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1. Basic Condition 

 

1.1 Coordinate 

 

(1) Global Coordinate 

 

The global coordinate is defined as the right-hand coordinate as shown in Figure 1-1-1.  
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(2) Local Coordinate 

 

The local coordinate is defined for each element. The displacement freedoms and force freedoms are named 

with subscripts indicating the coordinate direction and node name. For example, the local coordinate of a 

beam element in Figure 1-2 is defined to have its x-axis in the same direction of the element axis. Also the 

displacement and force freedoms of a beam element are expressed as shown in Figure 1-1-2. 
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2. Constitutive Equation of Elements 

 

3.1 Beam 

 

Force-displacement relationship for elastic element 

The relationship between the displacement vector and force vector of the elastic element in Figure 2-1-1 is 

expressed as follows: 






























































x

yB

yA

yy

yy

x

yB

yA

N

M

M

EA

l
EI

l

EI

l
EI

l

EI

l

'

'

'

'
00

0
3

'

6

'

0
6

'

3

'

'

'

'





     (2-1-1) 

where, E , yI , A  and 'l  are the modulus of elasticity, the moment of inertia of the cross-sectional area 

along y-axis, the cross-sectional area and the length of the element. The rotational displacement vector of 

the nonlinear bending springs is, 
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      (2-1-3) 

where, yAf  and yBf  are the flexural stiffness of nonlinear bending springs at both ends of the element. 

The rotational displacement vector from the shear deformation of the nonlinear shear spring is, 

Figure 2-1-1 Element model for beam  
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      (2-1-2) 

where, szk  is the shear stiffness of the nonlinear shear spring. Then, the displacement vector of the beam 

element is obtained as the sum of the above three displacement vectors. 
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    (2-1-4) 

where, 
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][ Bf  is the flexural stiffness matrix of the beam element. By taking the inverse matrix of ][ Bf , the 

constitutive equation of the beam element is obtained as, 
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     (2-1-6) 

where, ][ Bk  is the stiffness matrix of the beam element. 

 

Including rigid parts and node movement 

Including rigid parts and node movement as shown in Figure 2-1-2, the rotational displacement vector is, 
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From node axial displacements, relative axial displacement is, 

xAxBx  '         (2-1-8) 

Therefore 
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Combining Equations (2-1-7) and (2-1-9), 
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   (2-1-10) 

 

Out of plane deformation of beam 

If we consider out-of-plane deformation of beam in case of flexible floor, as shown in Figure 2-1-4, the 

rotational displacement vector is, 
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From global node displacement to element node displacement 

Transformation from global node displacements to element node displacements is, 
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The component of the transformation matrix, ][ ixBT , is discussed in Chapter 4 (Freedom Vector). 
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From global node displacement to element face displacement 

Transformation from the global node displacement to the element face displacement is, 
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     (2-1-12) 

 

In case of Y-direction beam 

In case of Y-direction beam, the axial direction of the beam element coincides to the Y-axis in the global 

coordinate, transformation of the sign of the vector components of the element coordinate is, 

GlobalBeamY
Z

Y

X

z

y

x



















































100

001

010

      (2-1-13) 

Therefore 
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Transformation from the global node displacement to the element node displacement is, 
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       (2-1-15) 

Transformation from the global node displacement to the element face displacement is, 
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     (2-1-16) 

Constitutive equation 

Finally, the constitutive equation of the X-beam is, 
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For Y-beam, 
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Transformation matrix for nonlinear spring displacement 

The nonlinear spring displacement vector is obtained from the element face displacement as, 
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 (2-1-19) 

where, 
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3.2 Column 

 

Element model for column is defined as a line element with nonlinear bending springs at both ends and two 

nonlinear shear springs in the middle of the element in x and y directions as shown in Figure 2-2-1. 

 

Force-displacement relationship for elastic element 

In the same way as the beam element, the relationship between the displacement vector and force vector of 

the elastic element is, 
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  in X-Z plane  (2-2-1) 
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  in Y-Z plane  (2-2-2) 

The axial displacement is, 
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The torsion angle by torque force is, 
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where, G  and zI  are the shear modulus and the pole moment of inertia of the cross-sectional area. 
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Force-displacement relationship for nonlinear bending springs 

Nonlinear interaction zyx NMM   is considered in the nonlinear bending springs, 
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 at end B (2-2-6) 

where, ][ pAf  and ][ pBf  are the flexural 

stiffness matrices of the nonlinear bending springs. 

Therefore, the force-displacement relationship of 

nonlinear bending springs is, 
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 (2-2-7) 

Rearrange the order of the components of the displacement vector and change the node axial displacements 

into the relative axial displacement, 
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The force-displacement relationship in Equation (2-2-7) is then expressed as, 
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Force-displacement relationship for nonlinear shear springs 

The rotational displacement vector from the shear deformation of the nonlinear shear spring is, 




































yB

yA

sxsx

sxsx

yB

yA

M

M

lklk

lklk
'

'

'

1

'

1
'

1

'

1




   in X-Z plane  (2-2-10) 
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   in Y-Z plane  (2-2-11) 

where, sxk  and syk  are the shear stiffness of the nonlinear shear springs. 

 

The displacement vector of the column element is obtained as the sum of the displacement vectors of 

elastic element, nonlinear shear springs and nonlinear bending springs, 
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 (2-2-12) 

The flexural matrix ][ Cf  is; 
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By taking the inverse matrix of ][ Cf , the constitutive equation of the column element is obtained as, 
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     (2-2-14) 

 

Including rigid parts and node movement 

Change relative axial displacement and torsion displacement into node displacement, 
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Including rigid parts and node movement, 
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Figure 2-2-3 Including rigid parts and node movement 
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From global node displacement to element node displacement 

Transformation from global node displacement to element node displacement is; 
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The component of the transformation matrix, ][ iCT , is discussed in Chapter 4 (Freedom Vector).  

 

From global node displacement to element face displacement 

Transformation from the global node displacement to the element face displacement is, 
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Constitutive equation 

Finally, the constitutive equation of the column is; 
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where, 
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Transformation matrix for nonlinear spring displacement 

The nonlinear spring displacement vector is obtained from Equations (2-2-7), (2-2-10) and (2-2-11), 
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  (2-2-21) 

Furthermore, in the same way as Equation (2-2-8), 
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    (2-2-22) 

Therefore, the nonlinear spring displacement vector is obtained from the element face displacement as, 
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2.3 Wall 

 

Element model for wall is defined as a line element with nonlinear bending springs at both ends and three 

nonlinear shear springs; one is in the middle of the wall panel and others are in the side columns as shown 

in Figure 2-3-1. 

 

Force-displacement relationship for elastic element 

In the same way as the beam element, the relationship between the displacement vector and force vector of 

the elastic element is, 
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  in wall panel  (2-3-1) 
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  in side column 1  (2-3-2) 
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The axial displacement is, 
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Force-displacement relationship for nonlinear bending springs 

Nonlinear interaction zyx NMM   is considered in the nonlinear bending springs, 
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 at end A      (2-3-5) 
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 at end B      (2-3-6) 

where, ][ pAf  and ][ pBf  are the flexural stiffness matrices of the nonlinear bending springs. Therefore, 

the force-displacement relationship of nonlinear bending springs is, 

Figure 2-3-2 Nonlinear bending springs 
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      (2-3-7) 

Rearrange the order of the components of the displacement vector and change the node axial displacements 

into the relative axial displacement, 
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The force-displacement relationship in Equation (2-3-7) is then expressed as, 
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   (2-3-9) 

Force-displacement relationship for nonlinear shear springs 

The rotational displacement vector from the shear deformation of the nonlinear shear spring is, 
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   in wall panel  (2-3-10) 
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where, sck , 1sk  and 2sk  are the shear stiffness of the nonlinear shear springs. 

 

The displacement vector of the column element is obtained as the sum of the displacement vectors of 

elastic element, nonlinear shear springs and nonlinear bending springs, 
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 (2-3-13) 

The flexural matrix ][ Wf  is; 
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By taking the inverse matrix of ][ Wf , the constitutive equation of the column element is obtained as, 
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     (2-3-15) 

 

Including rigid parts and node movement 

Change relative axial displacement and torsion displacement into node displacement, 
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  (2-3-16) 

Including rigid parts and node movement, 
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From global node displacement to element node displacement 

Transformation from the center displacements to the node displacements is, 
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 (2-3-18)  

 

Figure 2-3-3 Relationship between center and node displacements 
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Transformation from the global node displacements to the element node displacements is; 

 












































































n

ixW

xB

xA

yB

yA

xB

xA

yB

yA

zB

zB

xB

zA

zA

xA

u

u

u

T

u

u

u

u

u

u


2

1

2

2

2

2

1

1

1

1

2

1

1

2

1

1













       (2-3-19)  

The component of the transformation matrix, ][ ixWT , is discussed in Chapter 4 (Freedom Vector). 

 

From global node displacement to element face displacement 

Transformation from the global node displacement to the element face displacement is, 
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    (2-3-20) 

In case of Y-direction wall 
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Figure 2-3-4 Relation between local coordinate and global coordinate 
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In case of Y-direction wall, the wall panel direction coincides to the Y-axis in the global coordinate, 

transformation of the sign of the vector components of the element coordinate is, 
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      (2-3-21) 

Therefore 
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         (2-3-22) 

Transformation from the global node displacement to the element node displacement is; 

 












































































n

iyW

yB

yA

xB

xA

yB

yA

xB

xA

zB

zB

yB

zA

zA

yA

u

u

u

T

u

u

u

u

u

u


2

1

2

2

2

2

1

1

1

1

2

1

1

2

1

1













       (2-3-23)  
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Transformation from the global node displacement to the element face displacement is, 
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    (2-3-24) 

Constitutive equation 

Finally, the constitutive equation of the wall is; 
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where, 

      xWW
T

xWxW TkTK         (2-3-26) 

For Y-wall, 
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where, 

      yWW
T

yWyW TkTK         (2-3-28) 

 

Transformation matrix for nonlinear spring displacement 

The nonlinear spring displacement vector is obtained from Equations (2-3-7), (2-3-10)~(2-3-12), 
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(2-3-29) 

Furthermore, in the same way as Equation (2-3-8), 
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Therefore, the nonlinear spring displacement vector is obtained from the element face displacement as, 
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  (2-3-31) 
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2.4 Wall Panel 

 

Element model for wall panel is introduced by removing the side columns from the wall model as shown in 

Figure 2-4-1.  

 

Force-displacement relationship for elastic element 

In the same way as the beam element, the relationship between the displacement vector and force vector of 

the elastic element is, 
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  in wall panel  (2-4-1) 

The axial displacement is, 
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Force-displacement relationship for nonlinear bending springs 

Nonlinear interaction zyx NMM   is considered in the nonlinear bending springs, 
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 at end B      (2-4-4) 

where, ][ pAf  and ][ pBf  are the flexural stiffness matrices of the nonlinear bending springs. Therefore, 

the force-displacement relationship of nonlinear bending springs is, 
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      (2-4-5) 

Rearrange the order of the components of the displacement vector and change the node axial displacements 

into the relative axial displacement, 
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Figure 2-4-2 Nonlinear bending springs 
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The force-displacement relationship in Equation (2-4-5) is then expressed as, 
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Force-displacement relationship for nonlinear shear springs 

The rotational displacement vector from the shear deformation of the nonlinear shear spring is, 
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   in wall panel  (2-4-8) 

where, sck  is the shear stiffness of the nonlinear shear springs. 

 

The displacement vector of the column element is obtained as the sum of the displacement vectors of 

elastic element, nonlinear shear springs and nonlinear bending springs, 
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 (2-4-9) 

The flexural matrix ][ WPf  is; 
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By taking the inverse matrix of ][ WPf , the constitutive equation of the column element is obtained as, 
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Including rigid parts and node movement 

Change relative axial displacement and torsion displacement into node displacement, 
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    (2-4-12) 

Including rigid parts and node movement, 
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From global node displacement to element node displacement 

Transformation from the center displacements to the node displacements is, 
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Transformation from the global node displacements to the element node displacements is; 

Figure 2-4-3 Relationship between center and node displacements 
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The component of the transformation matrix, ][ ixWPT , is discussed in Chapter 4 (Freedom Vector). 

 

From global node displacement to element face displacement 

Transformation from the global node displacement to the element face displacement is, 
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In case of Y-direction wall 

In case of Y-direction wall, the wall panel direction coincides to the Y-axis in the global coordinate, 

transformation of the sign of the vector components of the element coordinate is, 
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Therefore 
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Figure 2-4-4 Relation between local coordinate and global coordinate 
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Transformation from the global node displacement to the element node displacement is; 
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Transformation from the global node displacement to the element face displacement is, 

       



























































n

yWP

n

ixWPWPWPWPWP

zc

yBc

yAc

u

u

u

T

u

u

u

TDn

2

1

2

1

'

'

'






   (2-4-20) 

Constitutive equation 

Finally, the constitutive equation of the wall is; 
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where, 

      xWPWP
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xWPxWP TkTK        (2-4-22) 

For Y-wall, 
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where, 
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      yWPWP
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yWPyWP TkTK        (2-4-24) 

 

Transformation matrix for nonlinear spring displacement 

The nonlinear spring displacement vector is, 
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Furthermore, in the same way as Equation (2-4-6), 

 





































zc

yBc

yAc
T

p

zBc

yBc

zAc

yAc

N

M

M

n

N

M

N

M

'

'

'

'

'

'

'

       (2-4-26) 

Therefore, the nonlinear spring displacement vector is obtained from the element face displacement as, 
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2.5 External Spring 

 

Force-displacement relationship for the element 

The relationship between the displacement vector and force vector of the elastic element in Figure 2-5-1 is 

expressed as follows: 

    zEx kN ''          (2-5-1) 

From global node displacement to element node displacement 

Transformation from the global node displacement to the element node displacement is, 
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The component of the transformation matrix, ][ ET , is discussed in Chapter 4 (Freedom Vector). 

 

Constitutive equation 

The constitutive equation of the external spring is; 
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where, 
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Figure 2-5-1 Element model for external spring 
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2.6 Base Isolation 

 
 

Force-displacement relationship for the element 

The relationship between the displacement vector and force vector of the element is expressed as follows: 
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Including the axial stiffness, 
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From node displacements, relative displacements are; 
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Figure 2-6-1 Element model for base isolation 
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From global node displacement to element node displacement 

Transformation from the global node displacement to the element node displacement is, 
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The component of the transformation matrix, ][ iBIT , is discussed in Chapter 4 (Freedom Vector). 

 

From global node displacement to element face displacement 

Transformation from the global node displacement to the element face displacement is, 
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Constitutive equation 

The constitutive equation of the Base isolation is; 
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where, 

      BIBI
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BIBI TkTK         (2-6-8) 
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2.7 Masonry Wall 

 

Element model for Masonry wall is defined as a line element with a nonlinear shear spring and a vertical 

spring in the middle of the wall panel as shown in Figure 2-6-1. 

 

Force-displacement relationship 

The relationship between the shear deformation and shear force of the nonlinear shear spring is, 

xcsxxc kQ ''          (2-7-1) 

For axial spring, 

2211 '','' zzzzzz kNkN         (2-7-2) 

In a matrix form, 
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Including node movement 

The shear angle of the frame with four nodes, A1, A2, B1, B2, is defined as, 
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Figure 2-7-1 Element model for masonry wall 
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The shear deformation, xc' , is then, 
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The axial deformation, 21 ',' zz  , is, 

222111 ',' zAzBzzAzBz         (2-7-8) 

 

In a matrix form, 

 





















































































































2

2

1

1

2

2

1

1

2

2

1

1

2

2

1

1

2

1

10001000

00100010

5.05.05.05.05.05.05.05.0

'

'

'

zB

xB

zB

xB

zA

xA

zA

xA

N

zB

xB

zB

xB

zA

xA

zA

xA

z

z

xc

u

u

u

u

D

u

u

u

u

w

l

w

l

w

l

w

l





















  

(2-7-9)  

From global node displacement to element node displacement 

Transformation from the global node displacement to the element node displacement is; 
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The component of the transformation matrix, ][ ixNT , is discussed in Chapter 4 (Freedom Vector). 

 

From global node displacement to element face displacement 

Transformation from the global node displacement to the element face displacement is, 
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In case of Y-direction wall 

In case of Y-direction wall, the wall panel direction coincides to the Y-axis in the global coordinate, 

transformation of the sign of the vector components of the element coordinate is, 
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Therefore 
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Transformation from the global node displacement to the element node displacement is; 
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Figure 2-6-2 Relation between local coordinate and global coordinate 
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Transformation from the global node displacement to the element face displacement is, 
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Constitutive equation 

Finally, the constitutive equation of the wall is; 
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where, 

      xNN
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For Y-wall, 
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where, 
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2.8 Passive Damper 

 

Element model for passive damper is defined as a line element with a nonlinear shear spring as shown in 

Figure 2-8-1. 

 

Force-displacement relationship 

The relationship between the shear deformation and shear force of the nonlinear shear spring is, 

xcsxxc kQ ''          (2-8-1) 

 

Including node movement 

The shear angle of the frame with four nodes, A1, A2, B1, B2, is defined as, 
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The shear deformation, xc' , is then, 
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Figure 2-8-1 Element model for passive damper 
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The axial deformation, 21 ',' zz  , is, 

222111 ',' zAzBzzAzBz         (2-8-6) 

 

In a matrix form, 
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From global node displacement to element node displacement 

Transformation from the global node displacement to the element node displacement is; 
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The component of the transformation matrix, ][ ixDT , is discussed in Chapter 4 (Freedom Vector). 

 

From global node displacement to element face displacement 

Transformation from the global node displacement to the element face displacement is, 
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In case of Y-direction damper 

In case of Y-direction damper, the damper direction coincides to the Y-axis in the global coordinate, 

transformation of the sign of the vector components of the element coordinate is, 
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Transformation from the global node displacement to the element node displacement is; 
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Figure 2-7-2 Relation between local coordinate and global coordinate 
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Transformation from the global node displacement to the element face displacement is, 
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Constitutive equation 

Finally, the constitutive equation of the damper is; 
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where, 

      xDD
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xDxD TkTK         (2-8-15) 

For Y-damper, 
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Appendix ) Calculation of shear component 

 

For “Masonry Wall” and “Passive Damper”, the shear deformation is defined as follows: 

 

1) Shear deformation in one direction 

 
 

Shear strain is τ = Δl / l  ≈ θ 
 

2) Shear deformation in two directions 

 

Shear strain is  τ = θ1 + θ2 = Δlx / lｙ+Δly / lx 

If we discuss small element 
x

u

y

u yx









    Eq. (2-7-4) and Eq. (2-8-2) 
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This definition is necessary to remove rotational component. To explain this, suppose there is only 

rotational (or bending) deformation, 

 

From the above definition, shear angle will be 

 τ =  θ + (- θ) = 0 

 

For example, in the upper story of the building under horizontal deformation, the bending 

component is dominant and the shear component is small. Therefore, the brace damper 

doesn’t work in the upper story.  

 

θ 

- θ 
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3) In case of damper element 

 

We define the shear angle in one direction as follows: 

 

We adopt the average angle, 

 

 θ =  1/2 ( θ1 + θ2 )   Eq. (2-7-5) and Eq. (2-8-3)  

 

In the same way, the shear angle in another direction is 

 

 θ’ =  1/2 ( θ’1 + θ’2 )   Eq. (2-7-6) and Eq. (2-8-4) 

 

θ'1 

θ'2 

θ1 θ2 
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2.9 Floor Element 

 

In the default setting, STERA 3D adopts “rigid floor”. However, elastic deformation of a floor diaphragm 

in-plane can be considered by the option menu selecting “flexible floor”. The stiffness matrix of the floor 

element is constructed using a two dimensional isoparametric element. 

 

 

 

 

 

 

 

 

 

 

 

 

The stiffness matrix with 4-nodes isoparametric is expressed as, 
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F    = K    u        (2-9-1) 

 

The coordinate transfer function {x, y} is expressed using the interpolation functions as follows: 
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         (2-9-2) 

Figure 2-9-1 4-nodes isoparametric element 
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The deformation function {u, v} is also expressed using the same interpolation functions. 
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         (2-9-3) 

Stiffness matrix can be obtained from the “Principle of Virtual Work Method,” which is expressed in the 

following form: 

 

 
V

TT Fudv     (2-9-4) 

where,  is a virtual strain vector,  is a stress vector, u is a virtual displacement vector and F  is a 

load vector, respectively. 

 

In case of the plane problem, the strain   vector is defined as, 
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       (2-9-5) 

Substituting equation (2-9-3) into equation (2-9-5), the strain vector is calculated from the nodal 

displacement vector as, 
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ε =                        B            u    (2-9-6) 
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In the plane stress problem, the stress-strain relationship is expressed as, 
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 σ =            C        ε 

Substituting equation (2-9-6) into equation (2-9-7), 

 

σ= C B u         (2-9-8) 

 

From the Principle of Virtual Work Method, 

    FuuCBdxdyBudvCBuuB T
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    (2-9-9) 

 

Therefore, the stiffness equation is obtained as, 


V

T CBdvBKKuF ,        (2-9-10) 

If we assume the constant thickness of the plate (= t), using the relation tdxdydv  , 


),( yxV

T CBdxdyBtK        (2-9-11) 

Since this integration is defined in x-y coordinate, we must transfer the coordinate into r-s coordinate to use 

the numerical integration method. Introducing the Jacobian matrix,  
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the above integration is expressed in r-s coordinate as, 
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Evaluation of Jacobian Matrix 
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Evaluation of the matrix B 
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The derivatives 
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In a matrix form, 
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Evaluation of partial derivatives of the interpolation functions 
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The 3 points Gauss Integration Formula is defined as: 
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  (2-9-19) 

 

where,   5556.0,8889.0,5556.0 321    

7746.0,0,7746.0 321  ttt  

 

 
 

The stiffness matrix is then calculated numerically as follows: 
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From global node displacement to element node displacement 

Transformation from global node displacements to element node displacements is, 
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The component of the transformation matrix, ][ iFT , is discussed in Chapter 4 (Freedom Vector). 
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3. Hysteresis model of nonlinear springs 

 

Notation 

ta  : Area of rebar in the tension side of the section 

sA  : Total area of rebar in the section 

yσ  : Strength of rebar 

Bσ  : Compression strength of concrete 

wyσ  : Strength of shear reinforcement 

D  : Depth of the section 

d   : Effective depth of the section.  

b  :  Width of the beam 

j  : Distance between the centers of stress in the section ( ( )d8/7= ). 

eZ  : Section modulus including the slab effect. 

n  : Ratio of Young’s modulus (= cs EE / ) 

tp  : Tensile reinforcement ratio 

wp  : Shear reinforcement ratio 

eI  : Moment of inertia of section considering the slab effect 

cM   : Crack moment 

yM  : Yield moment 

M/(QD)  : Shear span-to-depth ratio 

cθ   : Crack rotation of the beam end 

yθ  : Yield rotation of the beam end 

cφ   : Crack rotation of the nonlinear bending spring 

yφ  : Yield rotation of the nonlinear bending spring 

0k  : Initial stiffness 

yk  : Tangential stiffness at the yield point 

2yk  : Stiffness after the yield point in the nonlinear bending spring 

3yk  : Stiffness after the ultimate point in the nonlinear shear spring 

yα  : Stiffness degradation factor at the yield point 

cQ   : Crack shear force 

yQ  : Yield shear force 

uQ  : Ultimate shear force 

sx  : Distance between the corner springs in the Multi-spring model  
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cγ   : Crack shear deformation 

yγ  : Yield shear deformation 

uγ  : Ultimate shear deformation 
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3.1 Beam 

a) Section properties 

 

 

Area of section to calculate axial deformation 

 ( ) ( )( )SEN aaantBSBDA ++−+−+= 211     (3-1-1) 

where, 
 csE EEn /=  : Ratio of Young’s modulus between steel (Es) and concrete (Ec) 

Area of section to calculate shear deformation 

 BDAS =        (3-1-2) 

Moment of inertia around the center of the section 
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⎠
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where, g is the center of beam section calculated by 
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N

SE

A

tDadDadantDtBSBD
g

2/12/)(2/ 2211
2 −+−+−+−−+

=  (3-1-4)
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d2 d2 

d1

Figure 3-1-1 Beam Section 

B : Width of beam,    
D : Height of beam, 
S : Effective width of slab,    
t : Thickness of slab 
d1 : Distance to the center of upper main rebars, 
d2 : Distance to the center of bottom main rebars,  
a1 : Area of upper main rebars, 
a2 : Area of bottom main rebars 
as : Area of rebars in slab 

a2

a1

as
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Effective with of slab is defined as shown in Figure 3-1-2. 

 

B 

S 

Figure 3-1-2 Effective width of slab  

B

S 

B 

S 

(a) S = 3B                    (b) S = 2B                    (c) S = B 
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b) Nonlinear bending spring 

Hysteresis model of a nonlinear bending spring is defined as the moment-rotation relationship under the 

anti-symmetry loading in Figure 3-1-4. The initial stiffness of the nonlinear spring is supposed to be infinite, 

however, in numerical calculation, a large enough value is used for the stiffness. 

 

Figure 3-1-3 Element model for beam 
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Crack moment force  

For reinforced concrete elements, the crack moment, cM  is calculated as, 

gIZZM eeeBc /,56.0 111 == σ   when tension in bottom main rebars (3-1-5) 

( )gDIZZM eeeBc −== /,56.0 22 σ  when tension in upper main rebars (3-1-6)  

where,  

Bσ  : Compression strength of concrete (N/mm2) 

21 , ee ZZ  : Section modulus  
 

Yield moment force 

The yield moment, yM  is calculated as, 
( )111 9.0 dDaM yy −= σ    when tension in bottom main rebars (3-1-7) 

( ) ( )2/9.09.0 221 tDadDaM ySyy −+−= σσ  when tension in upper main rebars (3-1-8) 

where,  

yσ  : Strength of rebar (N/mm2) 

 

Yield rotation 

The tangential stiffness at the yield point, yk , is obtained from the following equation,: 

l

IE
kkk ec

yy

6
, 00 ==α        (3-1-9) 

where,  

yα  is the stiffness degradation factor at the yield point, which is obtained from the following 

empirical formulas: 

( )( ) ( )2/,//043.063.1043.0 2 ≤++= DaDdDanptyα    (3-1-10) 

( )( ) ( )2/,//159.00836.0 2 >+−= DaDdDayα    (3-1-11) 

where, 

tp  : Tensile reinforcement ratio 
pt = a1/(BD)   (when tension in bottom main rebars) 

    pt = (a2+aS)/(BD)   (when tension in upper main rebars)

  a/D  : ≈ Shear span-to-depth ratio (= )2/( Dl ) 

  d : effective depth 

d = D-d1   (when tension in bottom main rebars) 

    d = D-d2   (when tension in upper main rebars) 
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yα  is modified in case of tension in upper main rebars as 

  
e

e
yy I

I 0' αα =       (3-1-12) 

where 
12

3

0
BD

Ie =  : the moment of inertia of square section without slab 

 

The yield rotation of the nonlinear bending beam, yφ , is then obtained from, 

0
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M y

y
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α
φ         (3-1-13) 

Crack rotation 

From Figure 3-1-2, the crack rotation of the nonlinear bending beam, cφ , is supposed to be zero value, 

however, in STERA_3D program, it is assumed as, 

yc φφ 001.0=         (3-1-14) 

 

Slab effect 

In case the size of slab is not specified, slab effect is approximately considered using the factor, 2.1=sα  

as follows: 

12
,

3

00
2 bD

III se == α   : Moment of inertia of section   (3-1-15) 

( )
6

,
2

00
2/3 bD

ZZZ se == α  : Section modulus    (3-1-16) 

bDAAA se == 00 ,α   : Section     (3-1-17) 
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Hysteresis model 

To consider the difference of the flexural capacity between positive and negative side of the beam, a 

degrading tri-linear model is developed based on the Takeda Model for the hysteresis model of the bending 

springs of the beam. 

 

 

The strength degradation under cyclic loading is considered by elongating the target displacement, mφ , to 

be m'φ  as shown in the following Figure: 
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Figure 3-1-4 Degrading Tri-linear Model 
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c) Nonlinear shear spring 

Hysteresis model of nonlinear shear spring is defined as the shear force – shear rotation relationship using 

an origin-oriented poly-linear model as shown in Figure 3-1-4. 

 

Yield shear force 

The yield shear force, yQ  is calculated as, 
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where, 

 tp  : Tensile reinforcement ratio 

Bσ  : Compression strength of concrete 

wp  : Shear reinforcement ratio 

wyσ  : Strength of shear reinforcement 

j  : Distance between the centers of stress in the section ( ( )d8/7= ). 
 

Crack shear force 

The crack shear force is, cQ , is assumed as,  

3
y

c

Q
Q =         (3-1-19) 
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Figure 3-1-6 Force–deformation relationship of shear spring 
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Ultimate shear force 

The crack shear force is, uQ , is assumed as,  

cu QQ =         (3-1-20) 

Crack shear deformation 

The crack shear deformation is obtained as, 

GA

Qc
c =γ         (3-1-21) 

Yield shear displacement 

The yield shear deformation is assumed as, 

250
1

=yγ         (3-1-22) 

Ultimate shear displacement 

The ultimate shear deformation is assumed as, 

100
1

=uγ         (3-1-23) 
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d) Modification of initial stiffness of nonlinear springs 

 

In numerical calculation, a large dummy value is used for the initial stiffness of the nonlinear spring to 

represent rigid condition. This large stiffness may cause an error for estimating the force from the 

displacement. One possible way to solve the problem is to reduce the initial stiffness of the nonlinear spring 

to be a certain value reasonable for calculation, and on the other hand, increase the stiffness of the elastic 

element so that the total initial stiffness of the beam element does not change from the original one. This 

idea is proposed by K-N Li (2004) for MS model, and can be used for nonlinear spring model also. 

 

 
The idea is realized using flexibility reduction factors, ( ) ( )0,0 21 << γγ , in the relationship between the 

displacement vector and force vector of the elastic element in Equation (2-1-1) as, 
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Figure 3-1-7 Modification of moment – rotation relationship 
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Also the initial flexibility matrix of the nonlinear spring can be expressed as follows, introducing the 

parameters, 21 , pp  to increase the initial flexibility. 
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When 0,0 21 →→ pp , it represents the infinite stiffness for rigid condition. Accordingly, the crack and 

yield rotation will be modified as, 
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Making the modified flexibility matrix to be identical to the original one, 
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 (3-1-27) 

 

This gives the flexivility reduction factors as: 

2211 '
31,

'
31 p

l
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l
−=−= γγ       (3-1-28) 

From the conditions 5.01 >γ  and 5.02 >γ ,  

6
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l

p
l

p <<  

K-N Li (2004) calls these parameters, 21 , pp , as “plastic zones” and recommends to be 
10

'
21

l
pp == . 

Them the reduction factors will be 7.021 == γγ . 
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3.2 Column 

a) Section properties 

 

Area of section to calculate axial deformation 

 ( )( )cEN aaanBDA ++−+= 211     (3-2-1) 
Area of section to calculate shear deformation 

 2.1,/ == κκBDAS      (3-2-2) 

Moment of inertia around the center of the section 
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Figure 3-2-1 Column Section 

B : Width of beam,    
D : Height of beam, 
d1 : Distance to the center of x-direction main rebars, 
d2 : Distance to the center of y-direction main rebars,  
a1 : Area of x-side main rebars, 
a2 : Area of y-side main rebars, 
ac : Area of corner main rebars

D 

d1 
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ac
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b) Nonlinear bending spring 

To consider nonlinear interaction among zyx NMM −− , the nonlinear bending spring at the member 

end is constructed from the nonlinear vertical springs arranged in the member section as shown in Figure 

3-2-2. 

 

Displacement of the i-th nonlinear axial spring is, 

yixizi xy φφεε +−=        (3-2-5) 

Equilibrium condition in the nonlinear section is, 
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In a matrix form 

[ ]
⎪⎭

⎪
⎬

⎫

⎪⎩

⎪
⎨

⎧
=

⎪⎭

⎪
⎬

⎫

⎪⎩

⎪
⎨

⎧

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

−

−

=
⎪⎭

⎪
⎬

⎫

⎪⎩

⎪
⎨

⎧

∑
∑∑
∑∑∑

z

x

y

p

z

x

y

i
i

i
ii

i
ii

i
ii

i
iii

i
ii

z

x

y

k

ksym

ykyk

xkyxkxk

N

M

M

ε
φ
φ

ε
φ
φ

.'
'
'

2

2

   (3-2-7) 
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Figure 3-2-2 Nonlinear bending springs 
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For both ends 
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Hysteresis model of nonlinear bending spring is defined as the moment-rotation relationship under the 

anti-symmetry loading in Figure 3-2-2. The initial stiffness of the nonlinear spring is supposed to be infinite, 

however, in numerical calculation, a large enough value is used for the stiffness. 
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For reinforced concrete elements, the crack moment, cM  is calculated as, 

6
56.0 ND

ZM eBc += σ        (3-2-10) 

The yield moment, yM  is calculated from the following formula under the balance axial force, bN , 
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⎝

⎛
−+=

B

b
byty bD

N
DNDaM

σ
σ 15.08.0      (3-2-11) 

Bb bDN σ4.0≈         (3-2-12) 

Note that the balance axial force, bN , is used instead of actual axial force, N , in this formula since the 

characteristics of nonlinear vertical springs in a section are determined later from the equilibrium condition 

under the balance axial force. 

 

The tangential stiffness at the yield point, yk , is obtained from the following equation,: 

l

EI
KKk yy

6
00 ==α        (3-2-13) 

where,  

yα  is the stiffness degradation factor at the yield point, which is obtained from the following 

empirical formulas: 

( )( ) ( )2/,/325.0/043.063.1043.0 2 ≤+++= DaDdDanp bty ηα  (3-2-14) 

( )( ) ( )2/,/169.0/159.00836.0 2 >++−= DaDdDa by ηα   (3-2-15) 

where, 

tp  : Tensile reinforcement ratio 
pt = (ac+a1)/(2BD)   (when tension in x-main rebars) 

    pt = (ac+a2)/(2BD)  (when tension in y-main rebars) 

  a/D  : ≈ Shear span-to-depth ratio (= )2/( Dl ) 

  d : effective depth 

d = D-d1   (when tension in bottom main rebars) 

    d = D-d2   (when tension in upper main rebars) 
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The yield rotation of the nonlinear bending beam, yφ , is then obtained from, 
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c) Nonlinear vertical springs 

The nonlinear bending spring is constructed from the nonlinear vertical springs arranged in the member 

section as shown in Figure 3-2-3. This model is called “Multi-spring model” proposed by S. S. Lai, G. T. 

Will and S. Otani (1984) and modified by K-N. Li (1988). The section is devided in 5 areas; where 4 corner 

areas have steel springs and concrete springs and the center area has one concrete spring.  

The strength and the location of nonlinear springs are obtained from the equilibrium condition under 

the balance axial force, bN , in Equation (3-2-8). 

 

 

 

 

 

Figure 3-2-3 Nonlinear vertical springs 
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Strength of steel spring 

The strength of the steel spring is one-forth of total strength of rebars in the section, i.e., 

4
ys

ys

A
f

σ
=         (3-2-11) 

where,  

sA  : Total area of rebar in the section 

yσ  ： Strength of rebar 

 

Strength of concrete spring 

As shown in Figure 3-2-4, the strength of the corner concrete spring is obtained from the equilibrium 

condition in the vertical direction under the balance axial force, Bb bDN σ4.0−≈ , that is, 

B
b

yc bD
N

f σ2.0
21 ==        (3-2-12) 

Therefore, the area of the corner concrete, 1A , is, 

( )B

yc f
A

σ85.01 =         (3-2-13) 

 

 

The area of the center concrete, 2A , is the rest of the area of the section, 

( )04 12 >−= AbDA        (3-2-14) 

The strength of the center concrete spring is then obtained as, 

22 85.0 Akf Byc σ=        (3-2-15) 

where, k  is the confined effect ( )3.1=k  of the concrete.  

yM

bN−

Figure 3-2-4 Equilibrium condition in the column section 
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Location of vertical springs 

The distance between the corner springs, sx , is obtained from the equilibrium condition regarding the 

moment force in Figure 3-2-4, 

( ) ( )byssycyssy NfxffxM 5.022 1 +=+=      (3-2-16) 

Therefore, 

bys

y
s Nf

M
x

5.02 +
=        (3-2-17) 

Note that yM  is calculated from Equation (3-2-7) for the balance axial force, bN . 
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Example) 

 

To verify the efficiency of the Multi-Spring model for the column element, the M-N relationship is 

compared between MS-model and Theory using one column element. The column section is shown in the 

Figure below: 

 

Theoretical results of the M-N relationship are obtained from the equilibrium condition as, 
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max212.08.0 σσ    (3-2-19) 

where, bN  is the balance axial force,  

Bb bDN σ4.0≈        (3-2-20) 

and maxN  is the maximum axial force, 

 ysB AbDN σσ +≈max       (3-2-21) 

 

N=1000kN 
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300cm 

Figure 3-2-5  
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Firstly, the strengths and locations of vertical springs are calculated from Equations (3-2-11), (3-2-12), 

(3-2-15) and (3-2-17). 

)/(4.2)/(45.321.1)(484.15 222 cmkNcmkNfcma Byyt ==== σσ  

)(24004.0 kNbDN Bb == σ  )(6502max kNAbDN ysB =+= σσ  

)(30)(390)(1200)(2.251 21 cmxkNfkNfkNf sycycys ====  

In the range )0( bNN ≤< , the Multi-Spring model gives 

( ) sysy xNfM 5.02 +=  

 

The results of Multi-Spring model give smaller values than theoretical results in the range 0 < N < Nb.  
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Under-estimate 

Theory 
Multi-Spring 

78



K-N. Li (1988) proposed to use the following formulation for deciding the location of vertical springs in 

stead of Equation (3-2-17), as follows: 

0

0

5.02 Nf

M
x

ys

y
s +
=        (3-2-22) 

where, 0N  is the axial force from the dead loads and the live loads acting on the column ( bNN <0 ), 

and 0yM  is the yield moment under the axial force 0N , that is: 
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For the example column, assuming 0N  = 1000 (kN), 

)(8.35 cmxs =  

 

It improves the results of Multi-Spring model in the range 0 < N < Nb.  
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Yield displacement of vertical spring 

 

From the equilibrium condition under the axial force 0N  as shown in the above Figure, the yield 

displacement of the tension side steel spring, ys d , is obtained as follows: 
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       (3-2-24) 

The yield displacement of concrete spring, yc d , is assumed to be the same as that of the steel spring, 

ysyc dd =         (3-2-25) 

 

Figure 3-2-9 Equilibrium condition under the axial force N0
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d) Nonlinear shear spring 

There are two nonlinear shear springs in x and y directions. Hysteresis model of the nonlinear shear springs 

is the same as that in the beam element in Figure 3-1-4. 

 

Yield shear force 

The yield shear force, yQ  is calculated as, 

jbp
QDM

p
Q wyw

Bt
y ⋅

⎭
⎬
⎫

⎩
⎨
⎧

+⋅+
+

+
= 0
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1.085.0
12.0)/(

)18(053.0
σσ

σ
   (3-2-26) 

where, 

 tp  : Tensile reinforcement ratio 

Bσ  : Compression strength of concrete 

M/(QD)  : ≈ Shear span-to-depth ratio (= )2/( Dl ) 

wp  : Shear reinforcement ratio 

wyσ  : Strength of shear reinforcement 

0σ  : Axial stress of the column 

j  : Distance between the centers of stress in the section ( ( )d8/7= ). 

Crack shear force 

The crack shear force is, cQ , is assumed as,  

3
y

c

Q
Q =         (3-2-27) 

Ultimate shear force 

The crack shear force is, uQ , is assumed as,  

cu QQ =         (3-2-28) 

Crack shear deformation 

The crack shear deformation is obtained as, 

GA

Qc
c =γ         (3-2-29) 

Yield shear displacement 

The yield shear deformation is assumed as, 

250
1

=yγ         (3-2-30) 

Ultimate shear displacement 

The ultimate shear deformation is assumed as, 

100
1

=uγ         (3-2-31) 
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Figure 3-2-6 Nonlinear shear springs in column 

yQ  

xQ

xQ−

yQ−  

82



e) Modification of initial stiffness of nonlinear springs 

 

The same modification can be done for the nonlinear springs of column element as described for those of 

beam element by reducing the initial stiffness of the nonlinear spring and increasing the stiffness of the 

elastic element as shown in the following figure: 
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Figure 3-2-7 Modification of moment – rotation relationship 
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Introducint the concept of “plastic zones”, the initial stiffness of the i-th multi-spring can be expressed as, 

z

iii

p

AE
k =0         (3-2-32) 

where Ei : the material young’s modulus, Ai : the spring governed area, and pz : the length of assumed 

plastic zone. When 0→zp , it represents the infinite stiffness for rigid condition. 

 

From Equation (3-2-7), when we consider the flexural flexibility in x-z plane, the flexibility matrix for the 

nonlinear MS section is, 
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 (3-2-33) 

 

Also, introducing the flexibility reduction factors, ( ) ( ) ( )0,0,0 210 <<< γγγ , the flexibility matrix of 

the elastic element is, 
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     (3-2-34) 

Making the modified flexibility matrix to be identical to the original one, 
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This gives the flexivility reduction factors as: 

( )2102211 '
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'
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31 zzzz pp
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+−=−=−= γγγ    (3-2-36) 

Adopting
10

'
21

l
pp zz ==  as discussed for beam element, the reduction factors will be: 

7.021 == γγ ,  8.00 =γ        (3-2-37) 
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f) Tri-linear hysteresis for nonlinear springs 

 

The original hysteresis models used for steel and concrete springs are bi-linear types as shown in Figure 

3-2-3. To control both the initial stiffness and yield displacement, it is convenient to define tri-linear type 

hysteresis.  

 

For the steel spring, the maximum-oriented model is adopted for the hysteresis before yielding, and the 

tri-linear model is adopted after yielding as shown in Figure 3-2-8. 

 

The hysteresis of steel spring has the degradation point at the forces, ysfν  and ysfφ , where ν  and φ  

are the arbitrary parameters ( )1,1 << φν . The STERA_3D Program adopts the values as: 

5.0,3/1 == φν        (3-2-38) 

Then, the yield deformation, *
ys d , may be obtained by Equations (3-2-24) and (3-2-10) considering the 

reduction factor γ . 
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Figure 3-2-8 Normal tri-linear model for steel spring 
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The hysteresis of concrete spring is also defined as tri-linear hysteresis model as shown in Figure 3-2-9. 

After compression yielding, strength degradation is considered by reducing the strength of the target point 

in reloading stage. 

 
Figure 3-2-3 Tri-linear hysteresis model for concrete spring 
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3.3 Wall 

a) Section properties 

 

Area of section to calculate axial deformation 

   wEwCNCNN anltAAA 122,1,      (3-3-1) 

where, 

 2,1, , CNCN AA  : Area of section of side columns for axial deformation 

csE EEn /  : Ratio of Young’s modulus between steel (Es) and concrete (Ec) 

Area of section to calculate shear deformation 

 2.1,/22,1,  wCSCSS ltAAA     (3-3-2) 

where, 

 2,1, , CSCS AA  : Area of section of side columns for shear deformation 

Moment of inertia around the center of the section 
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where, 

 2,1, , CyCy II  : Moment of inertia of side columns 
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21 ,, www lll  : Width of wall, 

t  : Depth of wall, 
C1, C2  : Side columns,   
aw  : Area of rebars in a wall panel 

Figure 3-3-1 Wall Section 
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b) Nonlinear bending spring 

To consider nonlinear interaction among zyx NMM  , the nonlinear bending spring at the member 

end is constructed from the nonlinear vertical springs arranged in the member section as shown in Figure 

3-3-2. 

 

Displacement of the i-th nonlinear axial spring is, 

 

 

Figure 3-3-3 Equilibrium condition in the wall panel direction 
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In the wall panel direction, all vertical springs in the nonlinear section are assumed to work against the 

moment and the axial force. The equilibrium conditions are, 
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(3-3-6) 

where, Nc, N1 and N2 are the number of vertical springs in a wall panel, side column 1 and side column 2, 

respectively. 

 

 
Figure 3-3-4 Equilibrium condition in the out of wall direction 
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In the out of wall direction, we establish the equilibrium condition for each side column independently. The 

equilibrium condition for the side column 1 is, 
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Also, for the side column 2, 
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In a matrix form 
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         (3-3-9) 

Therefore 
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     (3-3-10) 

For both ends 
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      (3-3-11) 

 

For the out of wall direction, each side columns behave independently in the same way as the column 

element. Therefore, we discuss here only the hysteresis model in the wall panel direction. Hysteresis model 

of nonlinear bending spring is defined as the moment-rotation relationship under the symmetry loading in 

Figure 3-3-5. The initial stiffness of the nonlinear spring is supposed to be infinite, however, in numerical 

calculation, a large enough value is used for the stiffness. 
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Figure 3-3-5 Moment – rotation relationship at bending spring 
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The yield moment, yM  is obtained from the equilibrium condition in Figure 3-3-6 as, 

wwwywwysy NllalaM 5.05.0        (3-3-12) 

where, 

 sa  : Total area of rebar in the side column 

y  : Strength of rebar in the side column 

 wa  : Total area of vertical rebar in the wall panel 

wy  : Strength of rebar in the wall panel 

N : Axial load from the dead load 

 

The crack moment, cM  is assumed to be, 

yc MM 3.0         (3-3-13) 

The tangential stiffness at the yield point, yk , is obtained from the following equation,: 

02.0 Kk y         (3-3-14) 

The yield rotation of the nonlinear bending beam, y , is then obtained from, 
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        (3-3-15) 

where, the stiffness degradation factor, y , is assumed as, 

02.0y         (3-3-16) 

Figure 3-3-6 Equilibrium condition under yielding moment 
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c) Nonlinear vertical springs 

The nonlinear bending spring is constructed from the nonlinear vertical springs arranged in the member 

section as shown in Figure 3-3-6. This model is based on the concept of “Multi-spring model” and 

modified for the wall element by Saito et.al. The vertical springs in the side columns are determined 

independently in the same way as the Multi-spring models of columns. The wall panel section is devided in 

5 areas, and a steel springs and a concrete spring are arranged at the center of each area. 

 

 

Figure 3-3-7 Nonlinear vertical springs 
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Strength of steel spring in wall panel 

The strength of the steel spring in the wall panel is one-fifth of total strength of rebars in the section, 

5
wyw

ys

a
f


         (3-3-17) 

where,  

 wa  : Total area of vertical rebar in the wall panel 

wy  : Strength of rebar in the wall panel 

Strength of concrete spring in wall panel 

The strength of the concrete spring in the wall panel is one-fifth of total strength of concrete in the section, 

5

85.0 Bp
yc

A
f


        (3-3-18) 

where,  

pA  : Total area of wall panel section 

B  ： Compression strength of concrete 

 

Yield displacement of vertical spring in wall panel 

The yield displacements of steel and concrete springs in the wall panel are assumed to be the same as those 

of the springs in the side columns. 

 

d) Nonlinear shear spring 

There are three nonlinear shear springs in x direction in wall panel and y direction in side columns. 

Hysteresis model of the nonlinear shear springs is the same as that in the beam element in Figure 3-1-4. 

 

Yield shear force 

The yield shear force, yQ  is calculated as, 
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   (3-3-19) 

where, 

 tp  : Tensile reinforcement ratio 

B  : Compression strength of concrete 

M/(QD)  : ≈ Shear span-to-depth ratio (= )2/( Dl ) 

wp  : Shear reinforcement ratio 

wy  : Strength of shear reinforcement 

0  : Axial stress of the column 

j  : Distance between the centers of stress in the section (  d8/7 ). 
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Crack shear force 

The crack shear force is, cQ , is assumed as,  

3
y

c

Q
Q          (3-3-20) 

Ultimate shear force 

The crack shear force is, uQ , is assumed as,  

cu QQ          (3-3-21) 

Crack shear deformation 

The crack shear deformation is obtained as, 

GA

Qc
c          (3-3-22) 

Yield shear displacement 

The yield shear deformation is assumed as, 

250

1
y         (3-3-23) 

Ultimate shear displacement 

The ultimate shear deformation is assumed as, 

100

1
u         (3-3-24) 
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Figure 3-3-8 Nonlinear shear springs in the wall 
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e) Modification of initial stiffness of nonlinear springs 

 

The same modification can be done for the nonlinear springs of wall element as described for those of 

beam and column elements by reducing the initial stiffness of the nonlinear spring and increasing the 

stiffness of the elastic element as shown in the following figure: 
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Figure 3-3-9 Modification of moment – rotation relationship 
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Introducint the concept of “plastic zones”, the initial stiffness of the i-th multi-spring can be expressed as, 

z

iii

p

AE
k 0         (3-3-25) 

where Ei : the material young’s modulus, Ai : the spring governed area, and pz : the length of assumed 

plastic zone. When 0zp , it represents the infinite stiffness for rigid condition. 

In the same manner of beam and column elements, introducing the flexibility reduction factors, 

     0,0,0 210   , the flexibility matrix of the elastic element is, 
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 (3-3-26) 

Also, adopting 
10

'l
pz   as discussed for beam and column elements, the reduction factors will be: 

7.021   ,  8.00         (3-3-27) 
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3.4 Wall Panel 

a) Section properties 

 

Area of section to calculate axial deformation 

   wEwN anltA 12        (3-4-1) 

where, 

csE EEn /  : Ratio of Young’s modulus between steel (Es) and concrete (Ec) 

Area of section to calculate shear deformation 

 2.1,/2  wS ltA       (3-4-2) 

where, 

 2,1, , CSCS AA  : Area of section of side columns for shear deformation 

Moment of inertia around the center of the section 
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Figure 3-4-1 Wall Section 
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b) Nonlinear bending spring 

To consider nonlinear interaction among zyx NMM  , the nonlinear bending spring at the member 

end is constructed from the nonlinear vertical springs arranged in the member section as shown in Figure 

3-3-2. 

 

Displacement of the i-th nonlinear axial spring is, 

ycizci x          (3-4-4) 

 

In the wall panel direction, all vertical springs in the nonlinear section are assumed to work against the 

moment and the axial force. The equilibrium conditions are, 

Figure 3-4-3 Equilibrium condition in the wall panel direction 
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where, Nc, is the number of vertical springs in a wall panel. 

 

In a matrix form 
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     (3-4-8) 

For both ends 
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      (3-4-9) 

 

Hysteresis model of nonlinear bending spring is defined as the moment-rotation relationship under the 

symmetry loading in Figure 3-4-5. The initial stiffness of the nonlinear spring is supposed to be infinite, 

however, in numerical calculation, a large enough value is used for the stiffness. 
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The yield moment, yM  is obtained from the equilibrium condition in Figure 3-4-6 as, 

wwwywy NllaM 5.05.0        (3-4-10) 

where, 

 sa  : Total area of rebar in the side column 

 wa  : Total area of vertical rebar in the wall panel 

wy  : Strength of rebar in the wall panel 

N : Axial load from the dead load 
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Figure 3-4-5 Moment – rotation relationship at bending spring 
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The crack moment, cM  is assumed to be, 

yc MM 3.0         (3-4-13) 

The tangential stiffness at the yield point, yk , is obtained from the following equation,: 

02.0 Kk y         (3-4-14) 

The yield rotation of the nonlinear bending beam, y , is then obtained from, 
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        (3-4-15) 

where, the stiffness degradation factor, y , is assumed as, 

02.0y         (3-4-16) 

Figure 3-4-6 Equilibrium condition under yielding moment 
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c) Nonlinear vertical springs 

The nonlinear bending spring is constructed from the nonlinear vertical springs arranged in the member 

section as shown in Figure 3-3-6. This model is based on the concept of “Multi-spring model” and 

modified for the wall element by Saito et.al. The vertical springs in the side columns are determined 

independently in the same way as the Multi-spring models of columns. The wall panel section is devided in 

5 areas, and a steel springs and a concrete spring are arranged at the center of each area. 

 

 

Figure 3-4-7 Nonlinear vertical springs 
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Strength of steel spring in wall panel 

The strength of the steel spring in the wall panel is one-fifth of total strength of rebars in the section, 

5
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         (3-4-17) 

where,  

 wa  : Total area of vertical rebar in the wall panel 

wy  : Strength of rebar in the wall panel 

Strength of concrete spring in wall panel 

The strength of the concrete spring in the wall panel is one-fifth of total strength of concrete in the section, 

5

85.0 Bp
yc

A
f


        (3-4-18) 

where,  

pA  : Total area of wall panel section 

B  ： Compression strength of concrete 

 

Yield displacement of vertical spring in wall panel 

The yield displacements of steel and concrete springs in the wall panel are assumed to be the same as those 

of the springs in the side columns. 

 

d) Nonlinear shear spring 

There is a nonlinear shear spring in x direction in wall panel. Hysteresis model of the nonlinear shear 

springs is the same as that in the beam element in Figure 3-1-4. 

 

Yield shear force 

The yield shear force, yQ  is calculated as, 
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   (3-3-19) 

where, 

 tp  : Tensile reinforcement ratio 

B  : Compression strength of concrete 

M/(QD)  : ≈ Shear span-to-depth ratio (= )2/( Dl ) 

wp  : Shear reinforcement ratio 

wy  : Strength of shear reinforcement 

0  : Axial stress of the column 

j  : Distance between the centers of stress in the section (  d8/7 ). 
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Crack shear force 

The crack shear force is, cQ , is assumed as,  

3
y

c

Q
Q          (3-3-20) 

Ultimate shear force 

The crack shear force is, uQ , is assumed as,  

cu QQ          (3-3-21) 

Crack shear deformation 

The crack shear deformation is obtained as, 

GA

Qc
c          (3-3-22) 

Yield shear displacement 

The yield shear deformation is assumed as, 

250

1
y         (3-3-23) 

Ultimate shear displacement 

The ultimate shear deformation is assumed as, 

100

1
u         (3-3-24) 
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Figure 3-4-8 Nonlinear shear springs in the wall 
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e) Modification of initial stiffness of nonlinear springs 

 

The same modification can be done for the nonlinear springs of wall element as described for those of 

beam and column elements by reducing the initial stiffness of the nonlinear spring and increasing the 

stiffness of the elastic element as shown in the following figure: 
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Figure 3-3-9 Modification of moment – rotation relationship 
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Introducint the concept of “plastic zones”, the initial stiffness of the i-th multi-spring can be expressed as, 

z

iii

p

AE
k 0         (3-4-25) 

where Ei : the material young’s modulus, Ai : the spring governed area, and pz : the length of assumed 

plastic zone. When 0zp , it represents the infinite stiffness for rigid condition. 

In the same manner of beam and column elements, introducing the flexibility reduction factors, 

     0,0,0 210   , the flexibility matrix of the elastic element is, 
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     (3-4-26) 

Also, adopting 
10

'l
pz   as discussed for beam and column elements, the reduction factors will be: 

7.021   ,  8.00         (3-4-27) 
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3.5 External Spring 

 

a) Nonlinear vertical spring 

In STERA_3D, the external spring is attached at the base of the building to express the stiffness and 

strength of the foundation of the building. In such a case, hysteresis model of the nonlinear vertical spring 

is defined as the axial force – displacement relationship as shown in Figure 3-5-2; where, bilinear skeleton 

is defined only in compression side, and the spring has zero stiffness in the tension side assuming that the 

building detaches from the ground. 

 

Initial stiffness 

The initial stiffness of the vertical stiffness can be obtained from the following equation: 

FFe Aak          (3-5-1) 

where, 

 Fa  : Dynamic ground coefficient (kN/m2) 

FA  : Area of foundation under column or wall element (m2) 

Figure 3-5-2 Hysteresis model of the external spring 
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3.6 Base Isolation 

The element model of base isolation consists of shear springs arranged in x-y plane changing its direction 

with equal angle interval as shown in Figure 3-5-1. This model is called MSS (Multi-Shear Spring) model 

developed by Wada et al.   

 

 

a) Nonlinear shear spring 

The hysteresis model of each nonlinear shear spring is defined as a bi-linear model as shown in Figure 

3-6-2. The force and displacement vectors of i-th shear spring are expressed as, 
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From the relationship, iii ukq  , the constitutive equation of i-th shear spring is, 
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Figure 3-6-2 Hysteresis model of the shear spring 
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From the sum of all nonlinear shear springs in the element, the constitutive equation of the base isolation 

element is, 
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where, N is the number of shear springs in an element. In STERA_3D, N=6 is selected. 

 

First and second stiffness 

We assume that all nonlinear shear springs in an element have the same stiffness and strength. The initial 

stiffness of the base isolation element, 0K , is obtained from Equation (3-6-4) by substituting 

0,1  yx uu . 
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Therefore, the initial stiffness of each shear spring is, 





N

i
i

K
k

1

2

0
0

cos 
        (3-6-6) 

The same relationship is established for the second stiffness after yielding,  
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where, yK  and yk  are the second stiffness after yielding for the base isolation element and the 

nonlinear shear spring, respectively. 

 

Yield shear force 

The yield shear force of the base isolation element, yQ  , is obtained assuming that all the nonlinear shear 

springs reach their yielding points except the spring perpendicular to the loading direction, and the increase 

of the force after yielding is negligible (Figure 3-6-3). That is, 

y

N

i
iy fQ 







 

1

cos        (3-6-8) 

Therefore, the yield shear force of each shear spring is, 
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i
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y
y

Q
f

1

cos
        (3-6-9) 
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 Figure 3-6-3 Assumption of yield shear force 
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3.7 Masonry Wall 

 

a) Nonlinear shear spring 

Hysteresis model of the nonlinear shear spring is defined as the poly-linear slip model as shown in Figure 

3-7-2.  

 

The characteristic values, uyc QQQ ,, are obtained based on the formulation described in the reference 

(Paulay and Priestley, 1992). 

 

The procedure to obtain the shear strength is shown below: 

 

Figure 3-7-1 Element model for masonry wall 
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Figure 3-7-2 Hysteresis model of the nonlinear shear spring 
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(1) Compression strength of masonry prism 

 

The compression strength of the masonry prism ( mf ' ) is determined by the following equation (Paulay and 

Priestley, 1992), 

 

)''(

)''('
'

cbtbu

jtbcb
m ffU

fff
f







        (3-7-1) 

bh

j

1.4
         (3-7-2) 

where, 

cbf '  : Compressive strength of the brick 

tbf '  : Tensile strength of the brick (= 0.1 cbf ' ) 

jf '  :  Compressive strength of the mortar 

j  : Mortar joint thickness 

bh  : Height of masonry unit 

uU  : Stress non-uniformity coefficient (=1.5) 

 

(2) Shear strength by sliding shear failure 

 

There are two types of shear failure; one is sliding shear failure which is determined by, 

 

)tan1(
0





 m
f

tl
V         (3-7-3) 

where, 

0  : Cohesive capacity of the mortar beds (=0.04 mf ' ) (Paulay and Priestly, 1992) 

  : Sliding friction coefficient along the bed joint 

  jf '000515.0654.0   (Chen et.al, 2003) 

  : Angle subtended by diagonal strut to horizontal plane  

 

(3) Shear strength by diagonal compression failure 

 

cos'mc ZtfV          (3-7-4) 

 

where, 

Z  : Equivalent strut width  

mdZ 25.0 , md is diagonal length (Paulay and Priestley, 1992) 

 t  : Thickness of masonry wall 
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(4) Characteristic values of nonlinear skeleton 

 

The shear resistance, yQ , is calculated to be the minimum value between the shear strength by sliding 

shear failure, fV , and the shear strength of diagonal compression failure, cV , that is, 

 

),min( cfy VVQ          (3-7-5) 

 

The shear displacement at the maximum resistance, y , is obtained as (Madan et al.,1997), 





cos

' mm
y

d
         (3-7-6) 

where, 

m'  : Compression strain at the maximum compression stress 

 ( m' =0.0018, Hossein and Kabeyasawa, 2004) 

Initial elastic stiffness is assumed as (Madan et al., 1997) 

yyQk /20          (3-7-7) 

 

From Figure 3-7-2, the shear resistance at crack, cQ , is obtained as, 









1
0 yy

c

kQ
Q         (3-7-8) 

where,   is the stiffness ratio of the second stiffness and assumed to be 0.2. 

 

Shear displacement at crack is then obtained as, 

0/ kQcc          (3-7-9) 

 

Shear resistance and displacement at the ultimate stage are assumed as (Hossein & Kabeyasawa, 2004) 

yu QQ 3.0         (3-7-10) 

)01.0(5.3 ymu h          (3-7-11) 

where, mh  is the height of masonry wall. 

 

References: 

 

1) T. Pauley, M.J.N. Priestley, 1992, Seismic Design of Reinforced Concrete and Masonry building, JOHN 

WILEY & SONS, INC. 

2) Hossein Mostafaei, Toshimi Kabeyasawa, 2004, Effect of Infill Walls on the Seismic Response of 

Reinforced Concrete Buildings Subjected to the 2003 Bam Earthquake Strong Motion : A Case Study of 

Bam Telephone Centre, Bulletin Earthquake Research Institute, The university of Tokyo 

3) A. Madan,A.M. Reinhorn, ,J. B. Mandar, R.E. Valles, 1997, Modeling of Masonry Infill Panels for 

Structural Analysis, Journal of Structural Division, ASCE, Vol.114, No.8, pp.1827-1849  
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b) Vertical springs 

For the moment, the vertical springs of the element model in Figure 3-7-1 are assumed to be elastic springs. 

2211 '','' zzzzzz kNkN         (3-7-12) 

2/)( wmz tlEk          (3-7-13) 

where, 

mE  : Modulus of elasticity of masonry prism (=550 mf ' , FEMA 356, 2000) 

t  : Thickness of masonry wall 

wl  : Width of masonry wall 
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3.8 Passive Damper 

 

a) Hysteresis damper 

Hysteresis damper is modeled as a shear spring as shown in Figure 3-8-1.  

 

Three types of hysteresis model are prepared for the force-deformation relationship of the spring. 

 

Figure 3-8-2 Hysteresis model of the shear spring 
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Figure 3-8-1 Element model for passive damper 
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b) Viscous damper 

Viscous damper is modeled as a shear spring as shown in Figure 3-8-3.  

 

(1) Algorithm for oil damper devise 

 

Figure 3-8-4 shows the Maxwell model with an elastic spring with stiffness, dK , and a dashpot with 

damping coefficient, C. 

 

 

 

 

 

Figure 3-8-4 Maxwell model 

 

Since the elastic spring and the dashpot are connected in a series,  

 ijck FFF         (3-8-1) 

where,   kF  : force of the elastic spring 

  cF : force of the dashpot 

  ijF : force between i-j nodes 
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Fk, uk Fc, uｃ 

Fij, uij 

Figure 3-8-3 Element model for passive damper 
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The force of the elastic spring, kF , is obtained as, 

 )( cijdkdk uuKuKF        (3-8-2) 

where,  ku : relative displacement of the elastic spring 

  cu : relative displacement of the dashpot 

iju : relative displacement between i-j nodes 

 

For an oil damper, the force-velocity relationship of the dashpot is defined as shown in Figure 3-8-5. 

 

 

 

 

 

 

 

 

Figure 3-8-5 Dashpot element 

The force of the dashpot after the relief point is, 

 ccc QuCF  2        (3-8-3) 

 

Substituting Equations (3-8-2) and (3-8-3) into (3-8-1) 

 cccijd QuCuuK  2)(       (3-8-4) 

When the time interval Δt is small enough, the velocity at time t can be expressed as, 

 
t

tu
tu c

c 



)(

)(        (3-8-5) 

 )()()( ttututu ccc        (3-8-6) 

Substituting above equations into Equation (3-8-4), 

 
 

d

ccijd
c

K
t

C

QttutuK
tu







2

)()(
)(      (3-8-7) 

The algorithm to obtain the force )(tFij  from )(tuij  is as follows: 

1) Evaluate )(tuc  from Equation (3-8-7) 

2) Evaluate )(tuc  from Equation (3-8-6) 

3) Evaluate )(tFij  from Equation (3-8-2) 

 

Fc 

uc 
.

relief point 
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Before the relief point of the dashpot, Equation (3-8-7) will be obtained by changing 0,12  cQCC  

as 

 
 

d

cijd
c

K
t

C

ttutuK
tu







1

)()(
)(      (3-8-8) 

When the velocity of the dashpot is over the negative relief point, Equation (3-8-7) will be obtained by 

changing cc QQ  , 

 
 

d

ccijd
c

K
t

C

QttutuK
tu







2

)()(
)(      (3-8-9) 

 

In case there is no elastic spring, 

 

Figure 3-8-6 Dashpot element without elastic spring 
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)(
)( 2       (3-8-10) 

Before the relief point of the dashpot, 

t

tu
CtF ij

ij 




)(
)( 1       (3-8-11) 

When the velocity of the dashpot is over the negative relief point, 

 c
ij

ij Q
t

tu
CtF 






)(
)( 2       (3-8-12) 
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Fij, uij 

Node i 
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(2) Algorithm for viscous damper devise 

 

Figure 3-8-7 shows the Maxwell model with an elastic spring with stiffness, dK , and a dashpot with 

damping coefficient, C. 

 

 

 

 

 

Figure 3-8-7 Maxwell model 

 

Since the elastic spring and the dashpot are connected in a series,  

 ijck FFF         (3-8-13) 

where,   kF  : force of the elastic spring 

  cF : force of the dashpot 

  ijF : force between i-j nodes 

 

The force of the elastic spring, kF , is obtained as, 

 )( cijdkdk uuKuKF        (3-8-14) 

where,  ku : relative displacement of the elastic spring 

  cu : relative displacement of the dashpot 

iju : relative displacement between i-j nodes 

 

For a viscous damper, the force-velocity relationship of the dashpot is defined as shown in Figure 3-8-8, 

 

 

 

 

 

 

 

 

Figure 3-8-8 Dashpot element 

That is, 

   
)()(sgn tutuCF ccc        (3-8-15) 
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From Equations (3-8-13) and (3-8-14) 

 )()(
)(

tutu
K

tF
ijc

d

ij        (3-8-16) 

Taking time differential and substituting Equation (3-8-15) give 
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    (3-8-17) 

The numerical integration method, Runge-Kutta Method, can be used to solve the Equation (3-8-17). 

 

In general, the solution of the differential equation, ),()( tyfty  , is obtained by Rungu-Kuttta Method as 

follows: 
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Equation (3-8-17) can be written as 
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Applying Runge-Kutta Method gives the following algorithm, 

 )()(2)(2)(
6

1
)()( 32101 nnnnnijnij tktktktktFtF    (3-8-20) 
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In this algorithm, it is assumed as, 
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     (3-8-21) 
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4. Freedom Vector 

 

4.1 Node freedom 

 

Each node has six degrees of freedom and the freedom number is defined as shown in Figure 4-1-1.  

 

 

 

4.2 Freedom vector 

 

The freedom vector is defined to indicate the number of all freedoms of the structure, where the restrained 

freedom is set to be zero. For the structure in Figure 4-2-1, the freedom vector has zero components for the 

fixed nodes (Nodes 1-4) and eight components for other nodes (Nodes 5-8). Therefore, the total number of 

freedom of the structure is 8×4 = 32. 
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Figure 4-1-1 Global coordinate 
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Figure 4-2-1 Example of the freedom vector 



























































32

25

24

17

16

9

8

1

0

0











 

1 2 

3 4 

5 6 

7 8 

Node 1 

| 

Node 4 

Node 5 

Node 6 

Node 7 

Node 8 

shear deformation of connection 

125



4.3 Dependent freedom 

 

(1) Rigid floor assumption 

 

In the default setting, the floor diaphragm is assumed to be rigid for the in-plane deformation. Therefore, 

the in-plane freedoms at the nodes in a floor are represented by the freedoms at the center of gravity of the 

same floor. 

 

For example, the in-plane freedoms at the node, A, in Figure 4-3-2 are expressed by the in-plane freedoms 

at the center of gravity, G, as follows: 
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   (4-3-1) 

 

For the structure in Figure 4-3-2, in addition to the original nodes, a new node for the center of gravity is 

added to the each floor. Also, the freedom vector has zero components for the in-plane freedoms at the 

nodes except the center of gravity. Therefore, the total number of freedom is 23. 

G: center of gravity 
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Figure 4-3-2 Rigid floor assumption 

Figure 4-3-1 In-plane and out-of-plane freedom 
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Figure 4-3-2 Example of the freedom vector with rigid floor assumption 
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(2) Including wall element 

 

The wall element model has rigid beams at the top and bottom of the wall, therefore, as shown in Figure 

4-3-3, the rotation angles in the wall panel plane, 1y  and 2y , are dependent to the vertical 

displacements, 1z  and 2z . Also, the horizontal displacement in the wall panel plane, 2xu , is 

dependent to the displacement, 1xu . The connection is assumed to be rigid. 

 

In a matrix form; 
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       (4-3-2) 

In case of Y-direction wall, the relationship can be written as; 
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 (4-3-3) 
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Figure 4-3-4 Relationship between node displacements for a wall element (Y-wall) 

Figure 4-3-3 Relationship between node displacements for a wall element (X-wall) 
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For example, for the structure in Figure 4-3-4, the total number of freedom is 17. 

 

Figure 4-3-5 Example of the freedom vector with a wall element 
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(3) Series of walls 

 

In case several walls are joined together in series, it is assumed that all walls are connected by rigid beams 

at the top and bottom. Therefore, as shown in Figure 4-3-6, the rotation angles in the wall panel plane, 1y  

and 2y , are dependent to the vertical displacements, 1z  and 2z . Also, the horizontal displacement in 

the wall panel plane, 2xu , is dependent to the displacement, 1xu . The connection is assumed to be rigid. 

 

In a matrix form; 
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Figure 4-3-6 Series of wall connected by a rigid beam (X-wall) 
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In case of Y-direction wall, the relationship can be written as; 

 

 

In a matrix form; 
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Figure 4-3-7 Series of wall connected by a rigid beam (Y-wall) 
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(4) Transformation matrix for dependent freedom 

 

In case of rigid floor assumption, Equation (4-3-1) expresses the relationship between dependent freedom 

and independent freedom, that is; 

 

It can be arranged into the transformation matrix between the freedom vectors of all nodes; 

 

Since the most components of the transformation matrix, ][ IT , are zero, the components of ][ IT  are 

remembered using two matrices, ][ IN  and ][ IF . 
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It will reduce the memory size dramatically. 

In the same way, for the case of including wall elements, Equation (4-3-2) expresses the relationship 

between dependent freedom and independent freedom, that is; 

 

It can be arranged into the transformation matrix between the freedom vectors of all nodes; 

 

The components of two matrices, ][ IN  and ][ IF  will be; 
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Initial conditions of ][ IN  and ][ IF  are: 

 
4.4 Formulation of independent displacement of the element 

 

In Figure 4-4-1 (rigid connection), the element node displacement vector of the beam element between 

Node 8 and Node 9 is, 

 T
xxyyzz uu 989898        (4-4-1) 

Those displacements correspond to the location numbers in the freedom vector as; 

   TT
xxyyzz uu 494353475145989898    (4-4-2) 

 

Figure 4-4-1 Example of location matrix for beam element 
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From rigid floor assumption, the components of independent matrices, ][ IN  and ][ IF  will be; 
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    (4-4-3) 

 

From the matrix, ][ IN , the freedoms of (43) and (49) are replaced to the independent freedoms (55) and 

(60). Therefore, the independent location numbers and freedom numbers of the beam element are: 
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(4-4-4) 

The transformation from independent displacements (= global node displacements) to element node 

displacements is obtained from the matrix, ][ IF , as follows: 
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The constitutive equation of the beam element and formulation of global stiffness matrix from element 

stiffness matrix are shown below: 

 
Figure 4-4-2 Formulation of global stiffness matrix 

 

In general, the transformation from independent displacements (= global node displacements) to element 

node displacements for the X-beam is described as Equation (2-1-10). 
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And the constitutive equation of the X-beam is also described in Equation (2-1-16). 

 










































n

xB

n u

u

u

K

P
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P


2

1

2

1

       (2-1-16) 

Using the same procedure in Figure 4-4-2, the element stiffness matrix is added into the global stiffness 

matrix. 
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5. Equation of motion 

 

5.1 Mass matrix 

 

In the default setting, the mass at each node is identical and equally distributed as 

floor
floor

i M
N

M
1

        (5-1-1) 

where, iM : mass at the node i, floorM : total mass of the floor, floorN : total number of nodes in the 

floor.  

 

However, you can change the mass at each node depending on the place of the node by setting “proportion 

to influence area” in Option Menu. In this case, the mass at each node is determined from the following 

equation: 

floor
floor

i
i M

A

A
M         (5-1-1) 

where, iA : influence area of node i, floorA : total area of the floor. Influence area of the node is different 

depending on the place of the node as shown in Figure 5-1-1.  

 

 

The process to determine the mass based on influence area is as follows: 

 

Step 1. Calculate the slab area (block with cross mark). 

Step 2. The are of the block is divided equally to the corner nodes. (Figure 5-1-2.) 

Step 3. If there is no corner node, the area is divided equally to the all nodes in a floor. (Figure 5-1-3) 

 

i j 

k 

X

Y 

Figure 5-1-1 Mass and radius of gyration at the node 

Ai, Mi Aj, Mj 

Ak, Mk 

G

X

Y

MG 

(1) Influence area of the node (2) Mass and radius of gyration at G 

lix 

liy 
Mi 

IG 

G : center of gravity of the floor 
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Figure 5-1-2. Influence area of the node (red) 

 

 

     

     

    

 

Figure 5-1-3. Distribution of the rest area 

 

Example)   Floor weight = 700kN 

 

 

  
  

    
  

  
  

    
  

       
 

 

(a) Same for all nodes                         (b) Proportional to influence area 

Figure 5-1-4 Example of mass distribution 
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In case of rigid floor assumption, in-plane freedoms at the nodes are dependent to the freedoms at the 

center of gravity of the floor. Therefore, the mass at the center of gravity, GM , is, 

floorG MM           (5-1-2) 

The radius of gyration at the center of gravity, IG, is obtained from the following equation: 

 22
iyix

N

i
iG llMI           (5-1-3) 

where, N is the total number of the nodes at the floor. The radius of gyrations at other nodes are, 

NiI i ,,1,0          (5-1-4) 

The mass matrix is obtained as, 

Since the mass matrix has only diagonal components, those components are saved in one-dimension vector. 

For example, the mass vector of the structure in Figure 5-1-5 will be as follows: 

 

Figure 5-1-5 Example of mass vector 
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140



5.2 Stiffness matrix 

 

As shown in Figure 4-4-2, the global stiffness matrix  K  is formulated from element stiffness matrices. 

 
Figure 5-2-1 Formulation of global stiffness matrix 
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5.3 Damping matrix 

 

In STERA 3D program, the damping matrix is formulated in the following way: 

 

1) Proportional damping to initial stiffness matrix 

The damping matrix is defined from the following equation: 

   0
1

2
K

h
C


          (5-3-1) 

where, h: damping factor, 1 : circular frequency of the first natural mode,  0K : the initial stiffness. 

 

2) Proportional damping to spontaneous stiffness matrix 

The damping matrix is defined from the following equation: 

   pK
h

C

2

          (5-3-2) 

where, h: damping factor, 1 : circular frequency of the first natural mode,  pK : the spontaneous 

stiffness changing according to the nonlinearity of structural elements. 

 

3) Damping matrix of a base isolation building 

In an actual design practice for the base isolation buildings, it is common to assume zero viscous damping 

for the base isolation floor. In this case, the damping matrix is defined as: 

   upperK
h

C

2

          (5-3-3) 

where,  upperK : the stiffness matrix consisted with upper structures without base isolation elements. 

 

4) Damping matrix from viscous damper devices 

If there are some viscous damper devices in a structure, in addition to the proportional damping matrix, the 

global damping matrix formulated from element damping matrices are considered as: 

     vpro CCC          (5-3-4) 

where,  proC : the proportional damping matrix,  vC : the global damping matrix formulated from 

element damping matrices in the same manner of the global stiffness matrix. 
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5.4 Input ground acceleration 

 

Earthquake ground motions are defined as three components acceleration; 00 , YX  and 0Z , in X, Y and Z 

directions. The inertia forces at node i are defined as, 
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 (5-4-1) 

For example, the components of the matrix  U  of the structure in Figure 5-4-1 will be as follows: 

 
Figure 5-4-1 Components of the matrix  U  
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5.5 Equation of motion 

 

Equilibrium condition of the structure under earthquake ground motion is: 

 

Finally the equation of motion is obtained as: 

             P

Z

Y

X

UMuKuCuM 


















0

0

0







      (5-5-2)

Inertia force 

Damping force 

Restoring force 
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0

Z

Y

X

UMuMuKuC






 (5-5-1) 
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5.6 Numerical integration method 

 

Two numerical integration methods are prepared; one is the Newmark-β method with incremental 

formulation using a step-by-step stiffness matrix, and another one is the Force correction method using a 

step-by-step stiffness and a force vector together. In case it is difficult to define the step-by-step stiffness of 

the element such as the case of using a viscous damper element, automatically the Force correction method 

is selected. 

 

a) Newmark-β method 

 

The incremental formulation for the equation of motion of a structural system is, 

            iiii pfdKvCaM       (5-6-1) 

where,  M ,  C  and  K  are the mass, damping and stiffness matrices.  id ,  iv ,  ia  and 

 ip  are the increments of the displacement, velocity, acceleration and external force vectors, that is, 

     iii ddd  1 ,      iii vvv  1 ,      iii aaa  1 ,      iii ppp  1  (5-6-2) 

 f  is the unbalanced force vector in the previous step. Using the Newmark-β method, 

       tatav iii 
2

1
       (5-6-3) 

          22

2

1
tatatvd iiii         (5-6-4) 

From Equation (5-6-4), we obtain 

 
 

      iiii av
t

d
t

a
 2

111
2







      (5-6-5) 

Substituting Equation (5-6-4) into Equation (5-6-3) gives 

         tavd
t

v iiii 












 4

1
1

2

1

2

1
     (5-6-6)  

Equations (5-6-5) and (5-6-6) are substituted into the equation of motion, Equation (5-6-2), and we obtain 
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M
t

d

iiiii

i
















































1
4

1

2

1

2

11

2

11
2




  (5-6-7) 

The equation can be rewritten as, 

     ii pdK ˆˆ          (5-6-8) 

where, 
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 M
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C
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      (5-6-9) 

                   ftavCav
t

Mpp iiiiii 




























 1

4

1

2

1

2

11
ˆ


     (5-6-10) 

 

b) Force correction method 

 

The equation of motion of a structural system is, 

                  1111   nnnnnn PddKffvCaM          (5-6-11) 

where,  M ,  C  and  K  are the mass, damping and stiffness matrices.  1nd ,  1nv  and  1na  

are the displacement, velocity and acceleration vector at time step (n+1).  nf  is the restoring force 

vector corresponding to  nd , and  f  is the unbalanced force vector in the previous step.  1nP  is 

the external force vector. 

Using the average acceleration method, 

            2
11 4

1
taatvdd nnnnn            (5-6-12) 

         taavv nnnn   11 2

1
           (5-6-13) 

Substituting Equations (6-2-2) and (6-2-3) into (6-2-1), 

                

            1
2

1

11
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2
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nnnn

nnnnn

PtaatvK

fftaavCaM

 

              (5-6-14) 

Solving for  1na , 

    nn FaL 1              (5-6-15) 

where 

         2

4

1

2

1
tKtCML             (5-2-16) 
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  nnnnnnn PtatvKfftavCF     (5-6-17) 
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         1111   nnnn PfvCaM  

from the following Figure, 

            fddKff nnnn   11  

 1nd

 1nf  

 nd

 nf  
 K

 f

           1,,,,, nnnnnn PKfdva

    nn FaL 1  

            2
11 4

1
taatvdd nnnnn    

         taavv nnnn   11 2

1
  

   1 nn KK  

   1 nn ff  

n = n+1 

END 
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5.7 Energy  

 

a) Equation of energy 

 

As it was mentioned in Equation (5-5-2), the equation of motion is obtained as: 

             P

Z

Y

X

UMuKuCuM 
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0







      (5-7-1) 

For example, in case of a structure with a rigid floor in Figure 5-7-1, the displacement vector,  u , consists 

of 15 components (see RED numbers in Figure 5-7-1.) 
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         (5-7-2) 

 

The equation of energy is derived by multiplying the velocity vector,  Tu , and integrating by the time 

range [0-t]: 

                  dtPudtuKudtuCudtuMu
t

T
t

T
t

T
t

T  
0000

    (5-7-3) 

Node number Freedom number 

Figure 5-7-1 Example of the freedom vector of a structure with a rigid floor 

1 2 

3 4 

6 7 

8 9 

5 

10 
7 

8 

9 

10 

11 

12 

1 

2 

3 

4 

5 

6 13 

14

15

148



                  dtPu
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    (5-7-4) 

IPDK WWWW          (5-7-5) 

where, 
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If the system is nonlinear, the equation of motion can be expressed as: 
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      (5-7-6) 

where,  uuQ ,  is the nonlinear restoring force vector. Then, the equation of energy can be derived as; 

 

IPDK WWWW          (5-7-7) 

where, 

    

    

   

   dtPuW
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        (5-7-8) 

 

: Kinematic energy

 

: Damping energy 

 

: Potential energy 

 

: Input energy 

: Kinematic energy

 

: Damping energy 

 

: Potential energy 

 

: Input energy 
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b) Decomposition of potential energy 

 

We can decompose the restoring force vector into the restoring force of each member as, 

 

        membersofnumbernuuquuquuquuQ n :;,,,, 21      (5-7-9) 

 

Therefore, the potential energy can be decomposed as, 

 

              












n

i
iP

n

i

t

i
T

t n

i
i

T
t

T
P WdtuuqudtuuqudtuuQuW

1
,

1 00 10

,,,        (5-7-10) 

where 

   dtuuquW
t

i
T

iP 
0

, ,  ;  potential energy of i-th member        (5-7-11) 
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6. Nonlinear Static Push-Over Analysis 

 

6. 1 Lateral distribution of earthquake force 

 

The static lateral load representing the earthquake force is applied at the center of gravity in each floor. 

There are several formulas to define the load distribution along the height of the building. In “STERA 3D” 

program, the following distributions are prepared: 

1. Ai   2. Triangular   3. Uniform   4. UBC   5. Mode 

 

(1) Ai distribution 

In the “Building Standard Law” in Japan, the design shear force of i-th story, Qi, is defined as, 

0, CAZRCwCQ iti

n

ij
jii  



       (6-1-1) 

where,  

Ci :  design shear coefficient of i-th story, 

wi :  weight of i-th story, 

Z:  seismic zone factor, 

Rt:  vibration characteristic factor taking into consideration of soil condition, 

Ai :  lateral distribution of shear force coefficient, 

C0:  design base shear coefficient (C0 =0.2 for serviceability limit, C0 =1.0 for safety limit) 

 

If we set, Z=1.0 (Tokyo), Rt=1.0 (stiff soil, a short story building), C0=1.0 (safety design), the design shear 

force distribution is simplified as, 





n

ij
jii wAQ          (6-1-2) 

 

“Ai” distribution is defined as, 

T

T
A i

i

i 31

21
1











 


       (6-1-3) 

where, 

 



n

j
j

n

ij
ji wWWw

1

, : the ratio of weight upper than i-th story, 

 T :  the first natural period of a building (=0.02h, h : the building height) 

 

As shown in Figure 6-1-1, the static lateral load is obtained as, 

 1,,1, 1   niQQFQF iiinn        (6-1-4) 

151



 

(2) Triangular distribution 

Triangular distribution is defined as: 









 



n

j
jiBi hhQF

1

        (6-1-5) 

where,  

QB  :  base shear force 

 hi :  the height of the i-th story from the ground 

 

Fi 

Figure 6-1-2  Triangular distribution 
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(3) Uniform distribution 

Uniform distribution is defined as: 

 nQF Bi 1          (6-1-6) 

 

(4) UBC distribution 

The UBC (Uniform Building Code, 1997) gives the following formula for the calculation of lateral force 

distribution: 

  







 



n

j
jjiitBi hwhwFQF

1

       (6-1-7) 

sec7.0,

sec7.0,

0

07.0









Tif

TifTQ
F B

t        (6-1-8) 

 

Figure 6-1-3  Uniform distribution 
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Figure 6-1-4 UBC distribution 
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(4) Mode distribution 

Mode distribution is defined as: 









 



n

j
jjiiBi wwQF

1
,1,1         (6-1-9) 

where,  

 i,1 :  component of the first mode distribution in the i-th story 

 

 

Fi 

Figure 6-1-5 Mode distribution 

i,1  
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6. 2 Capacity Curve 

 

The Capacity Spectrum Method was proposed by Freeman [1978] as an approximate way to estimate the 

maximum response of a structure under an earthquake ground motion. The concept was modified by 

Kuramoto et.al [2000] to adopt the distribution of nonlinear story displacement as the first mode shape in 

each calculation step. The method was adopted as one of the evaluation procedures in the Building 

Standard Law, Japan.  

 

The key concept of the Capacity Spectrum Method is to find out the intersection between the Demand 

Spectra (= relationship between Sd (displacement spectra) and Sa (acceleration spectra)) and the Capacity 

Curve (= nonlinear push-over curve of an equivalent single-degree-of-freedom system).  
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Figure 6-2-1 Schematic example of the concept of Capacity Spectrum Method 

 

“STERA 3D” provides the menu in the static analysis to show the Capacity Curve based on the following 

formula (Kuramoto et.al [2000]): 
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      (6-2-1) 

where, 

 mi :  lumped mass in the i-th story 

 δi :  component of the distribution of nonlinear story displacement in the i-th story 
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As schematically shown in Figure 8-2-2, the step-by-step results of nonlinear push-over analysis is used to 

obtain the Capacity Curve of the equivalent SDOF system using Equation (8-2-1). 
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7. Others 

 

7.1 Decomposition of shear and flexural deformation 

 

a) Equivalent plane for each floor 

 

The equivalent plane ( cbyaxz  )is obtained from the vertical displacement distribution by the least 

square method: 

 

Minimize      2cbyaxzL iii  

where, i : node number in the floor 

a, b, c : parameters of equivalent plane 

Thus,  0,0,0 
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Parameters, a, b, c are obtained by solving the following linear equation: 
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      (7-1-1) 

where,  

n: the number of nodes in a floor 

 

b) Decomposition of shear and flexural deformation 

 

A story drift, D, can be divided into shear and flexural components as, 

 

Figure 7-1-1 Equivalent plane 
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D = DS (shear) + DF (flexure)         (7-1-2) 

Assuming the distribution of floor deformation is expressed by an equivalent plane ( cbyaxz  ), the 

flexural deformation, DF, can be expressed as, 

 

DF = -a H  : x-direction       (7-1-3) 

DF = b H  : y-direction       (7-1-4) 

 

Note that the coefficient ‘a’ is the negative angle in x-direction. 

Then, the shear deformation can be obtained as, 

 

DS = D - DF         (7-1-5) 

 

In STERA 3D, the flexural deformation is calculated taking the average of the bottom floor angle and top 

floor angle. 
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7.2 P-D effect 

 

Following formulation is suggested in the following book:  

James F. Doyle, “Static and Dynamic Analysis of Structures”, Kluwer Academic Publishers, 1991 

 

a) Equilibrium of the beam with an axial load 

 

We consider equilibrium of the beam with a slight displacement with an axial load.  

 

Assuming small deflection, the balance of moment on the small segment “Δx” gives 

 

    00  vFxVM         (7-2-1) 

Therefore 

00 
dx

dv
FV

dx

dM
        (7-2-2) 

From the relationship,
2

2

dx

vd
EIM  , the governing differential equation for the deflection shape is 

0
2

2

04

4


dx

vd
F

dx

vd
EI         (7-2-3) 

 

The general solutions are, 

for compression loading ( 00 F ): 

EIFkcxckxckxcxv /,sincos)( 0
2

4321  ,      (7-2-4) 

for tensile loading ( 00 F ): 

EIFkcxckxckxcxv /,sinhcosh)( 0
2

4321      (7-2-5) 
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Figure 7-2-1 Equilibrium of small beam segment slightly deformed 
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b) Geometric stiffness matrix of the beam with an axial load 

 

We assume that the axial force is constant and compressive. From the general solution, Eq. (7-2-4), 

at 0x  

321411

)0(
,)0( ckc

dx

dv
ccvv        (7-2-6) 

Consequently, the deflected shape is 

 

    xvkxkxckxcxv 1121 sin1cos)(      (7-2-7) 

 

Similarly at the end of other node, 

 

  LvkLkLckLcvLv 11212 )(sin1cos)(     (7-2-8) 

1212 cossin
)(   kLkckLkc

dx
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     (7-2-9) 

 

Then, the coefficients, 21 , cc , can be arranged as, 
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     (7-2-10) 

where,  

kLkLSkLC  ,sin,cos       (7-2-11) 

 

Solving this equation by Cramer’s rule gives 

      /)(1)(1 22111 SLCvCSLCvc     (7-2-12) 

   /)1()1( 22112 CLSvSCLSvc     (7-2-13) 

where 

 SC   22        (7-2-14) 

 

Now we can rewrite the deflection function in terms of the nodal degrees of freedom. The moment and 

shear force distributions can be obtained as 
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     (7-2-15) 
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Calculating nodal loads, 1111 )(,)(,)0(,)0( MLMVLVMMVV  , the stiffness matrix is 
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c) Approximation of geometric stiffness matrix 

 

We simplify the geometric stiffness matrix to be linear in the loading F0. 

Using the series expansion for the sine and cosine terms, the determinant is, 
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 (7-2-18) 

also 
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       (7-2-19) 

We now do the expansion on the stiffness terms. For example, 
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         (7-2-20) 

Substituting EILFLk /0
222  , 
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In the same manner, we can expand for all the stiffness terms to get the stiffness matrix as 
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We can write as 

 

     GE kkk          (7-2-23) 

 

where,  Ek : the element elastic stiffness,  Gk : the element geometric stiffness 
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d) Implementation for beam element 

 

For beam element,  
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Including node movement, 
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From (7-2-22), the geometric stiffness matrix will be 
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Figure 7-2-2 Including node movement 
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e) Implementation for column element 
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Including node movement, 
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Note that the matrix for node movement in X-Z plane is different from that of beam element. The 

force-deformation relationship in X-Z plane is then, 

Figure 7-2-3 Including node movement 
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         (7-2-31) 

Considering the difference of sign of stiffness matrix in X-Z plane, the geometric stiffness matrix will be 
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Therefore, changing the order of vector component, the force-deformation relationship of column will be 
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where, 
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Then, applying translation of Equation (2-2-17), the constitutive equation of the column is; 
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where, 

           iCG
T

iCCC
T

CC TKTTkTK       (7-2-37) 
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7.3 Unbalance force correction 

 

a) Procedure to correct unbalance force 

In nonlinear analysis, sudden change of spring stiffness sometimes causes severe error for estimating 

element force. For example, estimation of spring force 1if  is overestimated in Figure 7-2-1 and 

“unbalance force” is defined as, 

11   ii fff         (7-3-1) 

where, 1if  is the force on the nonlinear skeleton curve 

The most preferable way to minimize the error is to adopt iterative calculations such as 

Newton-Raphson method. However, this iteration may consume calculation time significantly. 

Therefore, the following simple way is adopted to correct unbalance force:   

 

1) Calculate unbalance displacement d  from the unbalance force f  

kfd /         (7-3-2) 

where, k is the spring stiffness 

2) Subtract unbalance displacement d from the increment displacement in the next step 

calculation 
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Figure 7-3-1 Unbalance force 
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b) Unbalance force correction of MS model  

 

For the Multi-spring model (MS model) of Column element, the sum of the unbalance forces of 

nonlinear vertical springs in the member section is calculated as: 
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where icf ,  : unbalance force of concrete spring, 

isf ,  : unbalance force of steel spring 

The unbalance displacement is then calculated as: 
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where ick ,  : stiffness of concrete spring,  

isk , : stiffness of steel spring 

In the next step calculation, the increment displscement of each spring is ajusted as follows: 

Ddd ii          (7-3-5) 

where id : increment displacement of i-th spring 

 id  : adjusted increment displacement of i-th spring 

 
 

The same procedure is adopted for the MS model of Wall element. 

Figure 7-3-2 Unbalance force in MS-model 
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