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1. Basic Condition

1.1 Coordinate

(1) Global Coordinate

The global coordinate is defined as the right-hand coordinate as shown in Figure 1-1-1.
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Figure 1-1-1 Global coordinate

Z 3 7.
A
6 1
X1 J)? .......... » X )
4
5 8
> >
Y Y Y
2
(a) lateral and rotational displacement (b) shear displacement

Figure 1-1-1 Global coordinate
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(2) Local Coordinate

The local coordinate is defined for each element. The displacement freedoms and force freedoms are named
with subscripts indicating the coordinate direction and node name. For example, the local coordinate of a
beam element in Figure 1-2 is defined to have its x-axis in the same direction of the element axis. Also the

displacement and force freedoms of a beam element are expressed as shown in Figure 1-1-2.

UZA uZB

Local coordinate

Force freedoms

Figure 1-1-2 Local coordinate of a beam element



2. Constitutive Equation of Elements

3.1 Beam
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Figure 2-1-1 Element model for beam

Force-displacement relationship for elastic element
The relationship between the displacement vector and force vector of the elastic element in Figure 2-1-1 is

expressed as follows:
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where, E, | v A and |' are the modulus of elasticity, the moment of inertia of the cross-sectional area
along y-axis, the cross-sectional area and the length of the element. The rotational displacement vector of

the nonlinear bending springs is,

¢yA fyA O :HM 'yA}
= 2-1-3
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where, fyA and fyB are the flexural stiffness of nonlinear bending springs at both ends of the element.

The rotational displacement vector from the shear deformation of the nonlinear shear spring is,
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where, K, is the shear stiffness of the nonlinear shear spring. Then, the displacement vector of the beam

element is obtained as the sum of the above three displacement vectors.
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[fg] is the flexural stiffness matrix of the beam element. By taking the inverse matrix of [ f;], the

constitutive equation of the beam element is obtained as,

M 'yA evyA a'yA
Mg = [fB]_l H'yB = [kB] g'yB (2-1-6)
N', o', o',

where, [Kg] is the stiffness matrix of the beam element.

Including rigid parts and node movement

Including rigid parts and node movement as shown in Figure 2-1-2, the rotational displacement vector is,
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Figure 2-1-2 Including rigid parts and node movement

From node axial displacements, relative axial displacement is,

5'x = 5)(8 - 5XA (2-1-8)
Therefore
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Combining Equations (2-1-7) and (2-1-9),
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Out of plane deformation of beam
If we consider out-of-plane deformation of beam in case of flexible floor, as shown in Figure 2-1-4, the

rotational displacement vector is,
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From global node displacement to element node displacement

Transformation from global node displacements to element node displacements is,
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O, —[T ]u2
9 — L'ixB :
yB :
5XA un
5XB

The component of the transformation matrix, [T,g ], is discussed in Chapter 4 (Freedom Vector).

(2-1-11)
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From global node displacement to element face displacement

Transformation from the global node displacement to the element face displacement is,

) u, u,
e.yA U, u,
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In case of Y-direction beam

(2-1-12)
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Figure 2-1-3 Relation between local coordinate and global coordinate

Global coordinate

In case of Y-direction beam, the axial direction of the beam element coincides to the Y-axis in the global

coordinate, transformation of the sign of the vector components of the element coordinate is,

X 0 1 0f[X
y =-1 0 ORY

Y —Beam 0 O 1 Z Global

Therefore
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(2-1-13)

(2-1-14)
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Transformation from the global node displacement to the element node displacement is,
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Transformation from the global node displacement to the element face displacement is,
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Constitutive equation

Finally, the constitutive equation of the X-beam is,

R u, u,

T e Iral =[] L1
For Y-beam,

R u, u,

RO 9 S O .

F.’n u'n u.n

Transformation matrix for nonlinear spring displacement

The nonlinear spring displacement vector is obtained from the element face displacement as,

¢yA fyA 0 O0|M 'yA fyA 0 O 49'yA H'yA
bor=| 0 fg ORM'zt=l 0 g 0|ksKe =[TpB 0t (2-1-19)
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where,
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(2-1-20)

13



3.2 Column

Element model for column is defined as a line element with nonlinear bending springs at both ends and two

nonlinear shear springs in the middle of the element in x and y directions as shown in Figure 2-2-1.

X-Z plane Y-Z plane

1
MXB

Figure 2-2-1 Element model for column

Force-displacement relationship for elastic element

In the same way as the beam element, the relationship between the displacement vector and force vector of

the elastic element is,

o I
7 3EI,  6El, |[M'
e vl in X-Z plane (2-2-1)
(s MY
i 6El y 3El y
I' I'
7' 3El 6El, ||M'
{ 'XA} = |'X I X { 'XA} in Y-Z plane (2-2-2)
T xB [ - M xB
| 6El,  3EIl,
The axial displacement is,
Il
5"2 :aN'Z (2—2—3)
The torsion angle by torque force is,
IV
0,=—T", (2-2-4)

Gl,

where, G and |, are the shear modulus and the pole moment of inertia of the cross-sectional area.
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Force-displacement relationship for nonlinear bending springs

Nonlinear interaction M, — M y N, is considered in the nonlinear bending springs,

¢yA M 'yA |
' N'sg, &
b= [pr]< M' ., ¢ atendA (2-2-5)
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1
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Do Mg
s ¢ = [pr]< M'z atendB (2-2-6)
€. N'4g
where, [f,] and [fg] are the flexural
stiffness matrices of the nonlinear bending springs.
Therefore, the force-displacement relationship of A
nonlinear bending springs is,

M' .,
] yA > FyA
¢yA M yA
¢XA M 'xA M 'xA s ¢><A
& =|:|:pr] 0 N' &

N'e (2-2-7) As En
LT ZA > Z
¢yB 0 [pr ] M 'yB
M' Figure 2-2-2 Nonlinear bending springs
¢XB xB

1
ng N B

Rearrange the order of the components of the displacement vector and change the node axial displacements

into the relative axial displacement,

$a] [1 0 0 0 0 0] % i
b/ (00 0 1 00 fx’* fx’*
but=10 1 0 0 0 of *l=|n " (2-2-8)
ds| |00 0 0 1 0 Do Do
g, 00—1001¢XB Pia
B ! €8

The force-displacement relationship in Equation (2-2-7) is then expressed as,

¢yA M 'yA M 'yA

¢yB [f ] 0 M'yB M 'yB

¢><A = [npj{ " :|[n ]T M 'xA = [f ]< M 'xA (2-2-9)
0 [pr] P P

Pe M'g Mg

g, N', N'
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Force-displacement relationship for nonlinear shear springs

The rotational displacement vector from the shear deformation of the nonlinear shear spring is,
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in X-Z plane

in Y-Z plane

K., are the shear stiffness of the nonlinear shear springs.

(2-2-10)

(2-2-11)

The displacement vector of the column element is obtained as the sum of the displacement vectors of

elastic element, nonlinear shear springs and nonlinear bending springs,

g'yA T'yA ¢yA yn M 'yA
evyB 2-'yB ¢yB 77yB M 'yB
o' ' M'
'xA _ 'xA + Pea + Ta _ [fc]< 'xA (2-2-12)
0's T8 Ps N M'se
sl |8, €, 0 N'
9'2 g'z elastic element 0 bending spring 0 shear spring T 'Z
The flexural matrix [ f.] is;
o ]
3EI, 6IEI ,
— 0
3EI,
o
[f.]= 3EI, 6||§|X N
3El,
1
EA |
sym. —
L GI Z _lelestic element
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By taking the inverse matrix of [ f_], the constitutive equation of the column element is obtained as,

M' .
M’
M'sa
M'e
N',
T,

Including rigid parts and node movement

Change relative axial displacement and torsion displacement into node displacement,

0'
0
9' XA
0
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eva
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'
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Including rigid parts and node movement,

S O O O O O

0'
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I shear spring

bending spring

0'
0
QVXA

(2-2-13)

(2-2-14)

(2-2-15)
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Figure 2-2-3 Including rigid parts and node movement
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From global node displacement to element node displacement

Transformation from global node displacement to element node displacement is;

c
= <
w >

c
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> @ >
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(2-2-17)
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The component of the transformation matrix, [T, ], is discussed in Chapter 4 (Freedom Vector).

From global node displacement to element face displacement

Transformation from the global node displacement to the element face displacement is,

0'\a

o' yB U, u

o' u u

Q,XA =[ncJacIrek 2=l h (2-2-18)
xB . .

o', u, u,

o',

Constitutive equation

Finally, the constitutive equation of the column is;

R u,
I::>2 =[Kc] u;2 (2-2-19)
P, u.n

where,

[Kel=[TeT ke 7] (2-2-20)
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Transformation matrix for nonlinear spring displacement

The nonlinear spring displacement vector is obtained from Equations (2-2-7), (2-2-10) and (2-2-11),

¢yA
¢XA
8ZA
¢yB
¢XB
ng
1y
U

] 0o |
M JA
Ivl'xA
_ 0 [f.,] N',
M'yB
L 0 0 L 0 0 M xB
K !' K I' N',;
0 L 0 0 L 0
I k| k' |

Furthermore, in the same way as Equation (2-2-8),

A/ RN
IVI'XA
N'zA
M’
M'XB
N'ZB

Therefore, the nonlinear spring displacement vector is obtained from the element face displacement as,
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Tl 9'
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M'yA M'yA
M'yB M'yB
- M'XA =[n,p]<M'xA
Mg M'g
N'Z N'Z
T'Z T'Z
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M,

MVXA
N'

= [fPC]< M'ZA

yB
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Nl

xB

B

0'
0
o',
)7
5'
9'

z

z

(2-2-21)

(2-2-22)

(2-2-23)
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2.3 Wall

Element model for wall is defined as a line element with nonlinear bending springs at both ends and three

nonlinear shear springs; one is in the middle of the wall panel and others are in the side columns as shown

in Figure 2-3-1.

Figure 2-3-1 Element model for wall

Force-displacement relationship for elastic element

In the same way as the beam element, the relationship between the displacement vector and force vector of

the elastic element is,

1
{T xAz} _
1
4 xB2

Il

I!

The axial displacement is,

5! VZC I
EA

=—N'

zCc

_ M
3E|| N 6II,EI ¢ 'yAC } in wall panel
- - M yBc
| 6El,  3EI,
I' |
MV
SEII,I 6II,E|1 { 'XAI} in side column 1
—_ [ M xB1
| 6El,  3El
I' o
MV
3E||,2 6||?|2 { 'XAZ} in side column 2
— M xB2
6El,  3El,

(2-3-1)

(2-3-2)

(2-3-3)

(2-3-4)
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Force-displacement relationship for nonlinear bending springs

Nonlinear interaction M, — M y N, is considered in the nonlinear bending springs,

Bc > “z

N'ge s Eme
M 'yBc ’ ¢yBc
\[) M 'xBZ b ¢XBZ
B 0 . !

M 'xBl H ¢XBI ﬂ

................

A R— A Hereee ot
M 'XAI > ¢XA1 M 'XA2 5 ¢XA2
M 'yAc > ¢yAc
Ac

N &

ZAc> “z

Figure 2-3-2 Nonlinear bending springs

¢yAc M 'yAc
M '
P | [f.h " 4L atend A (2-3-5)
Penr M,
Enc N nc
¢yBc M 'yBc
M 1
Por | _ [f.F 2 atend B (2-3-6)
P2 Mg,
Eme N,

where, [f,] and [f 5] are the flexural stiffness matrices of the nonlinear bending springs. Therefore,

the force-displacement relationship of nonlinear bending springs is,
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M 'yAc
M ‘xAl
M 'xAZ
N'zAc
M 'yBc
M 'XBI
M 'XBZ
N'ZBC

(2-3-7)

Rearrange the order of the components of the displacement vector and change the node axial displacements

into the relative axial displacement,

Pyac
Pyee
¢XA1
e
Prn
e

&

zC

The force-displacement relationship in Equation (2-3-7) is then expressed as,

Dyac
Do
Pean
¢xBl
¢XA2
o2

&

zC

Force-displacement relationship for nonlinear shear springs

=[n{[f8A] !

-1

0

pB

i3

M 'yAc
M 'yBc
M 'XAl
M 'XBI
M 'xA2
M 'xBZ
N'zc

Dyac
Do
Doz
Eonc
Dyec
Der
Dee>

EZBC

[t}

_ [np} Enc

¢yAC
¢><Al
¢XA2

¢yBc
¢xBl
¢x82

&

zBc

M 'yAC
M 'yBc
M 'xAl
M 'XBl
M 'XAZ
M 'xBZ
N'zc

(2-3-8)

(2-3-9)

The rotational displacement vector from the shear deformation of the nonlinear shear spring is,

77yAc
77yBC

{nxAl
N1

}
}

b
K|

b
kI’

|

|

M 'yAc}
M 'yBc

M 'xAl}
M 'xBl

in wall panel

in side column 1

(2-3-10)

(2-3-11)
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1 1

' vIIM!
{77 XAZ} = ksf' kslzl { 'XAZ} in side column 2 (2-3-12)
M2 LM,
k52|' kszlv
where, K., K and K, are the shear stiffness of the nonlinear shear springs.

The displacement vector of the column element is obtained as the sum of the displacement vectors of

elastic element, nonlinear shear springs and nonlinear bending springs,

a'yAc T'yAc ¢yAc nyAc M 'yAc
e'yBc T'yBc ¢yBc 77yBc M 'yBc
O'vai (A P a1 M
O'e1 (=17 e +1 P 1 e = [fw] M (2-3-13)
H'XAZ TVXAZ ¢XA2 77xA2 M 'xAZ
O'se> T8> Peso TNxe2 M'e,
5‘10 5”29 elastic element & bending spring 0 shear spring N 'ZC

The flexural matrix [ f,, ] is;

I' I' |
3El,  6EI,
e
3EI,
o
3EI,  6El,
I
[fu]= — n
w 3EI,
N
3EI, 6,
|'
sym.
y 3EI,
1
L EAC elestic element
fpll fp17
. . +
fpﬂ o fp77 bending spring
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By taking the inverse matrix of [ f,, ], the constitutive equation of the column element is obtained as,

M 'yAc
M 'yBc
M 'xAl
M 'XBI
M 'xA2
M 'XBZ
N'zc

Including rigid parts and node movement

Change relative axial displacement and torsion displacement into node displacement,

1 1
1
1
sym.

1
1
1

9
&' e
0'vai
= [kw ]< 061
0 2
'8

yAc

zC

Including rigid parts and node movement,

0

shear spring

(2-3-14)

(2-3-15)

(2-3-16)
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u XAc u XAc
M1 1 7| Ysee Usae
- F F 1+ /NLA ﬂ‘B eyAc HyAc
o' yAc _l' l' ;LA 1+ ﬂ‘B eyBc HyBc
9' yBc I I 1 1 u yAl u yAlL
HVXAI F _F 1+2’A ﬂ’B Uyg Uyg,
0 xB1 — l _1 )”A 1+ﬂ’B exAl — [AW ]( exAl
0’ XA2 I ' I ' 1 1 HxBl exB]
‘9le2 F _F 1+/7’A AB |JyAZ uyA2
O a u u
. A l' —l, A, 14 4, Hysz esz
zBc I I 1 XA2 XA2
1 0)(82 9)(82
- - 52Ac §zAc
5ZBC 5280
(2-3-17)
From global node displacement to element node displacement
Transformation from the center displacements to the node displacements is,
A_/
g T
u XAc 1 u XAl u XAl
uch 1 1 62A1 52A1
QVAC B W W 5zA2 o A2
gyBc — l l u xB1 u xB1
u yAl w w 1 5ZB1 5281
u yB1 1 5282 5282
exAl — 1 uyAl — [DW ]< u yAl
exBl 1 u yB1 u yB1
u yA2 1 exAl ngl
u yB2 1 ngl HxBl
exAz 1 u yA2 u yA2
esz 1 u yB2 u yB2
52Ac O 5 0 5 HXAZ ngz
é‘Z C ' . 0)( 9)(
B | 0.5 0.5 e B2 (2-3-18)
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Transformation from the global node displacements to the element node displacements is;

c

XAl

ZAl

SIS

ZA2

c

xB1

zB1

SRS

N

B2 ul

M =Tk (2-3-19)

<
@
—_

XAl u n

QQ € C

xB1

yA2

cC

yB2

>

XA2

>

xB2

The component of the transformation matrix, [T, |, is discussed in Chapter 4 (Freedom Vector).

From global node displacement to element face displacement

Transformation from the global node displacement to the element face displacement is,

yAc
9!

'yBc u1 U1
= u u

2 2

0 ¢ =[Ny JAW IDw T K 2 P =TT b (2-3-20)
P : :

'xAZ u ) u )
9 xB2
5'20

In case of Y-direction wall
Z Z
y X
X Y
Local coordinate of Y-wall Global coordinate

Figure 2-3-4 Relation between local coordinate and global coordinate
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In case of Y-direction wall, the wall panel direction coincides to the Y-axis in the global coordinate,

transformation of the sign of the vector components of the element coordinate is,

X

0

y =|-1

Y -Wall

Therefore

XAl

zAl

S

~N

A2

%NQ)XC
© @

N
w
N

yAl
yB1

XAl

Q O € <

x
o

yA2
yB2

XA2

Q O £ <«

xB2)y-wall L

0

S O =

— O O

N < X

Global

Global

(2-3-21)

c

yAl

zAl

S

A2

c

yB1

5181
5282

u XAl

:[‘9w]

¥82 ) Global

(2-3-22)

Transformation from the global node displacement to the element node displacement is;

yAl

ZAl

& O &

N

A2

o=
<
®

zB1

SRS

N

B2

= [Tiyw

xB1

yAl

> o & <

yB1
XA2
xB2

yA2

> & <

<
sy}
[\S]

(2-3-23)

28



Transformation from the global node displacement to the element face displacement is,

6'

yAc

Constitutive equation

Finally, the constitutive equation of the wall is;

P u,
RS
.
where,

[wa ] = [wa ]T [kw ][wa ]

For Y-wall,
P u,
sz _ [K » u:2
P, u,
where,

[y J= T T L T

Transformation matrix for nonlinear spring displacement

0' a1 =[nw ][Aw ][Dw ][5w ][TixW =[TyW ugz

(2-3-24)

(2-3-25)

(2-3-26)

(2-3-27)

(2-3-28)

The nonlinear spring displacement vector is obtained from Equations (2-3-7), (2-3-10)~(2-3-12),



[f]

‘ 1

zBc kSC|'
77yc 1
i kI
77x2

Furthermore, in the same way as Equation (2-3-8),

'

M yAc M
M yAc
XAl '

M Bc
M 'XAZ !
'

N ] M XAl
ZAc | _ [ ]T M’
M =In p xB1
yBe [

M ] M XA2
xB1 M '

M ] xB2
xB2 N ]

N' c

zBc

M
M
M a2
N"ac
M
M
M
N'

yAc

yBc
xB1

xB2

zBc

1

M yAc
'

M XAl

1
N ZAc

(2-3-29)

(2-3-30)

Therefore, the nonlinear spring displacement vector is obtained from the element face displacement as,

Dync

Pen

Pnr M' )
Eanc M 'yBc
Dy M’ i
¢xBl =[pr :[np]T M
D2 M
€Be M'se,
Mye N,

M

Mx2

= [pr :[np]T[kw]

(2-3-31)

30



2.4 Wall Panel

Element model for wall panel is introduced by removing the side columns from the wall model as shown in
Figure 2-4-1.

Figure 2-4-1 Element model for wall

Force-displacement relationship for elastic element

In the same way as the beam element, the relationship between the displacement vector and force vector of

the elastic element is,

I' I

r - M’
'yAC _| 3 EII ¢ 6II'EI ¢ 'yAC in wall panel (2-4-1)
2 yBc - - M yBc
6El,  3El,
The axial displacement is,
" I ' 1
o = a N zc (2-4-2)
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Force-displacement relationship for nonlinear bending springs

Nonlinear interaction M, — M y N, is considered in the nonlinear bending springs,

1
N zBc » ngc
|l
M yBc > ¢yBc
B
A
|l
M yAC > ¢yAc
Noacs Enc

Figure 2-4-2 Nonlinear bending springs

M '
{%C} = [pr]{ N’ yAC} atend A (2-4-3)
Eanc 2Ac
M '
{¢VBC} = [pr ]{ yBC} atend B (2-4-4)
EaBe N5

where, [ pr] and [ pr] are the flexural stiffness matrices of the nonlinear bending springs. Therefore,

the force-displacement relationship of nonlinear bending springs is,

¢yAc [ ] M 'yAc

Eanc _ pr 0 N 'zAc A
¢yBc - |: 0 [fPB ]j| M 'yBc (2 ! 5)
€Be N'.gc

Rearrange the order of the components of the displacement vector and change the node axial displacements

into the relative axial displacement,

¢yAc ¢yAc

¢yAc 1

Ene Eine
By b = 1 =[n, (2-4-6)
£ _ 1 1 ¢yBc ¢yBc

zC

€Be
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The force-displacement relationship in Equation (2-4-5) is then expressed as,

M' M'
yAC f 0 yAc yAC
Pyoc =[np{[ SA] [prﬂ[nJ Mo p = [F M (2-4-7)
gZC N' N'ZC

Force-displacement relationship for nonlinear shear springs

The rotational displacement vector from the shear deformation of the nonlinear shear spring is,

1 1

T orrlm
My | _ | Kael' Kol e in wall panel (2-4-8)
Tyae M yBe

kel' kI

where, K., is the shear stiffness of the nonlinear shear springs.

The displacement vector of the column element is obtained as the sum of the displacement vectors of

elastic element, nonlinear shear springs and nonlinear bending springs,

o' yAC ZJyAc ¢yAc Myac M 'yAc
evyBc = Z-'yBc + ¢yBc + nyBc = [fWP ] M 'yBc (2'4'9)
9 zc 4 2C J elastic element & bending spring 0 shear spring N c
The flexural matrix [ f,,] is;
I I |
3EI° 6II'E|° fpll fpl2 fp13
[pr]: 3E| + fp22 fp32 +
c
I' Sym. fp33 bending spring
sym. _—
L EAC Jelestic element
_ 1 1 _
kK " kgl
! (2-4-10)
Kl'
sym. 0
L I 'shear spring

By taking the inverse matrix of [ f,; ], the constitutive equation of the column element is obtained as,

M 'yAc 9'yAc o' yAC
M'yee = [fva ]71 &' e :[kwp] &' e (2-4-11)
N 'ZC é‘vzc 5'ZC
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Including rigid parts and node movement

Change relative axial displacement and torsion displacement into node displacement,

9, 1 9' yAc 0' yAc
yAc Q' o'
0' — 1 yBc — [n ] yBc
yBc é‘y wp 51
5, _ 1 1 zZAc zZAc
zc " "
5 zBc 5 zBc
Including rigid parts and node movement,
B 1 1 T uxAc uxAc
H'yAc N F F 1 + /1A /15 uch uch
o' 1 1 0 o,
yBe yAc yAc
J e R B S
zAc 1 yBc yBc
5szc 1 §ZAC 52Ac
- - 5ch 52Bc

From global node displacement to element node displacement

Transformation from the center displacements to the node displacements is,

0,
/ﬁ
0 = 522 — 521
521 520 ’ w
............... 5 _ 521 +522
................. zc 7

Figure 2-4-3 Relationship between center and node displacements

_1 _
u XAc 1 u XAl u XAl
u xBc l l zAl ZAl
eyAc — W w ZA2 [D ] 5ZA2
WP
eyBc — l l u xB1 u xB1
5ZAC 05 05 w w 5ZB1 5231
5ZBC | 05 05_ 5232 5232

Transformation from the global node displacements to the element node displacements is;

(2-4-12)

(2-4-13)

(2-4-14)



uXAl

5ZA1 ul

i‘: = [Towe uf (2-4-15)
O u,

Os

The component of the transformation matrix, [T,p |, is discussed in Chapter 4 (Freedom Vector).

From global node displacement to element face displacement

Transformation from the global node displacement to the element face displacement is,

[ u1 u1
7 yne u u
[ 2 2
0 yBe [ [nWP ][AWP ][DWP ][TixWP = [TXWP . (2-4-16)
o' '
C u ) u )
In case of Y-direction wall
Z Z
y X
X Y
Local coordinate of Y-wall Global coordinate

Figure 2-4-4 Relation between local coordinate and global coordinate

In case of Y-direction wall, the wall panel direction coincides to the Y-axis in the global coordinate,

transformation of the sign of the vector components of the element coordinate is,

X 0 1 0f[X
y =—-1 0 ORY (2-4-17)
Y -Wall O O 1 Z Global
Therefore
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Usai 1 1fu yAl Uyar

5ZA1 1 5ZA1 5ZA1

5 A2 1 5 A2 5 A2

uz = | uz = [&yp | uz (2-4-18)
XB1 yBI yB1

5281 1 5281 5281

5232 Y -Wall L IJ 5252 Global 5132 Global

Transformation from the global node displacement to the element node displacement is;

e

yAl

5ZA1 ul

bl
g1 u,

0.8

Transformation from the global node displacement to the element face displacement is,

) u, u,
0 yAc u u
' 2 2
0 yBe (= [nWP ][AWP ][DWP ][SWP ][TixWP] - (= [TyWP (2-4-20)
o' '
zC u ] u )
Constitutive equation
Finally, the constitutive equation of the wall is;
P U,
P. u
Dr=lKaek T (2-4-21)
Pn u n
where,
.
[K XWP ] = [TXWP ] [kWP ][TXWP ] (2-4-22)
For Y-wall,
P U,
P u
Sk (2-4-23)
Pn u n
where,
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[K yWP ] = [TyWP ]T [kWP ][TyWP ] (2-4-24)

Transformation matrix for nonlinear spring displacement

The nonlinear spring displacement vector is,

il -
¢yAc [ pA] M ' M '
e N yAc yAc
ZAC
f N' N'
Pyec | = [ pA] .ZAC - [f pWP ,ZAC (2-4-25)
& . M yBc M yBc
ZBC ] '
n L 0 L 0 N 7Bc N zBc
ye | K I' Kl ]
Furthermore, in the same way as Equation (2-4-6),
M '
N ' e M 'yAc
v 'ZAC — [n p]T M 'yBc (2-4-26)
yBc N'
N 'ZBC *

Therefore, the nonlinear spring displacement vector is obtained from the element face displacement as,

Dync

€nc M' yAc o' yAc o' yAC

Byae = o 0 T AM e = [ I [ e 0 = [T | 0 (2-4-27)
& me N'. o', o',

Mye
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2.5 External Spring

N'Z > 5'2

N

£

Figure 2-5-1 Element model for external spring

Force-displacement relationship for the element
The relationship between the displacement vector and force vector of the elastic element in Figure 2-5-1 is

expressed as follows:

IN' =k Jlo, } (2-5-1)

From global node displacement to element node displacement

Transformation from the global node displacement to the element node displacement is,
' 2
0, ) =[Te : (2-5-2)

The component of the transformation matrix, [T ], is discussed in Chapter 4 (Freedom Vector).

Constitutive equation

The constitutive equation of the external spring is;

P u,
P.2 =K. uf (2-5-3)
P, u.n

where,

[Kel={Te] [ke I ] (2-5-4)
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2.6 Base Isolation

B I Z

u xB

| e
X
A U
Y
u yA I
5ZA

Figure 2-6-1 Element model for base isolation

Force-displacement relationship for the element

The relationship between the displacement vector and force vector of the element is expressed as follows:

Q) . 19
{Q,y} =l ]{ 5;} (2-6-1)

Including the axial stiffness,

Q'X [k pBI ] 0 5')( 5')(
QY= 0 EA o'y = [k s KOy (2-6-2)
5'2 I' 5'2 5'2

From node displacements, relative displacements are;

5'x =U;g — U

0'y=Ugp —Uy, (2-6-3)
5'2 = 528 - 5ZA
Therefore
uxA uxA
u u
5')( _ 1 1 xB xB
u u
Sy = -1 1 = [nBI ]< " (2-6-4)
5' 11| e
5zA 5ZA
O O
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From global node displacement to element node displacement

Transformation from the global node displacement to the element node displacement is,

uXA

uXB u1

E:’; = [T ] uf (2-6-5)
On u,

Oup

The component of the transformation matrix, [T, ], is discussed in Chapter 4 (Freedom Vector).

From global node displacement to element face displacement

Transformation from the global node displacement to the element face displacement is,

u, u,

o u u
5y (= [nBI ][TiBI ;2 = [TBI ;2 (2-6-6)

o', ’ '

u u

Constitutive equation

The constitutive equation of the Base isolation is;

b

P U,
2 u,
Jr=Ka k (2-6-7)
Pn un
where,
[KBI ]: [TBI ]T [kBI ][TBI ] (2-6-8)
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2.7 Masonry Wall

Element model for Masonry wall is defined as a line element with a nonlinear shear spring and a vertical

spring in the middle of the wall panel as shown in Figure 2-6-1.

B1 ; B B2L L

' ' ' '
Nzl7521 % szagzz

W |
Q'XC 5 }/'XC

Figure 2-7-1 Element model for masonry wall

Force-displacement relationship

The relationship between the shear deformation and shear force of the nonlinear shear spring is,

Q'xc = ksx}/'xc (2-7-1)
For axial spring,
N 'zl = kz‘c"'zl ’ N '22 = kzgvzz (2'7'2)
In a matrix form,
Q| [Ka 0 0y 7'se
N, b=l 0 k, 0fFe,r=[kyke, (2-7-3)
N, 0 0 k,|l&s &'

Including node movement
The shear angle of the frame with four nodes, A1, A2, B1, B2, is defined as,

__05, ou, o
ox o1
where,
85Z ~ l 5zA2 — 5ZA1 + 5282 — 5281 (2-7-5)
ox 2 w w
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Ugr —Uyar

~ —
~

oz 2

+

auz 1(UXBI —Uya
| |

The shear deformation, »' « » 1s then,

|
2w
The axial deformation, &', &',,, is,

LI
&= 5281 - é‘zAli‘

In a matrix form,

7' -05 -05— -05 05—
xc w

g, b= 0 -1 0 0

&, 0 0 0 -1

' —
&', =08 = Oy

0.5 —0.5l !

w w
0 1 0 0

0 0 0 1

From global node displacement to element node displacement

c

XAl

8%

zAl

c

XA2

S

A2

c
=
=

c
P
e}
8}

NU)
W
8]

1
(§ZA2 _§ZA1 +5z32 _5zBl)+§(uxBl — Uy Uy _uxAz)

:[DN]<

Transformation from the global node displacement to the element node displacement is;

u><A1
Fon
uxAZ ul
5ZA2 u2
BN RCLE
e u,
uXBZ
82

(2-7-6)

(2-7-7)

(2-7-8)

(2-7-9)

(2-7-10)

The component of the transformation matrix, [T, ], is discussed in Chapter 4 (Freedom Vector).

From global node displacement to element face displacement

Transformation from the global node displacement to the element face displacement is,
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s

u u
gy = [DN ][TixN ] :2 = [TXN ] ’
€' .

un un

In case of Y-direction wall

(2-7-11)

Z Z
Y‘% Z\%Q‘X
X Y

Local coordinate of Y-wall Global coordinate

Figure 2-6-2 Relation between local coordinate and global coordinate

In case of Y-direction wall, the wall panel direction coincides to the Y-axis in the global coordinate,

transformation of the sign of the vector components of the element coordinate is,

X 0 1 0f[X
y =-1 0 ORY
Y —Beam

Global

Therefore

[

XAl 1

ZAl 1

S %

XA2 1

%)

ZA2 1

e

xB1 1

ZB1 1

c o

xB2 1

%

1

B2 J y wall L .

u yAl
5ZA1
u yA2
5ZA2
u yB1
5281
u yB2
5282

u yAl
52A1
u yA2
5ZA2
u yB1
é‘zBl
u yB2
5ZB2

Global Global

Transformation from the global node displacement to the element node displacement is;

(2-7-12)

(2-7-13)
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[

yAl

ZAl

N

yA2 u;

A2 | _ [T

yB1

%)

iyN

c

zB1 un

S

yB2

oY)

B2

Transformation from the global node displacement to the element face displacement is,

, U, u,
7 xe
u u
Eyr= [DN ][Tin ;2 = [TyN :2
u u

n n

Constitutive equation

Finally, the constitutive equation of the wall is;

P u,
P u
-2 = [K xN -2
Pn u n
where,
[KXN ] = [TXN ]T [kN ][TxN ]
For Y-wall,
P U,
P u
:2 _ [K N :2
Pﬂ u n
where,

(2-7-14)

(2-7-15)

(2-7-16)

(2-7-17)

(2-7-18)

(2-7-19)
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2.8 Passive Damper

Element model for passive damper is defined as a line element with a nonlinear shear spring as shown in

Figure 2-8-1.

B1 E B B2L

W
Al ; Az |
A

|

Figure 2-8-1 Element model for passive damper

Force-displacement relationship

The relationship between the shear deformation and shear force of the nonlinear shear spring is,

Q'xc = ksx}/'xc

Including node movement
The shear angle of the frame with four nodes, A1, A2, B1, B2, is defined as,
__05, o,

ox o1

where,

85Z l(é‘zAz _5ZA1 + 5282 _5281 j

ax~2 w w

auz zl Usgi —Uyal +usz —Uymo
oz 2 | |

The shear deformation, »' « » 1s then,

I 1
V' =7l :_W(52A2 — O, + 0 _5zBl)+E(uxBl —Uyar + Uspy _uxAz)

(2-8-1)

(2-8-2)

(2-8-3)

(2-8-4)

(2-8-5)
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. : T
The axial deformation, &',,, &,,,1s,

=0 O, €;=0 — 0 (2-8-6)

In a matrix form,

u><A1 u><A1
5ZA1 §ZA1

» ) |-05 “0s5t 05 05t 05 —osl 05 o5l ||uw Uuo

b w w w w 5ZA2 5ZA2

g b= 0 -1 0 0 0 1 0 0 =[D, ]
uxBl uxBl

&', 0 0 0 -1 0 0 0 1
§zBl §zBl
usz uxBZ
5282 5282

(2-8-7)
From global node displacement to element node displacement
Transformation from the global node displacement to the element node displacement is;

u><A1

5ZA1

Uyaz U,

e U,

ool @89

uxBl :

5281 un

uxBZ

5282

The component of the transformation matrix, [T, ], is discussed in Chapter 4 (Freedom Vector).

From global node displacement to element face displacement

Transformation from the global node displacement to the element face displacement is,

] ul ul
Y xe
u u
&'t =[Dp Mok 7 =Mk 7 (2-8-9)
&'y '
un un
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In case of Y-direction damper

Z Z
Y‘% Z\%Q‘X
X Y

Local coordinate of Y-wall Global coordinate

Figure 2-7-2 Relation between local coordinate and global coordinate

In case of Y-direction damper, the damper direction coincides to the Y-axis in the global coordinate,

transformation of the sign of the vector components of the element coordinate is,

X 0

y =-1
0

Y —Beam Global

(2-8-10)

S o =
- o o
N < X

Therefore

[

XAl 1

ZAl 1

S %

XA2 1

%)

(2-8-11)

e

xB1 1

ZB1 1

c o

xB2 1

u yAl
5ZA1
u yA2
ZA2 1 5ZA2
u yB1
5281
u yB2
5282

u yAl
52A1
u yA2
5ZA2
u yB1
é‘zBl
u yB2
5ZB2

%

1

B2 J y-_wall L - Global Global

Transformation from the global node displacement to the element node displacement is;

[

yAl

g

Al

[

yA2 U,

g

A2 :[Tin : (2-8-12)

yB1
BI u

c o c

yB2

S

B2
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Transformation from the global node displacement to the element face displacement is,

U, U,
7/'

'xc u, u,
Ea(= [DD ][Tin (= [TyD .
&' ' .

un un

Constitutive equation

Finally, the constitutive equation of the damper is;

R u,
P. u
;2 = [KXD] ’
Pn un
where,
[KXD ] = [TXD T [kD ][TxD ]
For Y-damper,
R U,
P. u
:2 _ [K o :2
Pn un
where,

[Kyo)= Mo Tho I

(2-8-13)

(2-8-14)

(2-8-15)

(2-8-16)

(2-8-17)
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Appendix ) Calculation of shear component

For “Masonry Wall” and “Passive Damper”, the shear deformation is defined as follows:

1) Shear deformation in one direction

¥ ¥
f 3 &
Al
#
&
—

Lt

~

Shear strainisT=Al/1 =0

2) Shear deformation in two directions

¥
&

Al
: _I_ Y'.‘-X

Shear strain is T=0,+60,=Al/ 1y+Aly /1

ou, ou,

If we discuss small element 7 = EX + g - Eq. (2-7-4) and Eq. (2-8-2)
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This definition is necessary to remove rotational component. To explain this, suppose there is only

rotational (or bending) deformation,

v

v

From the above definition, shear angle will be

t= 0+(-0)=0

For example, in the upper story of the building under horizontal deformation, the bending
component is dominant and the shear component is small. Therefore, the brace damper

doesn’t work in the upper story.

£
[
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3) In case of damper element

We define the shear angle in one direction as follows:

01

v

We adopt the average angle,

0= 1/2(6,+6y) - Eq.(2-7-5) and Eq. (2-8-3)

In the same way, the shear angle in another direction is

v

0= 1/2(0°,+05) > Eq.(2-7-6) and Eq. (2-8-4)



2.9 Floor Element

In the default setting, STERA 3D adopts “rigid floor”. However, elastic deformation of a floor diaphragm
in-plane can be considered by the option menu selecting “flexible floor”. The stiffness matrix of the floor

element is constructed using a two dimensional isoparametric element.

5
] Maode 1

g X, U
Figure 2-9-1 4-nodes isoparametric element

The stiffness matrix with 4-nodes isoparametric is expressed as,

P
Q
P,
Q|

(= [Ke
Q,
P,
Q,

F =K

> S < <

w

~

< € < C© < C
(98]

o~

(2-9-1)

<

The coordinate transfer function {x, y} is expressed using the interpolation functions as follows:

X(r,s) = ihi (r,s)x; = %(1 +r)(1+s)X, + i(l -NA+9)x, + %(1 -NA-9)x; + %(1 +r)1-s)x,

V(1.8 = SR8y, =1+ DA+, + (=D +9)y, + L (1=N1=9)y, + L1 +11-9)y,

i=1

(2-9-2)
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The deformation function {u, v} is also expressed using the same interpolation functions.
= 1 1 1 1
u(r,s) = Z h,(r,s)u, = Z(l +r)(1+s)u, + Z(l -rnd+syu, + Z(l -rnd-syu, + Z(l +r)1-syu,
i=1
& 1 1 1 1
v(r,s)= z h,(r,s)v, = Z(l +r)(1+s)v, + Z(l -nNA+sy, + Z(l -nNAd-sy, + Z(l +r)1-s)v,
i=1

(2-9-3)
Stiffness matrix can be obtained from the “Principle of Virtual Work Method,” which is expressed in the

following form:

(2-9-4)

where, £ is a virtual strain vector, O is a stress vector, Uis a virtual displacement vector and F is a

load vector, respectively.

In case of the plane problem, the strain & vector is defined as,

8_u
£, OX
g, |= % (2-9-5)
) | o
oy oX

Substituting equation (2-9-3) into equation (2-9-5), the strain vector is calculated from the nodal

displacement vector as,

ou ia_hu
&y & Izl OX I
ov oh,
£, 5 = ZE
i=1
Vxy ou ov 2, oh, 4 c’ihI
— | | DU+
gy OX i Oy i=1 6X
ul
oh oh oh oh Vi
_1 [ — 0 -3 0 4 0 u
OX OX OX OX 2
0 a_hl 0 % % % V2
oy oy oy oy | u,
8_h1 (’ﬂ_h1 oh, oh, o¢oh, o¢oh, oh, oh, v,
oy Ox oy oOx oy Ox oy X u
4
V4
&= B (2-9-6)
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In the plane stress problem, the stress-strain relationship is expressed as,

. 1 v 0 | &
o, |= i v 1 0 &, (2-9-7)
l-v 1-v
Txy 0 0 T ]/Xy
o= C &

Substituting equation (2-9-6) into equation (2-9-7),
6=CBu (2-9-8)
From the Principle of Virtual Work Method,

| (Bu) (CBu)dv=0" [ | BTCdedyJu =U'F (2-9-9)

v V(X,y)

Therefore, the stiffness equation is obtained as,

F=Ku, K=[B"CBdv (2-9-10)
v
If we assume the constant thickness of the plate (= t), using the relation dv = tdxdy,
K=t J‘BTCdedy (2-9-11)
V(x,y)

Since this integration is defined in x-y coordinate, we must transfer the coordinate into r-s coordinate to use

the numerical integration method. Introducing the Jacobian matrix,

x oy
_|or or|. i i 9-
J = x oy ; Jacobian Matrix (2-9-12)

0s 0s

the above integration is expressed in r-s coordinate as,

11

K= tJ'l.[ B(x(r,s), y(r,s)) CB(x(r,s), y(r, s))%drds (2-9-13)
where
ox oy
a(x,y) o or|
20V detd = 2-9-14
oars) K e
0s 0s
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Evaluation of Jacobian Matrix

4. oh, 4. oh,
% Q — i z_lyi
J = or or — | i=l or i=1 or (2_9_15)
Q @ 2, oh, Z“:@hi
os o5 ~ 55 ' = 5s Vi
Evaluation of the matrix B
oy S o
OX OX OX X OX
B=| 0 6_hl 0 % 0 8_3 % (2-9-16)
oy oy oy oy
a_h] a_h] oh, oh, oh, oh, oh, oh,
oy oOX oy oOX oy OX oy OX
L oh, oh, oh, oh,
The derivatives —,---,—,—,--,—— are calculated as,
X oX oy
oh_onor ohes o oh,_ohar oh,os
ox  or ox s ox’ "Ox  or ox 85 ox
oh, oh or oh, 0os oh, oh, or oh, ds
— = =t 9 = —+ -
oy oroy o0s oy oy or oy o0s oy
In a matrix form,
a_hl oh, oh, oh, g @ a_hl oh, oh, oh,
OX OX OX OX |_|OX OX| or or or or
a_h1 oh, oh, oh, g @ 8_h1 oh, oh, oh,
o oy oy oy o oyNos os s 0s
oh oh, on oh,
_1-lfor or or or 2.9-17
Tlan o .
os 05 0s 05
Evaluation of partial derivatives of the interpolation functions
oh, 1 oh 1
—L=—(+s —L=—(+r
or 4( ) oS 4( )
%:_1(14_3) a_hzzl(l_r)
or 4 os 4 (2-9-18)
oh, 1 ’ oh 1
—=—-—(1-5 2= (1-r
or 4( ) 0s 4( )
oh, 1 oh 1
—t=—(1-s TE o (1+s
or 4( ) 0s 4( )
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The 3 points Gauss Integration Formula is defined as:

1
[ f®)dt =0.5556 (~0.7746)+0.8889 f(0)+0.5556 f(0.7746)
-1

=a, f(t)+a,f(t)+a, f(t,)

where, a, =0.5556, a, =0.8889, a, =0.5556
t, =—0.7746, t, =0, t,=0.7746

£(0.7746)

f(t)

£(-0.7746)

-1-0.7746 0 +0.7746 +1

The stiffness matrix is then calculated numerically as follows:

A o(r,s)
11
=t”F(r,s)drds

-1-1
3

=tzz3:aiajF(ri,Sj)
i=1 j=I

where

F(15) =By (r. o CBH(rs)y(r.s) )

a, =0.5556, a, =0.8889, a, =0.5556
r=s =-0.7746, r,=s,=0, r,=s,=0.7746

(2-9-19)

(2-9-20)
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From global node displacement to element node displacement

Transformation from global node displacements to element node displacements is,

ul

Vl

u2 ul

o=l (921
V3 un

u,

V4

The component of the transformation matrix, [T ], is discussed in Chapter 4 (Freedom Vector).
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3. Hysteresis model of nonlinear springs

Notation

a, : Area of rebar in the tension side of the section

A : Total area of rebar in the section

o, : Strength of rebar

Og : Compression strength of concrete

Oy : Strength of shear reinforcement

D Depth of the section

d : Effective depth of the section.

b Width of the beam

J : Distance between the centers of stress in the section (= (7 / 8)d ).
Z, : Section modulus including the slab effect.

n : Ratio of Young’s modulus (=E, /E_)

P, : Tensile reinforcement ratio

P. : Shear reinforcement ratio

I, : Moment of inertia of section considering the slab effect
M., : Crack moment

M, : Yield moment
M/(QD) : Shear span-to-depth ratio

0, Crack rotation of the beam end

0 Yield rotation of the beam end

<

ASH

Crack rotation of the nonlinear bending spring

B

Yield rotation of the nonlinear bending spring

Initial stiffness

(=]

Tangential stiffness at the yield point

<

Stiffness after the yield point in the nonlinear bending spring

<
S}

~ X <

Stiffness after the ultimate point in the nonlinear shear spring

~<
%)

Stiffness degradation factor at the yield point

<

Crack shear force

o

Yield shear force

Ultimate shear force

00 P=s

>

n

Distance between the corner springs in the Multi-spring model
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Ve

Yu

Crack shear deformation
Yield shear deformation

Ultimate shear deformation
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3.1 Beam

a) Section properties

S
& & as
R |
i e e e oo [dl oo oligyem o0 ol d1
_———Ttle o
-} S i
D
o o
T o o — =22 [
LB |
B : Width of beam,
D : Height of beam,
S : Effective width of slab,
t : Thickness of slab
dl : Distance to the center of upper main rebars,
d2 : Distance to the center of bottom main rebars,
al : Area of upper main rebars,
a2 : Area of bottom main rebars
as : Area of rebars in slab
Figure 3-1-1 Beam Section
Area of section to calculate axial deformation
Ay =BD+(S-B)+(ng —1)a +a, +a) (3-1-1)
where,
ne =E,/E, : Ratio of Young’s modulus between steel (Es) and concrete (Ec)
Area of section to calculate shear deformation
A, =BD (3-1-2)
Moment of inertia around the center of the section
BD® (S-B)t’ D\’ t )
I, = + +BDjg——| +(S-Bf|D———- +
N V) 12 973 ( ! 2 9
2
t
(ne —1a,(d, —9)* +(ng ~1)a,(D—d, - g)* +(ne ~1)ag (D -3 gj (3-1-3)
where, g is the center of beam section calculated by
g BD?/2+(S-B)Xt(D-t/2)+(ng —1)a,d, +a,(D—-d,)+as(D-t/2)) (3-14)

Ax
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Effective with of slab is defined as shown in Figure 3-1-2.

S S
i [ | |
[ BN )
b B ] j B ]
(a) S=3B (b) S=2B

Figure 3-1-2 Effective width of slab

(c)S=B
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b) Nonlinear bending spring

| nonlinear bending springs

O, Ta Pn Un Ta
M ——T T B g oo . M
Os (1 =17e ¢ +1%e (T 17s \ A Q /-5/77:—]3 B

nonlinear shear springs

Figure 3-1-3 Element model for beam

Hysteresis model of a nonlinear bending spring is defined as the moment-rotation relationship under the
anti-symmetry loading in Figure 3-1-4. The initial stiffness of the nonlinear spring is supposed to be infinite,

however, in numerical calculation, a large enough value is used for the stiffness.

Moment distribution

M , M M
6EI |
, _ o = —+
M c [ 4 / kO - I M c
ki Nk, Ko
A 0, 0 T ¢ 9 ¢
Elastic element Nonlinear bending spring

Figure 3-1-4 Moment — rotation relationship at bending spring
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Crack moment force

For reinforced concrete elements, the crack moment, M

. 1s calculated as,

M. =0.56\052Z,, Z,=1./9 when tension in bottom main rebars  (3-1-5)
M., =0.56 05Z,,, Z,=1, /(D - g) when tension in upper main rebars (3-1-6)
where,

Og : Compression strength of concrete (N/mm?)

2o, Loy Section modulus

Yield moment force

The yield moment, M y is calculated as,
M, =09a,0, (D —-d, ) when tension in bottom main rebars  (3-1-7)

M, =09a,0, (D-d,)+0.9a oy (D-t/2) when tension in upper main rebars (3-1-8)

where,

o : Strength of rebar (N/mm?®)

Yield rotation

The tangential stiffness at the yield point, ky , is obtained from the following equation,:

_6EI,

k,=a,ke, ko= (3-1-9)

where,

a, s the stiffness degradation factor at the yield point, which is obtained from the following

empirical formulas:

a, =(0.043+1.63np, +0.043a/D)d/D)*, (a/D<2) (3-1-10)
a, =(-0.0836+0.159a/D)d/D)*, (a/D>2) (3-1-11)
where,
P : Tensile reinforcement ratio
p: = a,/(BD) (when tension in bottom main rebars)
p: = (a;+as)/(BD) (when tension in upper main rebars)
a/D : = Shear span-to-depth ratio (=1/(2D) )
d : effective depth
d=D-d1 (when tension in bottom main rebars)
d=D-d2 (when tension in upper main rebars)
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«, 1s modified in case of tension in upper main rebars as

' IeO
a, =ay|— (3-1-12)
e

_ BD’

where 1, = D

the moment of inertia of square section without slab

The yield rotation of the nonlinear bending beam, ¢y , 1s then obtained from,

P= [L—IJ% (3-1-13)
0

y

Crack rotation
From Figure 3-1-2, the crack rotation of the nonlinear bending beam, ¢, is supposed to be zero value,

however, in STERA 3D program, it is assumed as,

¢.=0.001g, (3-1-14)

Slab effect

In case the size of slab is not specified, slab effect is approximately considered using the factor, o, =1.2
as follows:

2 bD* o :
l,=a1,, |,= B : Moment of inertia of section (3-1-15)
bD?
Z, = (as )3/220, Z,= 5 : Section modulus (3-1-16)
A =aA), A =bD : Section (3-1-17)
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Hysteresis model

To consider the difference of the flexural capacity between positive and negative side of the beam, a

degrading tri-linear model is developed based on the Takeda Model for the hysteresis model of the bending

springs of the beam.

Py

P

4
I

kyzo.m(&J o =| M| ks=£ M, j
¢y ¢y ¢m_¢x

Figure 3-1-4 Degrading Tri-linear Model
(0=0.5 and B=0.0 as default values)

B

The strength degradation under cyclic loading is considered by elongating the target displacement, ¢, , to

be @', asshown in the following Figure:

Figure 3-1-5 Introducing strength degradation (y=0.0 as default value)
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¢) Nonlinear shear spring

Hysteresis model of nonlinear shear spring is defined as the shear force — shear rotation relationship using

an origin-oriented poly-linear model as shown in Figure 3-1-4.

nonlinear shear springs

K, = 0.001k,
Q
y ky3

Qu —T ]/
QC ..... z

k; =GA

K,

Ye 7y Yy 4

Figure 3-1-6 Force—deformation relationship of shear spring

Yield shear force

The yield shear force, Q, is calculated as,

0.053p,"* (o +18) .
= 0.85 . b- 3-1-18
? { M/QD)+012 ooV Pu Py (O] (G-1-18)

where,
P : Tensile reinforcement ratio
Og : Compression strength of concrete
P, : Shear reinforcement ratio
Oy : Strength of shear reinforcement
J : Distance between the centers of stress in the section (= (7 / 8)d ).

Crack shear force

The crack shear force is, Qc , 1s assumed as,

_Q
Q== (3-1-19)
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Ultimate shear force

The crack shear force is, Qu , 1s assumed as,
Q =Q

Crack shear deformation

The crack shear deformation is obtained as,

Q.

yc:GA

Yield shear displacement

The yield shear deformation is assumed as,

1

250

Ultimate shear displacement

The ultimate shear deformation is assumed as,

1

yu:@

(3-1-20)

(3-1-21)

(3-1-22)

(3-1-23)
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d) Modification of initial stiffness of nonlinear springs

In numerical calculation, a large dummy value is used for the initial stiffness of the nonlinear spring to
represent rigid condition. This large stiffness may cause an error for estimating the force from the
displacement. One possible way to solve the problem is to reduce the initial stiffness of the nonlinear spring
to be a certain value reasonable for calculation, and on the other hand, increase the stiffness of the elastic
element so that the total initial stiffness of the beam element does not change from the original one. This

idea is proposed by K-N Li (2004) for MS model, and can be used for nonlinear spring model also.

M
M
M C
¢ 4, ¢
Elastic element Nonlinear bending spring
Increase @ Reduce @
stiffness stiffness
M M
M y
+
M C
¢ 9 ¢
Elastic element Nonlinear bending spring

Figure 3-1-7 Modification of moment — rotation relationship

The idea is realized using flexibility reduction factors, 7, (<0),7, (<0), in the relationship between the

displacement vector and force vector of the elastic element in Equation (2-1-1) as,
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I I
"e e, O
Ty |.y |.y My
Tye =~ 72 0 {M'y (3-1-24)
6EI 3EI
5'x y y I N'x
0 .
L EA |
It t b ' > ' >0.5 and : > ' > 0.5
must be e or . and. e or D
"381, Teml, M 7381, Teml, T

Also the initial flexibility matrix of the nonlinear spring can be expressed as follows, introducing the

parameters, P,, P, to increase the initial flexibility.

#u| [p/EL 0 (M,
{%}{ 0 pz/EIHM'yB} (3-1-25)

When p, =0, p, = 0, it represents the infinite stiffness for rigid condition. Accordingly, the crack and

yield rotation will be modified as,
x M . 1 1 |M
¢C = p] E_IC’ ¢y = [a———}—y (3-1-26)

Making the modified flexibility matrix to be identical to the original one,

I | ] I I | ]
— 0 & + 71 —
3El, 6El, El 3EI, 6El,
I P, I
0 = —+y,— 0 3-1-27
3El, el 2 3E (3127
I' I'
sym. — sym. —
L EA_ original L EA_ mod ified
This gives the flexivility reduction factors as:
3 3
7121_Fp1a 72=1-=p, (3-1-28)

I '
From the conditions y, >0.5 and y, >0.5,

p1<ga p2<g
1
10

K-N Li (2004) calls these parameters, P;, P,, as “plastic zones” and recommends to be P, = P, =

Them the reduction factors willbey, =y, =0.7.
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3.2 Column

a) Section properties

p|
\
L y

B : Width of beam,
D : Height of beam,
dl : Distance to the center of x-direction main rebars,
d2 : Distance to the center of y-direction main rebars,
al : Area of x-side main rebars,
a2 : Area of y-side main rebars,
ac : Area of corner main rebars

Figure 3-2-1 Column Section

Area of section to calculate axial deformation

Ay =BD+(ng —1)a, +a, +a,)
Area of section to calculate shear deformation
A; =BD/x, k=12

Moment of inertia around the center of the section

3 2
|, DB +(ng —1)a, +al)(%—dlj

Y12
BD® D 2
| = > +(nE—1)(ac+a2)[3—d2j

(3-2-1)

(3-2-2)

(3-2-3)

(3-2-4)
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b) Nonlinear bending spring

To consider nonlinear interaction among M, — M y N, , the nonlinear bending spring at the member

end is constructed from the nonlinear vertical springs arranged in the member section as shown in Figure

3-2-2.

N, &

\/%\NI xB > ¢><B
M yB > ¢yB

M yA»> ¢yA
WXA ’ ¢XA

N ZA>° ng

Figure 3-2-2 Nonlinear bending springs

Displacement of the i-th nonlinear axial spring is,

g =&~ yi¢x + Xi¢y

Equilibrium condition in the nonlinear section is,
M', = Zkigixi = Zki (€, = Vit + Xi8,)X;
M' == kg Y == ki(e, = Vid + %i4,)Y,
N' = Zkigi = Z‘ki(gz —Yid + Xid,)

In a matrix form

Vi
M, | =
N',

Therefore

_Z‘kiXiz —Zkixiyi Zkixi
iZkiyi2 _Zkiyi

sym. leki

v
>

(3-2-5)

(3-2-6)

(3-2-7)
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¢y MVy Ml

goo=[, ' IM b =[f, kM, (3-2-8)
g, N, N',
For both ends
¢yA M 'yA
¢XA M 'xA
f 0 N'

En _ |:[ PA] i| 'zA (3_2_9)
¢yB 0 [pr] M yB

¢xB M 'xB

ng N 'zB

Hysteresis model of nonlinear bending spring is defined as the moment-rotation relationship under the
anti-symmetry loading in Figure 3-2-2. The initial stiffness of the nonlinear spring is supposed to be infinite,

however, in numerical calculation, a large enough value is used for the stiffness.

B 7
¢
0
0
ARG
A 9
U Moment distribution
M
M , M M
A, —
M y / M y
6EI
, _ o= = —+
M ¢ I ( / kO - I M c
';ko k =0{yk \kpzoo
6, 6, 0 4 ¢ ¢ ¢
Elastic element Nonlinear bending spring

Figure 3-2-2 Moment — rotation relationship at bending spring
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For reinforced concrete elements, the crack moment, M _ is calculated as,

M, =0.56,/c5 Z, +% (3-2-10)

c

The yield moment, M  is calculated from the following formula under the balance axial force, N b

y

Og

M, :0.8atayD+0.5NbD(1—bNb J (3-2-11)

N, = 0.4bDo, (3-2-12)
Note that the balance axial force, Nb , is used instead of actual axial force, N , in this formula since the
characteristics of nonlinear vertical springs in a section are determined later from the equilibrium condition

under the balance axial force.

The tangential stiffness at the yield point, ky , is obtained from the following equation,:

6Bl

| (3-2-13)

k,=a,K, K,

a, s the stiffness degradation factor at the yield point, which is obtained from the following

empirical formulas:

a, =(0.043+1.63np, +0.043a/D +0.325n, )d /D)*, (a/D<2) (3-2-14)
a, =(-0.0836+0.15%9a/D +0.1697, \d /D)*, (a/D>2) (3-2-15)
where,
P : Tensile reinforcement ratio
p: = (a.+a1)/(2BD) (when tension in x-main rebars)
p: = (a.+az)/(2BD) (when tension in y-main rebars)
a/D ; ~ Shear span-to-depth ratio (=1/(2D) )
d : effective depth
d =D-d1 (when tension in bottom main rebars)
d =D-d2 (when tension in upper main rebars)
k,=a,K,

2
a, = 0.043+ 1.63np, +0.043 0 40,33 (ij . K, =SB
QD bDo, \ D |

The yield rotation of the nonlinear bending beam, ¢y , 1s then obtained from,
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M
¢y= (L—I]—y (3-2-14)

¢) Nonlinear vertical springs

The nonlinear bending spring is constructed from the nonlinear vertical springs arranged in the member

section as shown in Figure 3-2-3. This model is called “Multi-spring model” proposed by S. S. Lai, G. T.
Will and S. Otani (1984) and modified by K-N. Li (1988). The section is devided in 5 areas; where 4 corner

areas have steel springs and concrete springs and the center area has one concrete spring.

The strength and the location of nonlinear springs are obtained from the equilibrium condition under

the balance axial force, Ny, , in Equation (3-2-8).

A — 1
A ®
> X o (D > X
4_\j ®
3 (O Concrete spring

® Steel spring

v v
y y

(a) Original column section (b) Multi-spring model
f (tension) (tension)

fsi ...... 7 -4,

(compression) (compression)

(c) Hysteresis of steel spring (d) Hysteresis of concrete spring

Figure 3-2-3 Nonlinear vertical springs
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Strength of steel spring

The strength of the steel spring is one-forth of total strength of rebars in the section, i.e.,

s fy 4 (3-2-11)
where,

A : Total area of rebar in the section

o : Strength of rebar

y

Strength of concrete spring
As shown in Figure 3-2-4, the strength of the corner concrete spring is obtained from the equilibrium

condition in the vertical direction under the balance axial force, N p A —0.4bD Oy, thatis,

N

f, = Tb =0.2bDo, (3-2-12)

c 'yl

Therefore, the area of the corner concrete, A, is,

f
A=—"— 3-2-13
' (0.850%) G213

y

Figure 3-2-4 Equilibrium condition in the column section

The area of the center concrete, A, , is the rest of the area of the section,
A, =bD-4A (>0) (3-2-14)

The strength of the center concrete spring is then obtained as,
c fy2 =0.85koz A, (3-2-15)

where, K is the confined effect (k = 1.3) of the concrete.
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Location of vertical springs
The distance between the corner springs, X, is obtained from the equilibrium condition regarding the

moment force in Figure 3-2-4,

)=x.(2.f, +0.5N,) (3-2-16)

yl

M, = x,(2,f, +f
Therefore,

M y
(3-2-17)

X =———
*2,f, +0.5N,

Note that M is calculated from Equation (3-2-7) for the balance axial force, Ny, .
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Example)

To verify the efficiency of the Multi-Spring model for the column element, the M-N relationship is

compared between MS-model and Theory using one column element. The column section is shown in the

Figure below:

Column Editor g|
COLUMN

Size (mm)
Type

B S— N=1000kN
N~ [500 o |b 4
cz2
03 D . ] L] \) 1
C4 [E—
cs | | [50 B FL o — T
C6
g g Vertical Reiforcement
g190 CORNER 4 - |D22 ~ SD (Nimm2) 300

cm

g}; OTHERS |4 ~|- D22 ~ 295
C13 )
C14 Shear Reinforcement
C15 sD (mem2)

2 x]-|p6 z|-@|50 -] [295
Copy

Concrete (N/mm2)
Fc |24 50cm

ADD oK |

Figure 3-2-5

Theoretical results of the M-N relationship are obtained from the equilibrium condition as,

if(0<N<N,)

My=0.8atO'yD+0.5ND[1— N j (3-2-18)
Do,

If(Nb < N < Nmax)

N __—N
M, =(0.8a,5,D +0.12bD%cy | —mex = (3-2-19)
N max N b
where, N, is the balance axial force,
N, = 0.4bDo, (3-2-20)
and N_, isthe maximum axial force,
N_. ~bDo, + ASO'y (3-2-21)
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Firstly, the strengths and locations of vertical springs are calculated from Equations (3-2-11), (3-2-12),
(3-2-15) and (3-2-17).

a, =15.484 (cm?) o, =1.1f, =32.45(kN /ecm?) o, =2.4 (kN /cm?)

N, =0.4bDog =2400 (kN) N, =bDog + Ao, =6502 (kN)

s fy =251.2 (kN) nyl =1200 (kN) ny2 =390 (kN) x, =30 (cm)

In the range (0 <N < N,), the Multi-Spring model gives

M, =(2,f, +0.5N Jx,

M-N relationship

6000

Theory
5000 Multi-Spring
4000

N (kN)

3000 >
2000

Under—estim%
1000 /
0 L L

0 10000 20000 30000 40000 50000 60000
M (kN*cm)

Figure 3-2-6 Comparison of M-N relationship

The results of Multi-Spring model give smaller values than theoretical results in the range 0 <N < Nb.
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K-N. Li (1988) proposed to use the following formulation for deciding the location of vertical springs in

stead of Equation (3-2-17), as follows:

M
N L — (3-2-22)
2,f, +0.5N,

where, N, is the axial force from the dead loads and the live loads acting on the column (N, < N,),

and M, is the yield moment under the axial force N, that is:

N
My0=08@GyD+05NODP— 4 J (3-2-23)
bDoyg

For the example column, assuming N, = 1000 (kN),

Xs =35.8(cm)

M-N relationship

6000
Theory
5000 |- Multi-Spring
4000 |
=
< 3000
2000 /
1000
0
0 20000 40000 60000 80000

M (kN*cm)

Figure 3-2-7 Comparison of M-N relationship

It improves the results of Multi-Spring model in the range 0 <N < Nb.
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Yield displacement of vertical spring

_ NO
~2f, \/ \ M o Compression
A A
/ﬁv/‘iy\ de c fy+Sfy """" g
d, T— £l
\ 4 _2sfy ¢ , '
X d, cdy:sdy

Figure 3-2-9 Equilibrium condition under the axial force Ng

From the equilibrium condition under the axial force N, as shown in the above Figure, the yield
displacement of the tension side steel spring, (d. , is obtained as follows:

sdy +dc :¢yxs

y>

f
d, =——°—.d
¢ Sfy+cfys y
N, +2,f,
cT T 5 (3-2-24)
q Py Xs

STy T N,y +2,f,
l4— =)
2,f, +2.f,

The yield displacement of concrete spring, d ., is assumed to be the same as that of the steel spring,

y>

d =.d (3-2-25)
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d) Nonlinear shear spring

There are two nonlinear shear springs in x and y directions. Hysteresis model of the nonlinear shear springs

is the same as that in the beam element in Figure 3-1-4.

Yield shear force

The yield shear force, Q, is calculated as,

0.23
Q, = {0'(;;3/?(5[))(333 8. 0.85,/p,, -0, +0.10, }b (3-2-26)
where,
P : Tensile reinforcement ratio
Og : Compression strength of concrete
M/(QD) : =~ Shear span-to-depth ratio (=1/(2D) )
P. : Shear reinforcement ratio
Oy : Strength of shear reinforcement
o, : Axial stress of the column
J : Distance between the centers of stress in the section (= (7 / 8)d ).
Crack shear force
The crack shear force is, QC , 1s assumed as,
Q.= & (3-2-27)
3
Ultimate shear force
The crack shear force is, Qu , 1s assumed as,
Q, =Q. (3-2-28)
Crack shear deformation
The crack shear deformation is obtained as,
Ve = % (3-2-29)
Yield shear displacement
The yield shear deformation is assumed as,
1
Vy = ﬁ (3-2-30)
Ultimate shear displacement
The ultimate shear deformation is assumed as,
1
Yu = ﬁ (3-2-31)
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Figure 3-2-6 Nonlinear shear springs in column
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e) Modification of initial stiffness of nonlinear springs

The same modification can be done for the nonlinear springs of column element as described for those of
beam element by reducing the initial stiffness of the nonlinear spring and increasing the stiffness of the

elastic element as shown in the following figure:

B 7
)9
0
0
AR
AN
u Moment distribution
M
M , M M
M, 7 My 7
6El
’ e e = +
M, 4 ko = | M,
I;ha Ky Kpm o
o, 0, 0 T ¢ 9 ¢
Elastic element Nonlinear bending spring
Increase @ Reduce @
stiffness stiffness
M M
/Il M y
I;I +
1 M .
¢ 9 ¢
Elastic element Nonlinear bending spring

Figure 3-2-7 Modification of moment — rotation relationship
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Introducint the concept of “plastic zones”, the initial stiffness of the i-th multi-spring can be expressed as,
ki _ Ei AI
= ——
P,

where E; : the material young’s modulus, A; : the spring governed area, and p; : the length of assumed

(3-2-32)

plastic zone. When P, — 0, it represents the infinite stiffness for rigid condition.

From Equation (3-2-7), when we consider the flexural flexibility in x-z plane, the flexibility matrix for the

nonlinear MS section is,

g1 [VZR 0 Ty [p/ZEAG 0 oy
yl_|/5 , yl_ i y (3-2-33)
{g} 0 I/Zi:k‘; {N} 0 pZ/ZEiA{N'Z}

z

Also, introducing the flexibility reduction factors, y, (< 0), 12 (< O), Vs (< 0), the flexibility matrix of

the elastic element is,

_ t I -

4 -

3El y 6El y
[fe]=] - ' 4 ! (3-2-34)
¢ 6El, “?3El,
Y '
L " EA
Making the modified flexibility matrix to be identical to the original one,
' ' le I' I'
| | +y - 0
— 2 1
3B, 6B, ZEiAixi 3El, 6El,
I P, I
: + 0
3EI, SEAX P3EI
I' ‘
sym. Pai P2 '
. sym. + +Y,—
L EA_ original y Z Ei A Z Ei A }/O EA
L i i Jmodified
(3-2-35)

This gives the flexivility reduction factors as:

3 3 1
71:1_sz19 72:1_sz2= 70:1_F(pz1+pz2) (3-2-36)
Adopting P,;, = P,, = — as discussed for beam element, the reduction factors will be:
v, =7,=07, y,=038 (3-2-37)
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f) Tri-linear hysteresis for nonlinear springs

The original hysteresis models used for steel and concrete springs are bi-linear types as shown in Figure
3-2-3. To control both the initial stiffness and yield displacement, it is convenient to define tri-linear type

hysteresis.

For the steel spring, the maximum-oriented model is adopted for the hysteresis before yielding, and the

tri-linear model is adopted after yielding as shown in Figure 3-2-8.

(a) before yielding point (b) after yielding point
s fy
v sf J I - EA
k(l) — 1 1
: P,
s d y

Figure 3-2-8 Normal tri-linear model for steel spring

The hysteresis of steel spring has the degradation point at the forces, v Sfy and ¢Sfy, where v and ¢
are the arbitrary parameters (V <L g< 1). The STERA_3D Program adopts the values as:

v=1/3, ¢=0.5 (3-2-38)

Then, the yield deformation, | d;, may be obtained by Equations (3-2-24) and (3-2-10) considering the

reduction factor .

"X
d, = 7%, (3-2-39)
y Ny +2,f,
+7
2.f, +2.1,
. [ 1 1My
= ——— |2 3-2-40
it 32-40)
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The hysteresis of concrete spring is also defined as tri-linear hysteresis model as shown in Figure 3-2-9.
After compression yielding, strength degradation is considered by reducing the strength of the target point

in reloading stage.

dc

fc

fy

(a) hysteresis rule after compression crack point

dc

(c) strength degradation rule

Figure 3-2-3 Tri-linear hysteresis model for concrete spring
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3.3 Wall

a) Section properties

t
é : . .« . .% D) #—0—0—0—>f( I : :

y
I R S : Width of wall,
t : Depth of wall,
Cl,C2 : Side columns,
Ay : Area of rebars in a wall panel

Figure 3-3-1 Wall Section

Area of section to calculate axial deformation

Ay = Ao + Ay, +tl, +(ng —1)a,) (3-3-1)
where,

A, cl» A, c2 : Area of section of side columns for axial deformation

nge =E,/E, : Ratio of Young’s modulus between steel (Es) and concrete (E;)

Area of section to calculate shear deformation

Ag =Ag + A, +tl, Ik, k=12 (3-3-2)

where,

A A : Area of section of side columns for shear deformation

Moment of inertia around the center of the section

2 2
[, t° | I
L=l +1l,c +_le2 + Ay %1 + Ay e %1 (3-3-3)
where,
| yCls | y.C2 : Moment of inertia of side columns
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b) Nonlinear bending spring
To consider nonlinear interaction among M, — M y N, , the nonlinear bending spring at the member
end is constructed from the nonlinear vertical springs arranged in the member section as shown in Figure

3-3-2.

y

Figure 3-3-2 Nonlinear bending springs

Displacement of the i-th nonlinear axial spring is,

& =&y + %Py, in a wall panel
& =6, —YiP,y + Xi¢yc in a side column 1 (3-3-4)
& =&, Vi + Xi¢yC in a side column 2
N 'ZC 4 gZC
M 'yc ’ ¢yc

Figure 3-3-3 Equilibrium condition in the wall panel direction
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In the wall panel direction, all vertical springs in the nonlinear section are assumed to work against the

moment and the axial force. The equilibrium conditions are,
Nc N1 N2
hA'YC:::E:kigiXi4—:E:kigixi4—:E:kigixi
i i i
Nc NI N2
= zkl (gzc + Xi¢yc)xi + Zk| (gzc - yi¢x1 + Xi¢yc)xi + Zk| (gzc - yi¢x2 + Xi¢yc)xi
i i i
Dy

Nc+N1+N?2 N1 N2 Nc+N1+N2 ¢
[ S =Sy ~Skony, zkixi} ¢“
i i i i X2

SZC

(3-3-5)
Nc N1 N 2
N', = Z K& +Z K&, +Z K&
Nc | | N1 | N2
= z ki(‘c"zc + Xi¢yc) + z ki(‘c"zc - yi¢xl + Xi¢yc)+ Z ki(gzc - yi¢x2 + Xi¢yc)
¢yc
Nc+NI1+N 2 N1 N2 Nc+NI+N2 ¢Xl
:{ Zkixi _Zkiyi _Zkiyi Zki}¢

X2
&

zC

(3-3-6)
where, NC, N1 and N2 are the number of vertical springs in a wall panel, side column 1 and side column 2,

respectively.

ﬂ M'xz ’ ¢x2

side column 1 side column 2

Figure 3-3-4 Equilibrium condition in the out of wall direction
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In the out of wall direction, we establish the equilibrium condition for each side column independently. The

equilibrium condition for the side column 1 is,

NI
M, = _Z kigi Y,

= _Z ki (gzc - yi¢x1 + Xi¢yc)yi

N1 N1
=|:_Zkixiyi Z‘,kiYi2

Also, for the side column 2,

N2
M',, = _Zkigi Yi

Py
AL ¢x1

0 - k..
2 'y'} "

820

= _Z ki (gzc - yi¢x1 + Xi¢yc)yi

Py

={—sz“kixiyi 0 I\lzzlkiYi2 _ikiyij| ZXI

In a matrix form

[ Nc+NI1+N2
2
D kix;
i

N 1 "
© NCANLEN 2
Z ki X;
L i
Therefore
¢yc M 'yc

Py =[kp]‘1 I\l\::xl =[fp M’y

¢X2 X2
& N'

ZC zC

For both ends

ye N1
M' _Zkixiyi

M'Xz _szlkixiyi

820

N1 N2
_zkixiyi _Zkixiyi

N1
D ky? 0
i N2
0 D k!
N1 iNz
_Zkiyi _Zkiyi

M’
MV
Nl

zC

X2

(3-3-7)

(3-3-8)

Nc+N1+N2 ]

Zkixi

N1 ¢yc ¢yc
- Z ki Yi ¢xl

NS :[k ¢X1

¢ "l

— k.v. X2 X2
D ki g g

i
NC+NI1+N2 x

Sk

(3-3-9)

(3-3-10)
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Pyac M’y
Puni M
Dun M2
Cae | _ Upr] 0 } N'.pc (3-3-11)
bo| | O [Fal]|M.
Deen Mg
P M'se,
Eme N'.gc

For the out of wall direction, each side columns behave independently in the same way as the column
element. Therefore, we discuss here only the hysteresis model in the wall panel direction. Hysteresis model
of nonlinear bending spring is defined as the moment-rotation relationship under the symmetry loading in
Figure 3-3-5. The initial stiffness of the nonlinear spring is supposed to be infinite, however, in numerical

calculation, a large enough value is used for the stiffness.

Moment distribution

M , M M
M y y M y
2El |
, _ == = —+
U M,
,’.Eil;hk =a,k \kpzoo
o, 6, 0 ¢ ¢ 9
Elastic element Nonlinear bending spring

Figure 3-3-5 Moment — rotation relationship at bending spring
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The yield moment, M, is obtained from the equilibrium condition in Figure 3-3-6 as,

y

M, =aol, +0.5a,0,1, +0.5NI,

where,
a Total area of rebar in the side column
o, Strength of rebar in the side column
a, : Total area of vertical rebar in the wall panel
Oy Strength of rebar in the wall panel
N Axial load from the dead load

N
—
N

Figure 3-3-6 Equilibrium condition under yielding moment

The crack moment, M _ is assumed to be,

C

M, =0.3M,

The tangential stiffness at the yield point, ky , is obtained from the following equation,:

k = 0.2K,
The yield rotation of the nonlinear bending beam, ¢y , 1s then obtained from,
1 M
e e
a, K,

where, the stiffness degradation factor, « v is assumed as,

a, =0.02

(3-3-12)

(3-3-13)

(3-3-14)

(3-3-15)

(3-3-16)
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¢) Nonlinear vertical springs

The nonlinear bending spring is constructed from the nonlinear vertical springs arranged in the member

section as shown in Figure 3-3-6. This model is based on the concept of “Multi-spring model” and

modified for the wall element by Saito et.al. The vertical springs in the side columns are determined

independently in the same way as the Multi-spring models of columns. The wall panel section is devided in

5 areas, and a steel springs and a concrete spring are arranged at the center of each area.

[ L } . hdld |
————» X
» [ » [
v
y
(a) Original column section
1 2 6 7
©.® ©i®
~5.0% ® X ® =010
® 11 12 1 14 15 © @
3 4 8 9
(O Concrete spring
® Steel spring
(b) Multi-spring model
f (tension) (tension)
S y ......
(compression) (compression)

(c) Hysteresis of steel spring

(d) Hysteresis of concrete spring

Figure 3-3-7 Nonlinear vertical springs

94



Strength of steel spring in wall panel

The strength of the steel spring in the wall panel is one-fifth of total strength of rebars in the section,

= aW:“"f (3-3-17)
where,

a, Total area of vertical rebar in the wall panel

Oy : Strength of rebar in the wall panel

Strength of concrete spring in wall panel

The strength of the concrete spring in the wall panel is one-fifth of total strength of concrete in the section,

0.85 Ap Opg
cly = —5 (3-3-18)
where,
Ap : Total area of wall panel section
Og : Compression strength of concrete

Yield displacement of vertical spring in wall panel
The yield displacements of steel and concrete springs in the wall panel are assumed to be the same as those

of the springs in the side columns.

d) Nonlinear shear spring
There are three nonlinear shear springs in x direction in wall panel and y direction in side columns.

Hysteresis model of the nonlinear shear springs is the same as that in the beam element in Figure 3-1-4.

Yield shear force

The yield shear force, Qy is calculated as,

0.23

where,
P : Tensile reinforcement ratio
Og : Compression strength of concrete
M/(QD) : = Shear span-to-depth ratio (=1/(2D) )
P, : Shear reinforcement ratio
Oy : Strength of shear reinforcement
o, : Axial stress of the column
j : Distance between the centers of stress in the section (= (7 / 8)d ).
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Crack shear force

The crack shear force is, Qc , 1s assumed as,

Q.

Ultimate shear force

Q

3

The crack shear force is, Qu , 1s assumed as,

Q,

Crack shear deformation

=Q,

The crack shear deformation is obtained as,

e

Yield shear displacement

_Q
GA

The yield shear deformation is assumed as,

Yy

_
250

Ultimate shear displacement

The ultimate shear deformation is assumed as,

Yu

_ L
100

Qyi

Figure 3-3-8 Nonlinear shear springs in the wall

(3-3-20)

(3-3-21)

(3-3-22)

(3-3-23)

(3-3-24)
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e) Modification of initial stiffness of nonlinear springs

The same modification can be done for the nonlinear springs of wall element as described for those of
beam and column elements by reducing the initial stiffness of the nonlinear spring and increasing the

stiffness of the elastic element as shown in the following figure:

Moment distribution

M , M M
S 0 —
My ’/ My
2El
M, (/< Ko =_|_ - + M,
/?Qk ZOZyk kK ix o0

~ Ko
¢c ¢y ¢

6. 6, 0
Elastic element Nonlinear bending spring
Increase @ Reduce @
stiffness stiffness
M M
/I M y
v
M.
¢ 9 ¢
Elastic element Nonlinear bending spring

Figure 3-3-9 Modification of moment — rotation relationship
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Introducint the concept of “plastic zones”, the initial stiffness of the i-th multi-spring can be expressed as,
i E/A
i _ =i

Ki=—%

P,

(3-3-25)
where E; : the material young’s modulus, A; : the spring governed area, and p, : the length of assumed
plastic zone. When P, — 0, it represents the infinite stiffness for rigid condition.

In the same manner of beam and column elements, introducing the flexibility reduction factors,
Yo (< O), 71 (< 0), Vs (< O), the flexibility matrix of the elastic element is,

-, . _
7‘3E|C 6El,
Il
72361,
LU
"'3EI, T 6EI
Il
[ ] 7 (3-3-26)
3EI
o
"'3E1, T 6El
IV
sym.
y %238,
Il
I Yo EA, |
Il

Also, adopting P, =

— as discussed for beam and column elements, the reduction factors will be:

n=r,=07, y,=08

(3-3-27)
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3.4 Wall Panel

a) Section properties

wl
IW
IW2
t
T ! x T
. . . . : . . . . . -O—.—O—O—». . . . .
PR I PR
v
y
S R : Width of wall,
t : Depth of wall,
Ay : Area of rebars in a wall panel

Figure 3-4-1 Wall Section

Area of section to calculate axial deformation

A, =tl, +(n. —1Xa,) (3-4-1)
where,

nge =E,/E, : Ratio of Young’s modulus between steel (Es) and concrete (E;)
Area of section to calculate shear deformation

A =tl,/x, k=12 (3-4-2)

where,

A A, : Area of section of side columns for shear deformation

Moment of inertia around the center of the section

[ &
|, =2 3-4-3
V=0 (3-4-3)
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b) Nonlinear bending spring
To consider nonlinear interaction among M, — M y N, , the nonlinear bending spring at the member
end is constructed from the nonlinear vertical springs arranged in the member section as shown in Figure

3-3-2.

gZC gi §
=

/. V4 # X
X 7
y
Figure 3-4-2 Nonlinear bending springs
Displacement of the i-th nonlinear axial spring is,
gi = gzc + Xi¢yc (3'4'4)

wc > ¥ze

M 'yc > ¢yc

Figure 3-4-3 Equilibrium condition in the wall panel direction

In the wall panel direction, all vertical springs in the nonlinear section are assumed to work against the

moment and the axial force. The equilibrium conditions are,
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M 'yc = ikigi Xj = iki (gzc + Xi¢yc)xi = {i kiXi2 ikixi}{fyc} (3-4-5)

zC

N', = ikigi = iki (&, + Xi¢yc) = {i K; X; iki}{fw} (3-4-6)

zC

where, Nc, is the number of vertical springs in a wall panel.

In a matrix form

Nc Nc
2
M| | 2R 2R g,
N' | Nc Nc _[kp (3'4'7)
zc zkixi Zkl gzc gzc

Therefore

¢y " M M

ol _ [k el _[f ye 3-4-8

{gzc [ D] N'zc [ P N'zc ( )
For both ends

¢yAc M 'yAc

f 0 N'

‘9zAc — |:|: pA] j| 'zAc (3_4_9)

¢yBc 0 [f pB ] M yBc

EBe N

Hysteresis model of nonlinear bending spring is defined as the moment-rotation relationship under the
symmetry loading in Figure 3-4-5. The initial stiffness of the nonlinear spring is supposed to be infinite,

however, in numerical calculation, a large enough value is used for the stiffness.
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Moment distribution

M , M M
M, / M,
2E|
, _ == = —+
M J ( ,/ ko - | M .
,’?Qk =a,k \kpzoo
6, 60, 6 ¢ 9 ¢
Elastic element Nonlinear bending spring

Figure 3-4-5 Moment — rotation relationship at bending spring

The yield moment, M is obtained from the equilibrium condition in Figure 3-4-6 as,

y

M, =0.5a,0,1, +0.5NI, (3-4-10)
where,

a Total area of rebar in the side column

a, Total area of vertical rebar in the wall panel

Oy Strength of rebar in the wall panel

N Axial load from the dead load
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N
—
N

Figure 3-4-6 Equilibrium condition under yielding moment

The crack moment, M is assumed to be,

M, =0.3M,

The tangential stiffness at the yield point, ky , is obtained from the following equation,:
k = 0.2K,
The yield rotation of the nonlinear bending beam, ¢y , 1s then obtained from,
1 M
ol i
a, 0

where, the stiffness degradation factor, « v is assumed as,

a, =0.02

(3-4-13)

(3-4-14)

(3-4-15)

(3-4-16)
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¢) Nonlinear vertical springs

The nonlinear bending spring is constructed from the nonlinear vertical springs arranged in the member
section as shown in Figure 3-3-6. This model is based on the concept of “Multi-spring model” and
modified for the wall element by Saito et.al. The vertical springs in the side columns are determined
independently in the same way as the Multi-spring models of columns. The wall panel section is devided in

5 areas, and a steel springs and a concrete spring are arranged at the center of each area.

wl
IW
Iw2
L ————— x L
v
y

(a) Original column section

O] ® X  ®
1 2 3 4 5
y (O Concrete spring
® Steel spring
(b) Multi-spring model
f (tension) (tension)

(compression) (compression)
(c) Hysteresis of steel spring (d) Hysteresis of concrete spring

Figure 3-4-7 Nonlinear vertical springs
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Strength of steel spring in wall panel

The strength of the steel spring in the wall panel is one-fifth of total strength of rebars in the section,

= aW;TWY (3-4-17)
where,

a, Total area of vertical rebar in the wall panel

Oy : Strength of rebar in the wall panel

Strength of concrete spring in wall panel

The strength of the concrete spring in the wall panel is one-fifth of total strength of concrete in the section,

0.85 Ap Opg
cly = —5 (3-4-18)
where,
Ap : Total area of wall panel section
Og : Compression strength of concrete

Yield displacement of vertical spring in wall panel
The yield displacements of steel and concrete springs in the wall panel are assumed to be the same as those

of the springs in the side columns.

d) Nonlinear shear spring
There is a nonlinear shear spring in x direction in wall panel. Hysteresis model of the nonlinear shear

springs is the same as that in the beam element in Figure 3-1-4.

Yield shear force

The yield shear force, Qy is calculated as,

0.23

where,
P : Tensile reinforcement ratio
Og : Compression strength of concrete
M/(QD) : = Shear span-to-depth ratio (=1/(2D) )
P. : Shear reinforcement ratio
Oy : Strength of shear reinforcement
o, : Axial stress of the column
J : Distance between the centers of stress in the section (= (7 / 8)d ).
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Crack shear force

The crack shear force is, QC , 1s assumed as,

Q,

Ultimate shear force

Q

3

The crack shear force is, Qu , 1s assumed as,

Q,

Crack shear deformation

=Q,

The crack shear deformation is obtained as,

e

Yield shear displacement

_Q
GA

The yield shear deformation is assumed as,

Yy

_
250

Ultimate shear displacement

The ultimate shear deformation is assumed as,

Yu

_ L
100

«—

- Qxc

Figure 3-4-8 Nonlinear shear springs in the wall

(3-3-20)

(3-3-21)

(3-3-22)

(3-3-23)

(3-3-24)
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e) Modification of initial stiffness of nonlinear springs

The same modification can be done for the nonlinear springs of wall element as described for those of
beam and column elements by reducing the initial stiffness of the nonlinear spring and increasing the

stiffness of the elastic element as shown in the following figure:

Moment distribution

M , M M
S 0 —
My ’/ My
2El
M, (/< Ko =_|_ - + M,
/?Qk ZOCyk k ix o0

~ Ko
¢c ¢y ¢

6. 6, 0
Elastic element Nonlinear bending spring
Increase @ Reduce @
stiffness stiffness
M M
/ M,
v
M.
¢ 9 ¢
Elastic element Nonlinear bending spring

Figure 3-3-9 Modification of moment — rotation relationship
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Introducint the concept of “plastic zones”, the initial stiffness of the i-th multi-spring can be expressed as,
ki _ Ei AI
= ——
P,

where E; : the material young’s modulus, A; : the spring governed area, and p, : the length of assumed

(3-4-25)

plastic zone. When P, — 0, it represents the infinite stiffness for rigid condition.
In the same manner of beam and column elements, introducing the flexibility reduction factors,

Yo (< 0), 71 (< 0), Vs (< O), the flexibility matrix of the elastic element is,

o I
"3BT 6EI

I'
1= L 3-4-26
[ WP] 72 3EI ( )
Il

sym. 7o E

Also, adopting P, = E as discussed for beam and column elements, the reduction factors will be:

v, =7,=07, y,=038 (3-4-27)
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3.5 External Spring

sz’gv

]

£

Figure 3-5-1 Element model for external spring

z

a) Nonlinear vertical spring

In STERA 3D, the external spring is attached at the base of the building to express the stiffness and
strength of the foundation of the building. In such a case, hysteresis model of the nonlinear vertical spring
is defined as the axial force — displacement relationship as shown in Figure 3-5-2; where, bilinear skeleton
is defined only in compression side, and the spring has zero stiffness in the tension side assuming that the

building detaches from the ground.

N',
(tension)
;e d y S ,
L ...... —f,
P i
(compression)

Figure 3-5-2 Hysteresis model of the external spring

Initial stiffness

The initial stiffness of the vertical stiffness can be obtained from the following equation:

k, =a A (3-5-1)
where,

ap : Dynamic ground coefficient (kN/m?)

A : Area of foundation under column or wall element (mz)

109



3.6 Base Isolation
The element model of base isolation consists of shear springs arranged in x-y plane changing its direction

with equal angle interval as shown in Figure 3-5-1. This model is called MSS (Multi-Shear Spring) model

developed by Wada et al.

X o—>X 0, U,
/'
= %
i > X
° |
y

Figure 3-6-1 Element model of base isolation

a) Nonlinear shear spring

The hysteresis model of each nonlinear shear spring is defined as a bi-linear model as shown in Figure

3-6-2. The force and displacement vectors of i-th shear spring are expressed as,

Qi | cos o, 361
0| =] sing, [* (3-6-1)

uX
u; :[cos9i sin 6, ]{u } (3-6-2)

y

From the relationship, ¢, = K;U,, the constitutive equation of i-th shear spring is,

. 0. u 2 0. sing. ||u
Qi x K Cf)S , [cos 0. sin <9i] x| _| cos é, cos‘lesln 0. X (3-63)
iy sin 6, u, cos 6, sin 6, sin” 6, uy

Figure 3-6-2 Hysteresis model of the shear spring
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From the sum of all nonlinear shear springs in the element, the constitutive equation of the base isolation

element is,

Q N cos’d,  cos@ sind |||U
=l 2k 5 R (3-6-4)
Q, i1 | cosd, sind, sin” 6, u,
where, N is the number of shear springs in an element. In STERA 3D, N=6 is selected.

First and second stiffness

We assume that all nonlinear shear springs in an element have the same stiffness and strength. The initial
stiffness of the base isolation element, K, , is obtained from Equation (3-6-4) by substituting

u,=Lu,=0.

N
K, = (z cos’ 0, jko (3-6-5)

Therefore, the initial stiffness of each shear spring is,

K
Ky =——— (3-6-6)
Z cos’ 6
i=1
The same relationship is established for the second stiffness after yielding,
K y
ky (3-6-7)

-~
D cos’ 6,
i=1

where, Ky and ky are the second stiffness after yielding for the base isolation element and the

nonlinear shear spring, respectively.

Yield shear force
The yield shear force of the base isolation element, Qy , is obtained assuming that all the nonlinear shear
springs reach their yielding points except the spring perpendicular to the loading direction, and the increase

of the force after yielding is negligible (Figure 3-6-3). That is,

Q, = (ilcosé’iljfy (3-6-8)
i=1

Therefore, the yield shear force of each shear spring is,
9
- N

Z |cos 0. |

i=1

f

, (3-6-9)
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Figure 3-6-3 Assumption of yield shear force
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3.7 Masonry Wall

Figure 3-7-1 Element model for masonry wall

a) Nonlinear shear spring

Hysteresis model of the nonlinear shear spring is defined as the poly-linear slip model as shown in Figure

3-7-2.

ol
Q. ° L y

Ve 7y Y4 y

Figure 3-7-2 Hysteresis model of the nonlinear shear spring

The characteristic values, QC,Qy, Q, are obtained based on the formulation described in the reference

(Paulay and Priestley, 1992).

The procedure to obtain the shear strength is shown below:

113



(1) Compression strength of masonry prism

The compression strength of the masonry prism ( f',, ) is determined by the following equation (Paulay and

Priestley, 1992),

fly (Fyaf ')

‘= — (3-7-1)
" U u ( f th +of cb )
j
a= 3-7-2
4.1h, ( )
where,
'y : Compressive strength of the brick
'y : Tensile strength of the brick (= 0.1 ')
f ' : Compressive strength of the mortar
Mortar joint thickness
h, : Height of masonry unit
U, Stress non-uniformity coefficient (=1.5)
(2) Shear strength by sliding shear failure
There are two types of shear failure; one is sliding shear failure which is determined by,
tl
= 0m (3-7-3)
(1— utan @)
where,
7, : Cohesive capacity of the mortar beds (=0.04 f', ) (Paulay and Priestly, 1992)
7] : Sliding friction coefficient along the bed joint
#=0.654+0.000515f"; (Chen et.al, 2003)
o : Angle subtended by diagonal strut to horizontal plane
(3) Shear strength by diagonal compression failure
V, =Ztf ', cos@ (3-7-4)

where,
Z : Equivalent strut width
Z =0.25d,,d, is diagonal length (Paulay and Priestley, 1992)

t : Thickness of masonry wall
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(4) Characteristic values of nonlinear skeleton

The shear resistance, Q,, is calculated to be the minimum value between the shear strength by sliding

shear failure, V; ,and the shear strength of diagonal compression failure, V_, that is,

Q, =min(V,.V,) (3-7-5)

The shear displacement at the maximum resistance, Vys is obtained as (Madan et al.,1997),

'
:gmdm

3-7-6
7y cosd ( )
where,

E'm : Compression strain at the maximum compression stress

(&', =0.0018, Hossein and Kabeyasawa, 2004)
Initial elastic stiffness is assumed as (Madan et al., 1997)
k, = 2Q, 7y, (3-7-7)
From Figure 3-7-2, the shear resistance at crack, Q,, is obtained as,
Q, —akyy

Q="""""" (3-7-8)

l-a
where, « is the stiffness ratio of the second stiffness and assumed to be 0.2.
Shear displacement at crack is then obtained as,
Ve :Qc /kO (3-7-9)

Shear resistance and displacement at the ultimate stage are assumed as (Hossein & Kabeyasawa, 2004)
Q, =0.3Q, (3-7-10)
7y =3.5(0.01h;, —7,) (3-7-11)

where, h,, is the height of masonry wall.
References:

1) T. Pauley, M.J.N. Priestley, 1992, Seismic Design of Reinforced Concrete and Masonry building, JOHN
WILEY & SONS, INC.

2) Hossein Mostafaei, Toshimi Kabeyasawa, 2004, Effect of Infill Walls on the Seismic Response of
Reinforced Concrete Buildings Subjected to the 2003 Bam Earthquake Strong Motion : A Case Study of
Bam Telephone Centre, Bulletin Earthquake Research Institute, The university of Tokyo

3) A. Madan,A.M. Reinhorn, ,J. B. Mandar, R.E. Valles, 1997, Modeling of Masonry Infill Panels for
Structural Analysis, Journal of Structural Division, ASCE, Vol.114, No.8, pp.1827-1849
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b) Vertical springs

For the moment, the vertical springs of the element model in Figure 3-7-1 are assumed to be elastic springs.

N',, =k,e',, N',,=Kk,&',, (3-7-12)
k,=E,l,)/2 (3-7-13)
where,

E, Modulus of elasticity of masonry prism (=550 f',,, FEMA 356, 2000)

t : Thickness of masonry wall

I, Width of masonry wall

116



3.8 Passive Damper

a) Hysteresis damper

Hysteresis damper is modeled as a shear spring as shown in Figure 3-8-1.

e wl,

| |

Xc XC

Al ; A2| 1
A
|

Figure 3-8-1 Element model for passive damper

Three types of hysteresis model are prepared for the force-deformation relationship of the spring.

g; a; a;

(a) Bi-linear (b) Normal-trilinear (¢) Degrading-trilinear

Figure 3-8-2 Hysteresis model of the shear spring
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b) Viscous damper

Viscous damper is modeled as a shear spring as shown in Figure 3-8-3.

e wl,

e
Al L‘” > 1

A

Figure 3-8-3 Element model for passive damper

(1) Algorithm for oil damper devise

Figure 3-8-4 shows the Maxwell model with an elastic spring with stiffness, K,, and a dashpot with

damping coefficient, C.

Ky c —
o I o Fij, Uj
Node i Node j
Fky Uk FC! u.
Figure 3-8-4 Maxwell model
Since the elastic spring and the dashpot are connected in a series,
Fo=F=F (3-8-1)

where, F, : force of the elastic spring
F. : force of the dashpot

F; : force between i-j nodes

118



The force of the elastic spring, Fk , 1s obtained as,
Fe = Kguy = Kq (U —u;)
where, u, : relative displacement of the elastic spring
U, : relative displacement of the dashpot

Uj; : relative displacement between i-j nodes

For an oil damper, the force-velocity relationship of the dashpot is defined as shown in Figure 3-8-5.

Fe

~

relief point

Qe |-==—"

Ci

Figure 3-8-5 Dashpot element
The force of the dashpot after the relief point is,
F.=C,u. +Q.

Substituting Equations (3-8-2) and (3-8-3) into (3-8-1)
Kd (uij - uc) = Czuc + Qc

When the time interval At is small enough, the velocity at time t can be expressed as,

Au (V)
At
Au (1) =u (t) —u (t—At)

u.(t) =

Substituting above equations into Equation (3-8-4),

Kg (U (0 —ug (t-AD))-Q,
&+ Ky
At

Auc 1=

The algorithm to obtain the force F;(t) from uj(t) is as follows:
1) Evaluate Au(t) from Equation (3-8-7)
2) Evaluate U, (t) from Equation (3-8-6)
3) Evaluate Fy(t) from Equation (3-8-2)

w

Ue

(3-8-2)

(3-8-3)

(3-8-4)

(3-8-5)

(3-8-6)

(3-8-7)
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Before the relief point of the dashpot, Equation (3-8-7) will be obtained by changing C, - C,, Q. =0

as

Kq (uij (t) —u (t- At))
C,
2E4—Kd

Aug(t) =

(3-8-8)

When the velocity of the dashpot is over the negative relief point, Equation (3-8-7) will be obtained by
changing Q. - —Q,,
Kg (uy () —us(t-At))+Q,

AU, (t) = (3-8-9)
C,
—+ K4
At
In case there is no elastic spring,
c —
F..’ Ui
e I 0O ijs Yij
Node i i
FC! u [
Figure 3-8-6 Dashpot element without elastic spring
u; (M) =u, (1)
I:uj = Fc = Czuc +Qc
] AU (T AU (T
Uc(t): c(): 'J()
At At
Therefore,
Auy (t)
F; () =C, +Q, (3-8-10)
At
Before the relief point of the dashpot,
Auy (1)
_ j
F, () =C, A (3-8-11)
When the velocity of the dashpot is over the negative relief point,
Au; (1)
F () =C, “n Q. (3-8-12)
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(2) Algorithm for viscous damper devise

Figure 3-8-7 shows the Maxwell model with an elastic spring with stiffness, K, and a dashpot with

damping coefficient, C.

Ky C —
Fij, Ui
e I 0O ij» Ui
Node i Node |
Fkv uk FC! uc
Figure 3-8-7 Maxwell model
Since the elastic spring and the dashpot are connected in a series,
Fo=F =F; (3-8-13)
where, F. : force of the elastic spring
F, : force of the dashpot
F; : force between i-j nodes
The force of the elastic spring, F,, is obtained as,
Fo = Kqu, = Kg (U —up) (3-8-14)

where, u, : relative displacement of the elastic spring
U, : relative displacement of the dashpot

Uj; : relative displacement between i-j nodes

For a viscous damper, the force-velocity relationship of the dashpot is defined as shown in Figure 3-8-8,

Figure 3-8-8 Dashpot element

That is,
F. =Csgn(u, (1)), ()" (3-8-15)
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From Equations (3-8-13) and (3-8-14)
F;; ()

d

+Uc () =uj (1) (3-8-16)
Taking time differential and substituting Equation (3-8-15) give
. ‘F (t)‘ e
F. (t .
F®, sen(F, (t){—” J 1, (1) (3-8-17)

The numerical integration method, Runge-Kutta Method, can be used to solve the Equation (3-8-17).

In general, the solution of the differential equation, Y(t)= f(y,t), is obtained by Rungu-Kuttta Method as

follows:
Ynir = Yn "'%(ko +2k; +2k, + k3) (3-8-18)

Ko = F(y,,t,)At

K, =f(y, +k,/2,t, + At/ 2)At
k, = f(y, +k /2,t, + At/ 2)At
ky = f(y, +K,,t, + At)At

Equation (3-8-17) can be written as

‘F (t)‘ 1/a
Fy ()= ui,-<t)—sgn(Fi,-(t){ "C J K, (3-8-19)

Applying Runge-Kutta Method gives the following algorithm,

1
Fij (tn+l) = Fij (tn) + g(ko (tn ) + 2k1 (tn) + 2k2 (tn ) + k3 (tn )) (3'8'20)

e
Fi(t
ko =| U (tn)_sgn(Fij (tn){mj KqAt

C

/e
. |Fyt) +k, /2]
K, =| Uy (t, +At/2)—sgn(Fy t,) +k, /2] ———T| K At

C

Ky =| Uy (t, +At/2) —sgn(Fy (t,) +k, /2

e
Fi(t,)+k /2
%] K, At

1a
Fi(t,)+k
ky = Uy (¢, + At —sgn(Fy (t,) + kz{‘J(C—)Z‘J
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In this algorithm, it is assumed as,
Uij (t,)+ l.'lij (t, +At)
2

Uy (t, +At/2)= (3-8-21)
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4, Freedom Vector

4.1 Node freedom

Each node has six degrees of freedom and the freedom number is defined as shown in Figure 4-1-1.

Z 3 7.
A
6 1
X 1 Vi) > X
4
5 S 8
» »
Y Y Y
2
(a) lateral and rotational displacement (b) shear deformation of connection

Figure 4-1-1 Global coordinate

4.2 Freedom vector

The freedom vector is defined to indicate the number of all freedoms of the structure, where the restrained
freedom is set to be zero. For the structure in Figure 4-2-1, the freedom vector has zero components for the
fixed nodes (Nodes 1-4) and eight components for other nodes (Nodes 5-8). Therefore, the total number of

freedom of the structure is 8x4 = 32.
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5 6
7 8
17 W
1 2
/Za
3 4
/Za /zZa

V) shear deformation of connection

Figure 4-2-1 Example of the freedom vector
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4.3 Dependent freedom
(1) Rigid floor assumption
In the default setting, the floor diaphragm is assumed to be rigid for the in-plane deformation. Therefore,

the in-plane freedoms at the nodes in a floor are represented by the freedoms at the center of gravity of the
same floor.

6
/\5_,1 5,8@@04,7

(a) In-place freedoms (b) Out-of-plane freedoms

2

Figure 4-3-1 In-plane and out-of-plane freedom

For example, the in-plane freedoms at the node, A, in Figure 4-3-2 are expressed by the in-plane freedoms
at the center of gravity, G, as follows:

Uya 10 IyA Uy
Uar=10 1 —L,}ue (4-3-1)
0,, 0 0 1 |6,

G: center of gravity

G >
IxA

la

A ezA

u
yA
Figure 4-3-2 Rigid floor assumption

For the structure in Figure 4-3-2, in addition to the original nodes, a new node for the center of gravity is
added to the each floor. Also, the freedom vector has zero components for the in-plane freedoms at the

nodes except the center of gravity. Therefore, the total number of freedom is 23.
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Node 1-5

Node 6

Node 7

OOHOCOXWIHO DU OWNHO OO - O

Node 8 12 77 )

Node 9 %g VAL

20 \/) shear deformation of connection

Node 10

2
0
0

Freedom vector

Figure 4-3-2 Example of the freedom vector with rigid floor assumption
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(2) Including wall element

The wall element model has rigid beams at the top and bottom of the wall, therefore, as shown in Figure

4-3-3, the rotation angles in the wall panel plane, Hyl and & are dependent to the vertical

y2
displacements, &,, and J,,. Also, the horizontal displacement in the wall panel plane, U,,, is

dependent to the displacement, U, . The connection is assumed to be rigid.

0

y2
4
A

0,

y 0. =60 = 522 _521
b yl = Yy2 — W

521 U 522
................ x1 uxz uxl = ux2
- . ’ - " :
w

Figure 4-3-3 Relationship between node displacements for a wall element (X-wall)

In a matrix form;

U, 1 0 0 [|ug,
0,r=|0 -1l/w 1/wikd, (4-3-2)
0,, 0 -1/w 1/w||o,,

In case of Y-direction wall, the relationship can be written as;

1 0 0 |{uy,
exl =10 /w -1/w é‘zl (4'3'3)
0, [0 uw -1wl|s,

Figure 4-3-4 Relationship between node displacements for a wall element (Y-wall)
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For example, for the structure in Figure 4-3-4, the total number of freedom is 17.

0
Node 1-5 :
0
0
0
1
2
Node 6 0
0
0
0
0
0
3
Node 7 4
0
0 6 L/\ 7
0 7
8 105
0 8 9
{5 4
Node 8 g 4 @
0 1 2
5 777 77
0 3 ~ 4
10 777
Node 9 11 777
12
0
13
%g \/3 shear deformation of connection
16
0
Node 10 8
17
0
0

Freedom vector

Figure 4-3-5 Example of the freedom vector with a wall element
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(3) Series of walls

In case several walls are joined together in series, it is assumed that all walls are connected by rigid beams
at the top and bottom. Therefore, as shown in Figure 4-3-6, the rotation angles in the wall panel plane, ‘9y1
and 6, , are dependent to the vertical displacements, J,, and J,,. Also, the horizontal displacement in

the wall panel plane, U,,, is dependent to the displacement, U, . The connection is assumed to be rigid.

O
/kiﬁ

yl
A
O,
S uxl
.................. 4k
Wl
§ZN _521 N
9y129y2 :---zeyN ZT, L:kZ:Wi
=1

uxl :uxz ='”_uxN

Figure 4-3-6 Series of wall connected by a rigid beam (X-wall)

In a matrix form;

5
0, =[-1/L 1 L]{ “} (4-3-4)
O

s, =f-L/L L /L]{?l} (4-3-5)

ZN
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In case of Y-direction wall, the relationship can be written as;

exl

uylzuyz :...:uyN

Figure 4-3-7 Series of wall connected by a rigid beam (Y-wall)

In a matrix form;

0, =/ -1/ L]{?l} (4-3-6)

ZN

s, =f-L/L L /L]{?l} (4-3-7)

ZN
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(4) Transformation matrix for dependent freedom

In case of rigid floor assumption, Equation (4-3-1) expresses the relationship between dependent freedom

and independent freedom, that is;

uxA 1 O IyA uxG
we=10 1 —L, R ug
A 0 0 1 O
Dependent freedom Independent freedom

It can be arranged into the transformation matrix between the freedom vectors of all nodes;

k 7 m
1 bhgi Q) bos
Uya 0 1 =1,
O _ Ue| £
O,a Ug | /
O, e
0, 0 0 1 O,
Oy
Os| m

U _ _

Dependent freedom [T ] Independent freedom

Since the most components of the transformation matrix, [T, ], are zero, the components of [T,] are

remembered using two matrices, [N,] and [F,].

[N| ]Z 7 |-kt Q4+ Matrix for independent freedom numbers

[FI ]: 1 1|yA0 .. ; Matrix for transformation components from independent freedoms
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It will reduce the memory size dramatically.
In the same way, for the case of including wall elements, Equation (4-3-2) expresses the relationship

between dependent freedom and independent freedom, that is;

u,, 1 0 0 ||u,,
Hyl =0 -1/w 1l/w 5y1
49y2 0 -1/w 1/w 5y2
Dependent freedom Independent freedom

It can be arranged into the transformation matrix between the freedom vectors of all nodes;

p q r

Uy 0 ! )
J & - bW ) Tfw Op| p
0, -1/w ) 1/w U, | g
5y2 r

Ui _ _

Dependent freedom [T] Independent freedom

The components of two matrices, [N,] and [F,] will be;

[N, ]= jif-potO:f- : Matrix for independent freedom numbers

[FI ]: JAt—1f ML W01 Matrix for transformation components from independent freedoms
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Initial conditions of [N,] and [F,] are:

[NI ]: T o W B [FI ]: 2 T W W

4.4 Formulation of independent displacement of the element

In Figure 4-4-1 (rigid connection), the element node displacement vector of the beam element between
Node 8 and Node 9 is,

0,0 Si5 Of (4-4-1)

{UZS u29 HyB y

Those displacements correspond to the location numbers in the freedom vector as;

U U 645 6, 65 0of =45 51 47 53 43 49) (4-4-2)

Node 1-5

Node 6 33

Node 7 39

Node 8 45

S
(@]
OOV WJOOOHUIIRODOODWNHRHOOO O

Node 9 511 10 I Z

Node 10 58| 0 v

60| 15 (rigid connection)

Freedom vector

Figure 4-4-1 Example of location matrix for beam element
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From rigid floor assumption, the components of independent matrices, [N,] and [F,] will be;

43155 60 O 4311 |y8 0
45145 0 O 4511 0 O
47147 0 O 4711 0 O
[NI]= ) [FI]: (4-4-3)
49155 60 O 49 |1 |yg 0
51(51 0 O 5111 0 O
53153 0 O 53|11 0 O

From the matrix, [N,], the freedoms of (43) and (49) are replaced to the independent freedoms (55) and

(60). Therefore, the independent location numbers and freedom numbers of the beam element are:

y8 Hyg 5)(8 §x9}T

= {45 51 47 53 43 49}

= {45 51 47 53 55 60} ; independent location number
= u28 uzg 9y8 9y9 uxlO 9210}T

={5 8 7 10 11 13}"; freedom number

{uzs u29 9

(4-4-4)
The transformation from independent displacements (= global node displacements) to element node
displacements is obtained from the matrix, [F, ], as follows:

qu 1 O qu qu

uzg 1 u29 uzg

0 1 17 0

QVB - . gys =[T.s] eys (4-4-5)
y9 y9 y9

5)(8 |y8 uxlo leo

5)(9 _0 11 y9 | 0210 0210

135



The constitutive equation of the beam element and formulation of global stiffness matrix from element
stiffness matrix are shown below:

5 8 7 10 11 13

P 5_k5,5 s K7 Ksio  Ksy k5,13_ Uz
P 8 Kes Ks7 Keso  Kein  Keas || Usgg
My | kk rss | O
MyQ 10 10,10 kl(‘),u\ k10,13 0y9
Po | 11 sym. Ki111 \\‘K%l,m Usio
M. 13_ klﬁ,‘b’z\t 0,10

Element stiffness matrix :

1 2 3 45 6 7 8

T

2

3

4

3) Ks5 Ks7 K

6

7 ;o Kog

8 Ke.s

9

10

11 sym.

12

13|

‘9 10 11
5,10 k5,11

v
ks,lo 811
k10,10 k10,11
k11,11

Locate element stiffness

\ according to the freedom number

12 13

k5,13

k7,13

8,13

klO 13

kll,lS

k13,13 i

Global stiffness matrix

Figure 4-4-2 Formulation of global stiffness matrix

In general, the transformation from independent displacements (= global node displacements) to element
node displacements for the X-beam is described as Equation (2-1-10).

ul
u
= [TiXB ] :2

u

n

(2-1-10)
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And the constitutive equation of the X-beam is also described in Equation (2-1-16).

Pl ul

P. u

:2 =[K,s] ;2 (2-1-16)
Pn un

Using the same procedure in Figure 4-4-2, the element stiffness matrix is added into the global stiffness
matrix.
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5. Equation of motion

5.1 Mass matrix

In the default setting, the mass at each node is identical and equally distributed as

1
Mi = M floor (5'1'1)
floor
where, M, : mass at the node i, M, : total mass of the floor, N g, : total number of nodes in the

floor.

However, you can change the mass at each node depending on the place of the node by setting “proportion
to influence area” in Option Menu. In this case, the mass at each node is determined from the following

equation:

M, =LM

5-1-1
A (-1-D

floor
floor

where, A, : influence area of node i, Ay, : total area of the floor. Influence area of the node is different

floor

depending on the place of the node as shown in Figure 5-1-1.

1 ] R R
I
Air Mi A, M liy
Gy
< > ) Ig
k Iix MG
Ak, My
v v G : center of gravity of the floor
Y Y
(1) Influence area of the node (2) Mass and radius of gyration at G

Figure 5-1-1 Mass and radius of gyration at the node

The process to determine the mass based on influence area is as follows:
Step 1. Calculate the slab area (block with cross mark).

Step 2. The are of the block is divided equally to the corner nodes. (Figure 5-1-2.)

Step 3. If there is no corner node, the area is divided equally to the all nodes in a floor. (Figure 5-1-3)
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Figure 5-1-2. Influence area of the node (red)

Figure 5-1-3. Distribution of the rest area

Example)  Floor weight = 700kN

700kN/8 50kN+12.5
= 87.5kN 87.5kN — 62 5KN 112.5kN

87.5kN 112.5kN
87.5kN

62.5kN

87.5kN 87 5kN 62.5kN

112.5kN

87.5kN 87.5kN 62.5kN 112.5kN
(a) Same for all nodes (b) Proportional to influence area

Figure 5-1-4 Example of mass distribution
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In case of rigid floor assumption, in-plane freedoms at the nodes are dependent to the freedoms at the

center of gravity of the floor. Therefore, the mass at the center of gravity, M, is,

MG =M floor (5—1—2)
The radius of gyration at the center of gravity, lg, is obtained from the following equation:
N
o =M, (12 +12) (5-1-3)
i
where, N is the total number of the nodes at the floor. The radius of gyrations at other nodes are,
I, =0, i=1---,N (5-1-4)

The mass matrix is obtained as,

0 0
0

Uyi M, M,

uyi MI Mi

[M]_é‘zi M, — M,
9Xi || Ii (5'1'5)

eyi Ii Ii

ezi II Ii

0 .

_O O . - — -

Since the mass matrix has only diagonal components, those components are saved in one-dimension vector.

For example, the mass vector of the structure in Figure 5-1-5 will be as follows:

Mg
Node 6 0
M,
Node 7 0
M, IA
o g
Node 8 0 105
M, 8 9
0 ¥ NP
Node 9 0 1 2
M Y v
M, 3 7 4
Node 10 I /e 777

Figure 5-1-5 Example of mass vector
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5.2 Stiffness matrix

As shown in Figure 4-4-2, the global stiffness matrix [K] is formulated from element stiffness matrices

5 7 10 11 13
P 5 _ks,s ss Ksyo Kspoo Ksyo Ksps | Uz
P s Koo Keioo Kei Kgps || Ug
M ys | k7,7 \k7,11 k7,13 Hyg Example of beam element
M v9 10 10,10 Rz(‘),u\ k10,13 0y9
P.o 11 sym. Kivi \\‘KII,B Usio
M, 13 L kl;,\li’\_ ‘9z10
- «.  Locate element stiffness
Element stiffness matrix \\\\according to the freedom number
12345 6 7 8 9 10 11 12 13
T \\\\ -
2
3 “‘\
4 I“l
5 Ks s Ks;  Ksg k‘,s,m Ks.11 Ks.i3
6 v
7 G Ko o Ko
8 Ks s Ks.10 8,11 8,13
9
10 Kioso Ko Kio.i3
11 Sym kll,ll 11,13
12
13| Kisis i

Global stiffness matrix

Figure 5-2-1 Formulation of global stiffness matrix
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5.3 Damping matrix
In STERA 3D program, the damping matrix is formulated in the following way:

1) Proportional damping to initial stiffness matrix

The damping matrix is defined from the following equation:

2h
[c]==[K,] (5-3-1)
@,

where, h: damping factor, @, : circular frequency of the first natural mode, [Ko ]: the initial stiffness.

2) Proportional damping to spontaneous stiffness matrix

The damping matrix is defined from the following equation:

[c]= 2—;[*( p] (5-3-2)

where, h: damping factor, @,: circular frequency of the first natural mode, leJ: the spontaneous

stiffness changing according to the nonlinearity of structural elements.

3) Damping matrix of a base isolation building
In an actual design practice for the base isolation buildings, it is common to assume zero viscous damping

for the base isolation floor. In this case, the damping matrix is defined as:

2h
[C] = E[Kupper] (5-3-3)

where, [K J: the stiffness matrix consisted with upper structures without base isolation elements.

upper

4) Damping matrix from viscous damper devices
If there are some viscous damper devices in a structure, in addition to the proportional damping matrix, the

global damping matrix formulated from element damping matrices are considered as:

[c]=[c,.]+[c.] (5-3-4)

where, |_C pmJ: the proportional damping matrix, [Cv]: the global damping matrix formulated from

element damping matrices in the same manner of the global stiffness matrix.
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5.4 Input ground acceleration

Earthquake ground motions are defined as three components acceleration; X 0> Y0 and Z 0»inX,Yand Z

directions. The inertia forces at node 1 are defined as,

MG, +X,)

i~z

Xi 1 0 0 Xi
BN o I I O N v I
-M\6, +Z, _ 0y 3 0 01 _ 0y 3
AN ER U RO M AR T RO A S
—|i§yi 0, 00 0" [@i ’
-1.6 0 00 1%

For example, the components of the matrix [U ] of the structure in Figure 5-4-1 will be as follows:

X, Y, Z,
[0 0 1]
Node 6 0 0 O
0 0 1
Node 7 0 0 O
0 0 1 L\
00 0 6 71&)
Node8 |0 0 0 "10%
0 0 1 8 9
00 0 J7 o
Node 9 00 0 1 2
1 00 WW5 /e
01 0 3 # A
Node 10 |0 0 O] /e 777

Figure 5-4-1 Components of the matrix [U ]
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5.5 Equation of motion

Equilibrium condition of the structure under earthquake ground motion is:

[Cha}+[Kluj =M Jiuj-[MJUF Yq

[S— — 0

. /
Damping force - — _

Restoring force Inertia force

Finally the equation of motion is obtained as:
X,
M Raj+[Cha+ [Kfuj=-[MJUR ¥, ¢ = {P)

ZO

(5-5-1)

(5-5-2)
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5.6 Numerical integration method

Two numerical integration methods are prepared; one is the Newmark-f method with incremental
formulation using a step-by-step stiffness matrix, and another one is the Force correction method using a
step-by-step stiffness and a force vector together. In case it is difficult to define the step-by-step stiffness of
the element such as the case of using a viscous damper element, automatically the Force correction method

is selected.
a) Newmark-f§ method

The incremental formulation for the equation of motion of a structural system is,
[M Jiaa,j+[Clav,j+ K iad, - {af } = {ap;} (5-6-1)

where, [M], [C] and [K] are the mass, damping and stiffness matrices. {Adi}, {Avi}, {Aai} and

{Api } are the increments of the displacement, velocity, acceleration and external force vectors, that is,

ad f=1d, b-{d. ), {avii=tvi, - dag=ta, j-{a ). Apf={p.j-1p)  G-62)

{Af } is the unbalanced force vector in the previous step. Using the Newmark-3 method,

{Av,}={a, J(At)+ {Aa H(At) (5-6-3)
{Ad; } = {v, J(At)+ { HAt) + piaa, f(at) (5-6-4)
From Equation (5-6-4), we obtain

1 1 1
{Aa | = W{Adi }_M{Vi }_ﬁ{ai} (5-6-5)

Substituting Equation (5-6-4) into Equation (5-6-3) gives

{Aw}:m{mi}—i{vi}{l—ﬁj{aﬁ Kt (5:6:6)

Equations (5-6-5) and (5-6-6) are substituted into the equation of motion, Equation (5-6-2), and we obtain

1 1
) el ]

(5-6-7)
1 1 1

- e s ol ol S e o)

The equation can be rewritten as,

K |- {ad, } = {ap;) (5-6-8)

where,
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[K]:[K]+ : [C]+ 1 [M] (5-6-9)

{A@}:{Apiw(#){vi}+i{ai}j+[c{ ! {vi}+(i—1]{ai}<m>}+{m} 610

b) Force correction method

The equation of motion of a structural system is,

M Ry, j+ [Clivi., =+ {fo § = taf j+ [KKid,. - {d, ) = {Prt) (5-6-11)

where, [l\/l ], [C] and [K] are the mass, damping and stiffness matrices. {d el }, {Vn +1} and {an +1}
are the displacement, velocity and acceleration vector at time step (n+1). {fn} is the restoring force
vector corresponding to {dn }, and {Af } is the unbalanced force vector in the previous step. {Pn +1} is
the external force vector.

Using the average acceleration method,

(A} = {1t )0+ () + fan o) G-612)

o= b} 3 (2, fa D) -613)

Substituting Equations (6-2-2) and (6-2-3) into (6-2-1),
MY b+ 0] B+ b+ o A0 - o+
[K({vn at)+ L (fa, 1+ fa, })(Atrj (P}

4

(5-6-14)
Solving for {an+1 },
(L, }=[F,] (5-6-15)
where
[L1= M+ [eKat)+ <ty (5-2-16

[Fn]=—[C({vn}+%{an }(At)j—{fn}Jr{Af}—[K({vn a0)+ L fa }(At)2j+{Pn+l} (56-17)
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[M ]{an+1 }+ [C ]{Vn+1 }+ {fn+1 } = {Pn+1}

from the following Figure,

(ot = o} + [Kdn j—do ) - faf }

\ 4
~=
QD

=}
——
—_
<
=}
——
—~—
o
=}
A
——
—h
=}
ke
A
=}
[—
—_—
D-U
+
—_
——

[Ny} = [F.]
(o} = 1)+ B (0, fa Dt
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5.7 Energy
a) Equation of energy

As it was mentioned in Equation (5-5-2), the equation of motion is obtained as:
X,
M Raj+[Cha+ [Kfuj=-[MJUK ¥, ¢ = {P) (5-7-1)

ZO

For example, in case of a structure with a rigid floor in Figure 5-7-1, the displacement vector, {U}, consists

of 15 components (see RED numbers in Figure 5-7-1.)

{u}= uf (5-7-2)

p 9 4"’ 14 1; P
1 2
777 e 7777 77777
3 7 4 7
/e /e Y/ 78

Node number Freedom number

Figure 5-7-1 Example of the freedom vector of a structure with a rigid floor

The equation of energy is derived by multiplying the velocity vector, {L] }T , and integrating by the time
range [0-t]:
t

ol M Yt + [ fo)" [C Yt [ o} [ Jlde = ] fu}” {P ot 579

0
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fof' [MJuu} ['2\" Ja} i o) [CJia)at + L (Kl [2K fut _ [l (Pt (5-7-4)

W, +W, +W, =W, (5-7-5)
where,
W, = M : Kinematic energy

2

t
W, = J'{u {'[Clujdt  :Damping energy
0

W, = M . Potential energy
2
t
W, = —J‘ {L'I }T {P}dt : Input energy
0

If the system is nonlinear, the equation of motion can be expressed as:
X,

[M Jia}+[Cluj+Q(u.u)=—MJU Y, ; =P} (5-7-6)
Z,

where, Q(u, U) is the nonlinear restoring force vector. Then, the equation of energy can be derived as;

W, +W, +W, =W, (5-7-7)

where,

! Kinematic energy

t
I {U }T [C ]{u }dt : Damping energy

X (5-7-8)
j {U }T Q(u ,U )dt : Potential energy

0

W, = _.[ {u }T {p }dt : Input energy
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b) Decomposition of potential energy

We can decompose the restoring force vector into the restoring force of each member as,

Q(u,u)=q,(u,u)+q,(u,u)+---+q,(u,u) n:number of members

Therefore, the potential energy can be decomposed as,

t
W, I{u }T of (u,t])jt; potential energy of i-th member
0

(5-7-9)

(5-7-10)

(5-7-11)
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6. Nonlinear Static Push-Over Analysis

6. 1 Lateral distribution of earthquake force

The static lateral load representing the earthquake force is applied at the center of gravity in each floor.
There are several formulas to define the load distribution along the height of the building. In “STERA 3D”

program, the following distributions are prepared:

1.Ai  2.Triangular 3. Uniform 4. UBC 5. Mode

(1) Ai distribution
In the “Building Standard Law” in Japan, the design shear force of i-th story, Qi, is defined as,

0 = Ciiwj, C, =ZR A.C, (6-1-1)
j=i
where,
Ci: design shear coefficient of i-th story,
Wi weight of i-th story,
Z seismic zone factor,
R vibration characteristic factor taking into consideration of soil condition,
A; lateral distribution of shear force coefficient,
Cy: design base shear coefficient (Cp=0.2 for serviceability limit, Cy=1.0 for safety limit)

If we set, Z=1.0 (Tokyo), R=1.0 (stiff soil, a short story building), Co=1.0 (safety design), the design shear

force distribution is simplified as,

O = Aizn:w_/ (6-1-2)

“A;” distribution is defined as,

1 2T

A =1+ —-q, (6-1-3)
’ Ja, U)1+3T

where,

o, = Zn: w, / w, W= Zn: w; : the ratio of weight upper than i-th story,

J=i J=1

T: the first natural period of a building (=0.02A, A : the building height)
As shown in Figure 6-1-1, the static lateral load is obtained as,
F,=0,, F=0-0,(=1-,n-1) (6-1-4)
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] 6= Co Wi
EE | Q.= (ws+wo)

=) W3 | 0 =C Zn: Wi

=) W, C. =ZR AC,

1

F1=Q1-Q2 E> L

ﬁ Q.=C, (W1+W2+ "'+W6)

Figure 6-1-1 Ai distribution

(2) Triangular distribution

Triangular distribution is defined as:

F, = Qg[hi Zh] 615)
j=1

where,
@B °  Dbase shear force

hi: the height of the i-th story from the ground

!

0.

.

hy
I

Figure 6-1-2 Triangular distribution
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(3) Uniform distribution

Uniform distribution is defined as:

F, =0, (l/l’l)

l

1

i

|

1.

Figure 6-1-3 Uniform distribution

(4) UBC distribution

(6-1-6)

The UBC (Uniform Building Code, 1997) gives the following formula for the calculation of lateral force

distribution:
F, =(QB—Ft)(w,»hi ijh,}
=1

P 0.077TQ, ,if T >0.7sec
a 0 ,if T<0.7sec

Ft-N—b

hy
I

he

Figure 6-1-4 UBC distribution

(6-1-7)

(6-1-8)
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(4) Mode distribution

Mode distribution is defined as:

F,' = QB(Wi¢1,i/Zn:Wj¢l,jJ

where,

¢l,i :

component of the first mode distribution in the i-th story

Figure 6-1-5 Mode distribution

(6-1-9)
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6. 2 Capacity Curve

The Capacity Spectrum Method was proposed by Freeman [1978] as an approximate way to estimate the
maximum response of a structure under an earthquake ground motion. The concept was modified by
Kuramoto et.al [2000] to adopt the distribution of nonlinear story displacement as the first mode shape in

each calculation step. The method was adopted as one of the evaluation procedures in the Building

Standard Law, Japan.

The key concept of the Capacity Spectrum Method is to find out the intersection between the Demand
Spectra (= relationship between Sd (displacement spectra) and Sa (acceleration spectra)) and the Capacity

Curve (= nonlinear push-over curve of an equivalent single-degree-of-freedom system).

1400

Demand Spectra
SA-SD(h=0.05)

1200 |

1000 |

Demand Spectra
800 SA-SD(h=0.14)

Capacity Curve
600 |/ = === —

Sa (cm/sec?)

400 +

200 |

0 10 20
Sd (cm)

Figure 6-2-1 Schematic example of the concept of Capacity Spectrum Method

“STERA 3D” provides the menu in the static analysis to show the Capacity Curve based on the following

formula (Kuramoto et.al [2000]):

n
2
Zm,ﬁi
i=l1

n
2
Zmié'l.
i=1

Se=0s 7, Si=7, (6-2-1)
(; m;o, j ; m;6;

where,
m; lumped mass in the i-th story
0;: component of the distribution of nonlinear story displacement in the i-th story
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Nonlinear static push-over analysis Capacity Curve of SDOF system

Figure 8-2-2 Capacity Curve of the equivalent SDOF system

As schematically shown in Figure 8-2-2, the step-by-step results of nonlinear push-over analysis is used to

obtain the Capacity Curve of the equivalent SDOF system using Equation (8-2-1).
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7. Others
7.1 Decomposition of shear and flexural deformation
a) Equivalent plane for each floor

The equivalent plane (Z = ax + by + C )is obtained from the vertical displacement distribution by the least

square method:
Z=ax+by+c

s

il v X

Figure 7-1-1 Equivalent plane

Minimize L= Z(Zi —(ax; +by, +c))’

where, 1:node number in the floor

a, b, ¢ : parameters of equivalent plane

Ths, A _p Ly Loy
oa ob oc

Parameters, a, b, ¢ are obtained by solving the following linear equation:

zzixi lez zxiyi zxi
2nYi|= 2 2 vi|b (7-1-1)
>z, sym. n |c

where,

n: the number of nodes in a floor
b) Decomposition of shear and flexural deformation

A story drift, D, can be divided into shear and flexural components as,
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D = Dg (shear) + Dr (flexure) (7-1-2)
Assuming the distribution of floor deformation is expressed by an equivalent plane (Z = ax + by + C ), the

flexural deformation, D, can be expressed as,

Dp=-aH : x-direction (7-1-3)
Dr=bH : y-direction (7-1-4)

Note that the coefficient ‘a’ is the negative angle in x-direction.

Then, the shear deformation can be obtained as,

Ds=D -Dg (7-1-5)

1n x-direction

in y-direction

Z

Figure 7-1-2 Decomposition of shear and flexural deformation

In STERA 3D, the flexural deformation is calculated taking the average of the bottom floor angle and top

floor angle.

: x-direction (7-1-6)

Dy =—H, : y-direction (7-1-7)
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7.2 P-D effect

Following formulation is suggested in the following book:

James F. Doyle, “Static and Dynamic Analysis of Structures”, Kluwer Academic Publishers, 1991

a) Equilibrium of the beam with an axial load

We consider equilibrium of the beam with a slight displacement with an axial load.

) S 7} o M KH :
............................... ' 9 _—
........... N /:> ] -

Figure 7-2-1 Equilibrium of small beam segment slightly deformed

Assuming small deflection, the balance of moment on the small segment “Ax” gives

AM +V (Ax)-F,(Av)=0 (7-2-1)

Therefore

d—M +V —-F, ﬂ =0 (7-2-2)
dx dx

2
From the relationship, M = El o the governing differential equation for the deflection shape is
X

d*v d’v
I d7 - FO —=0 (7'2'3)

E
dx?

The general solutions are,

for compression loading (F, < 0):
V(X) =c, coskx +¢C, sinkx +c¢,x+c,, k*>=-F /El, (7-2-4)
for tensile loading (F, > 0):

V(X) = ¢, coshkx +c, sinhkx +c;x +c,, k*=F,/El (7-2-5)
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b) Geometric stiffness matrix of the beam with an axial load

We assume that the axial force is constant and compressive. From the general solution, Eq. (7-2-4),
at X=0
dv(0)

v(0)=v, =c¢, +c,, = ¢, =Kkc, +¢, (7-2-6)

Consequently, the deflected shape is
V(X) = ¢, (coskx —1)+c, (sin kx — kx) + v, + ¢,x (7-2-7)

Similarly at the end of other node,

V(L) =V, =c,(coskL —1)+c, (sinkKL —KL) +Vv, + ¢, L (7-2-8)
% = ¢, = —kc, sinkL + kc, coskL + ¢, (7-2-9)
X

Then, the coefficients, C,, C,, can be arranged as,

{(I_C) (5_5):|[C1}={V1+¢1L_V2} (7-2-10)
éS f(l—C) C, ¢1L_¢2L

where,

C =coskL, S =sinkL, &=KkL (7-2-11)

Solving this equation by Cramer’s rule gives

¢, =[v,é(1-C)+4,L(S - &C) - v,&(1-C)+ 4, L(E - )]/ A (7-2-12)
¢, =[S +gLU-C-&8)+v, S +¢,LC-D]/A (7-2-13)
where

A=¢(2-2C-¢3) (7-2-14)

Now we can rewrite the deflection function in terms of the nodal degrees of freedom. The moment and

shear force distributions can be obtained as

d’v [ 5 , . ]

M (x) = El o Ell-k"c, coskx —k“c, sin kx (7-2-15)
d’v dv

V(x) = —El ot Foaz—Elkz[Q —ke, | (7-2-16)
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Calculating nodal loads, V (0)=-V,, M(0) =-M,V (L) =V,, M(L) = M,, the stiffness matrix is

v, §’s  d(1-0) ~&’S &1-C) |V
M, :E_3I§_2 ~-L(L-8) -4@1-C) L(&-S) |4 7217
vV, | LA £’S —éL(1-C) ||V
M, sym. ~L(&-9) || 4

¢) Approximation of geometric stiffness matrix

We simplify the geometric stiffness matrix to be linear in the loading Fo.

Using the series expansion for the sine and cosine terms, the determinant is,

A=¢(2-2C-&)
cE-2(1-82 /2484 /24— 1720+ E(E—E 16+ £5 /1120 +)]  (72-18)
~ &5+ )12

also

1 12
X=?[1+§2/15+---] (7-2-19)

We now do the expansion on the stiffness terms. For example,

El 52 El 12 El
| :FX(§23)=F[§4(§—§3/6+--~)]?[1+§2/15+~-. :F12[1—§2/10+-~-]
(7-2-20)
Substituting &7 = k’L*> = -F,L/El,
El F, |12
k =—[12]+-2| -2 7-2-21
o ] L [10} ( )
In the same manner, we can expand for all the stiffness terms to get the stiffness matrix as
12 6L -12 6L 36 3L -36 3L
El 42 -6L 21° F, 42 3L -2
k]=— + (7-2-22)
L 12 -6L| 30L 36 -3L
sym. 41’ sym. 41’
We can write as
[k]=[ke ]+ [ke] (7-2-23)

where, [kE ]: the element elastic stiffness, [kG ] : the element geometric stiffness
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d) Implementation for beam element

0, T z
TA —____——‘————‘—— TB
sl 0,
Ug <
Ua
A B v
L |
| |
Figure 7-2-2 Including node movement
For beam element,
M,| 2EI|2 1|z,| EI|4L> 201°| 7,
— == ) (7-2-24)
M, L1l 2|z, L | 2L° 4L || 7q
Including node movement,
-[u
1 1 A
o] |17 1 -7 9e
{ A:|: ] : A (7-2-25)
Tg 200 —— 11tYs
L L 1 6,
. 1 1]
Q - = - u
A L L |-, ) 1 1 1 0 *
Q| LU L _Tjor a2t , 1 ]y
v _ OL lL_ L L L 0,
6L 6L 1 1 qlUa 12 6L -12 6L |u,
_Ejae 2 o Qe m a 6L 20U |9,
U|-6L -6eL|1 o 1  jug| LU 12 -6L | ug
217 4 L L Jo, sym. 41 | 6,
From (7-2-22), the geometric stiffness matrix will be
36 3L -36 3L
F 47 -3L -L?
k.|=—2 7-2-26
k] 30L 36 -3L (7-2:20
sym. 412
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e) Implementation for column element

Al
IV
Z
Al X
'™, ] 2 17, ] a2 212 |7, |
w | _ 2B " :E—! o 71 | inX-z plane (7-2-27)
(M| L [1 2)7g| L'|21° 4L° |7
M, 2 17, 42 2% |7 |
o |2 2B w | Bl 1 in Y-Z plane (7-2-28)
(Mg | L |1 2)rg] LU[20° 4L |7
Including node movement,
1 1 uxA
Tyn R I A
= ll_ Il_ y in X-Z plane (7-2-29)
Tys 0 = 1Y%=
L L _gyB_
1 1 Y
T i 7
{ XA}Z Il_ Il_ A in Y-Z plane (7-2-30)
Ty — 0 -= 1 uyB
L L "

Note that the matrix for node movement in X-Z plane is different from that of beam element. The

force-deformation relationship in X-Z plane is then,
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! 1] U

T T 1 1 XA

L L L

1 0 4L2 2L2 L 1 L 0 eyA

R I T N PN S L

L L L L Jo

0 1 e

—6L] . U 12 [Z6L] -12 [Z6L]u,
2 |~ b T 0on E 412 212 |6,
6L |_1 o L [fue| L 12 [6L |ue
412 L L L 7 sym. 47 | Oy

(7-2-31)

Considering the difference of sign of stiffness matrix in X-Z plane, the geometric stiffness matrix will be

F
N
el

I:0
30L

[kyG]:

[ 36 - 36
4L’ sl I
in X-Z plane
36
| sym. 4% |
36 3L -36 3L
4> -3L -L° )
36 in Y-Z plane
| sym. 417

(7-2-32)

(7-2-33)

Therefore, changing the order of vector component, the force-deformation relationship of column will be

Q.. U, 36 -36 -3L -3L
Q. Ug -36 36 3L 3L
M, O, -3L 3L 417 -L°
M g 0,5 -3L 3L -L* 417
Qun Uy 0 0 0 0
Qus :[K}uyB LR 0 0 0 0
M., O, 30L| 0 0 0 0
M 0, 0 0 0 0
N, S, 0 0 0 0
N g S 0 0 0 0
M., 0, 0 0 0 0
M . 0,4 0 0 0 0

0 0 0 0 0 00O
0 0 0 0 0 0 0O
0 0 0 0 0 00O
0 0 0 0 0 00O
36 -36 3L 3L 0 0 O O
-36 36 -3L -3L 0 0 0 O
3L -3L 42 -L* 0 0 0 O
3L -3L —-L* 4L 0 0 0 0
0 0 0 0 0 0 0O
0 0 0 0 0 00O
0 0 0 0 0 0 0O
0 0 0 0 0 0 0O
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uXA

uXB

O,

HVB

UyA

= [K]+[K: ] e (7-2-34)

GXA

O

O

5ZB

ezA

O

where,
36 -36 —-3L -3L 0 0 0 0 0 0 0 O]
-36 36 3L 3L 0 0 0 0 0 0 0 O
-3L 3L 4L* -L? 0 0 0 0 0 0 0O
-3L 3L -L* 4L° 0 0 0 0 0 0 0O
0 0 0 0 36 -36 3L 3L 0 0 0 O
F 0 0 0 0 -36 36 -3L -3L 0 0 0 O
[Ke]==2 ) ; (7-2-35)

30L| O 0 0 0 3L —-3L 4L -L~ 0 0 0 O
0 0 0 0 3L -3L —-L* 4L 0 0 0 O
0 0 0 0 0 0 0 0 0 0 0O
0 0 0 0 0 0 0 0 0 0 0O
0 0 0 0 0 0 0 0 0 0 0O
0 0 0 0 0 0 0 0 000 O

Then, applying translation of Equation (2-2-17), the constitutive equation of the column is;

R u,

2 u2

Cr=IKeh (7-2-36)
Pn un
where,
[Kc :[Tc ]T [kc][Tc]"'[Tic]T [KG][TiC] (7-2-37)
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7.3 Unbalance force correction

a) Procedure to correct unbalance force
In nonlinear analysis, sudden change of spring stiffness sometimes causes severe error for estimating

element force. For example, estimation of spring force f,,, is overestimated in Figure 7-2-1 and

“unbalance force” is defined as,

Af =1, —f! (7-3-1)

i+1

where, fi'+1 1s the force on the nonlinear skeleton curve

The most preferable way to minimize the error is to adopt iterative calculations such as
Newton-Raphson method. However, this iteration may consume calculation time significantly.

Therefore, the following simple way is adopted to correct unbalance force:

1) Calculate unbalance displacement Ad from the unbalance force Af

Ad = Af /k (7-3-2)

where, k is the spring stiffness

2) Subtract unbalance displacement Ad from the increment displacement in the next step

calculation

f
i+1
fi+1 """""""" | N
AT
A B ’
i |
L S Ad !
k!
: | d
di di+1

Figure 7-3-1 Unbalance force
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b) Unbalance force correction of MS model

For the Multi-spring model (MS model) of Column element, the sum of the unbalance forces of

nonlinear vertical springs in the member section is calculated as:

5 5
AN =3 Af = (Af,, +Af,,) (7-3-3)
i1 i=1
where Af .i - unbalance force of concrete spring,
Af;

The unbalance displacement is then calculated as:

* unbalance force of steel spring

5 5

AD = AN / >k =AN / > (ke; +k,;) (7-3-4)
i1 i=1

where kc,i : stiffness of concrete spring,

ks’i : stiffness of steel spring

In the next step calculation, the increment displscement of each spring is ajusted as follows:

Ad! =Ad, — AD (7-3-5)
where  Ad,: increment displacement of i-th spring

Ad! : adjusted increment displacement of i-th spring

v
o

Figure 7-3-2 Unbalance force in MS-model

The same procedure is adopted for the MS model of Wall element.
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