solution

- Explanation using another example -

In the highest frequency range, the phase velocity is about 0.3 ($\mathrm{Km} / \mathrm{sec}$).

At the lowest frequency $0.664(\mathrm{~Hz})$ the phase velocity estimated is 0.695 ($\mathrm{Km} / \mathrm{sec}$). Then, the corresponding wave length is about 1 (Km) and the expected explored depth very roughly estimated may be about 250 (m).

Examples of Search Range

```
str_range. dat (4 layer model for exploration from surface to the seismic bedrock)
Yamanaka (2001)
4
\(1.8 \quad 1.9560 .0010 .05 \quad 0.4 \quad 0.9\) :density, Vp, hmin, hmax, vmin, vmax
2. \(0 \quad 2.400 \quad 0.001 \quad 0.30 \quad 0.7 \quad 1.3\)
2.3 2.955 \(0.010 \quad 0.30 \quad 1.2 \quad 1.8\)
2. 5 4. 842 998. 0999.02 .6 3.6
```

str_range. dat (4 layer model for exploration from surface to the engineering bedrock)

Engineering Bedrock 6
$\begin{array}{lllll}1.5 & 1.5 & 0.0 & 0.03 & 0.08 \\ 0.15 & \text { : density, Vp, hmin, hmax, vmin, vmax }\end{array}$
1.51 .5
0.0010 .03
0.100 .15
1.51 .5
0.0010 .03
0.080 .15
1.61 .5
0.0010 .03
0.150 .25
$\begin{array}{llllll}1.7 & 1.6 & 0.001 & 0.03 & 0.25 & 0.35\end{array}$
$1.8 \quad 1.8 \quad 998.0 \quad 999.00 .350 .8$
:Model (a30)
: IL(I5), Layer Number
\qquad

1st Search Range

S_ \& L_ Tsukb
:Model (a30)
:IL(I5), Layer Number

1.5	1.6	0.001	0.2	0.2	0.5	$:$ dens $i t y, ~ V p, h m i n, ~ h m a x, ~ v m i n, ~ v m a x ~$
1.8	1.956	0.01	1.0	0.4	0.9	
2.0	2.4	0.1	1.0	0.7	1.3	
2.3	2.955	0.1	1.0	1.2	1.8	eps=$=0.01$
2.5	3.2	998.0	999.0	2.6	3.6	

2nd Search Range

S_ \& L_Tsukb
$\begin{array}{llll}1.5 & 1.6 & 0.001 & 0.2\end{array}$
1.5
1.6
0.0010 .2
0.0010 .2
0.0010 .2
$998.0999 .00 .5 \quad 0.9$
0.4
0.5
:Model (a30)
: IL (I5), Layer Number
1.5
1.6
. 6

1. 956

3rd Search Range

:Model (a30)
: IL (I5), Layer Number

1.5	1.6	0.001	0.2	0.2	0.4	: density, Vp, hmin, hmax, vmin, vmax
1.5	1.6	0.001	0.2	0.3	0.5	
1.5	1.6	0.001	0.2	0.4	0.6	
1.8	1.956	998.0	999.0	0.5	0.9	eps $=0.0065$

disp_sma1_2.prm

11. 0.61 .35005 :idum, t0, a, c, ntemp, j0
0.0065
11
101

0	1
0	0

str_range. dat
vel_model. dat
vel_cal.dat
disp_cal.dat
: eps0
:n_roh, n_vp
:ini_flg, ndsp_flg, n_err

$$
: k f \mid \bar{g}, j f l g
$$

:n_vs, n_th
:File name for the initial velocity model (a25).
:File name for the obseved dispersion relation (a25).
:File name for the estimated velocity structure (a25)
:File name for the calculated dispersion relation (a25

c idum	Random seed (integer)
c t $_{0}$	$:$ Initial Temperature
$c ~ a, ~ c ~$	Coefficients for $T=T_{0} * \exp (-c * k * * a)$, where k is iteration number

〈The optimum schedule is given $\mathrm{t}_{0}=1.0, \mathrm{a}=0.6, \mathrm{c}=1.3$ (Yokoi (2006)).〉
c ntemp :Maximum number of temparature change
c j0 :Number of iteration for each temperature
c threshold for conversion
c eps0 : averaged deviation

```
disp_sma1_2.prm (continuation)
c flags for roh and vp
c n_vp : 1=by Kitzunezaki et al (1990), vp=1.11*vs+1. 29
    0=fixed to the initial values
c n_roh : 1=by Ludwig et al (1970), roh=1. 2475+0.399*vp-0.026*vp**2
    0=fixed to the initial values
c flags for output to Display
c ini_flg : Initial Velocity Structure Model 1=yes
c ndsp_flg : Observed Dispersion Relation 1=yes
c n_err : Error at each iteration 1=yes
c kflg : Missfit at each temp. change 1=yes
c jflg : Missfit at each itration with the same temp. 1=yes
c n_vs : Vs value (n_vs=layer number, 0=no output)
c n_th: Thickness value (n_th=layer number, 0=no output)
```

$S_{-} \& L_{4} \text { Tsukb }$:Model (a30) : IL(I5), Layer Number		
1.5	1. 6	0.001	0. 2	0.2	0.4	:density	Vp, hmin, hmax, vmin, vmax
1.5	1.6	0.001	0. 2	0.3	0.5		
1.5	1.6	0.001	0.2	0.4	0.6		
1.8	1. 956	998.0	999.0	0.5	0.9		

	Thicknes (Km)	Density $(\mathrm{g} / \mathrm{cm} \wedge)$	Vp $(\mathrm{Km} / \mathrm{sec})$	Vs $(\mathrm{Km} / \mathrm{sec})$
1	0.057347	1.820632	1.604092	0.282966
2	0.074116	1.878893	1.791601	0.451893
3	0.147796	1.882880	1.804653	0.463651
4	999.000000	2.021464	2.277869	0.889972

Comparison of Cal. to Obs. disp cal.dat

Determined Velocity Structure vel cal.dat

	Thicknes (Km)	Density $\left(\mathrm{g} / \mathrm{cm}^{\wedge} 3\right)$	Vp $(\mathrm{Km} / \mathrm{sec})$	Vs $(\mathrm{Km} / \mathrm{sec})$
1	0.057347	1.820632	1.604092	0.282966
2	0.074116	1.878893	1.791601	0.451893
3	0.147796	1.882880	1.804653	0.463651
4	999.000000	2.021464	2.277869	0.889972

