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ABSTRACT 
 
Civil structures always suffer many kinds of damage caused by long use, strong wind, earthquakes, 
and so on, therefore it is very important to detect the damage of structures in advance. The basic theory 
of damage is that the changes of the dynamic parameters, such as stiffnesses, of structures are caused 
by damage. So the structural parameters identification becomes a key method of damage detection. 
Based on the research of previous researchers, this thesis uses Differential Evolution (DE) and Particle 
Swarm Optimization (PSO) to identify the structural parameters. The two methods belong to 
optimization method and minimize the mean square error function of the accelerations of numerical 
model and the identified system to identify parameters. In order to confirm the efficiency and validity 
of them, a simulation with several cases is performed. The results show that both DE and PSO can 
identify structural parameters very well in simulation. 
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1. INTRODUCTION 
 

Structural parameters identification is a method that obtains the dynamics parameters of a structure 
based on physical measurements and mathematical analysis. It is an active field of research in the civil 
engineering, driven by the need of structure health monitoring (SHM). Since P. Cawley and R.D. 
Adams (1979) used natural frequency to detect damage, the technologies of structural parameters 
identification based on vibration measurements have a tremendous development. These technologies 
are currently becoming increasingly common. Hoshiya M. and Saito E. (1984) used the Extended 
Kalman Filter to identify the structural stiffnesses. Sato T. and Qi K. (1988) used H∞ filter to 
identify the structural stiffnesses. Particle filtering was also successful to identify stiffnesses by Li S et 
al (2004) and Tang H et al (2005). Differential Evolution (DE) and Particle Swarm Optimization 
(PSO) appeared in 1990s, as novel optimization algorithms, they have greater advantage than 
traditional algorithms, and which developed rapidly and were successfully applied in many fields. H. 
Tang (2007, 2008) used the both algorithms to identify masses, stiffnesses and damping ratios and 
concluded that the two methods converged fast and had high accuracy. To confirm the performances 
of the two methods, this thesis attempts to use DE and PSO to identify the stiffnesses and damping 
ratios of Multi-Degree-Of-Freedom (MDOF) system with several cases. 

 
2. BASIC THEORY OF IDENTIFICATION 
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Because most of the buildings belong to MDOF system, MDOF system should be used to discuss. The 
dynamic function of MDOF is equation (1). 

                           gMx Cx Kx Mu+ + = −&& & &&
                                (1) 

Where M is the mass matrix, K is the stiffness matrix, C is the damping matrix, x is the displacement 
vector, and gu&&  is the acceleration of earthquake. 

It can be said that the responses of MDOF system can be determined by M, K and the 

damping ratioζ , so the identification work of K and ζ  becomes to find a MDOF system whose 
outputs are the same as the identified system’s under the same M and inputs. Therefore, we can define 
the mean square error function as equation (2). 
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Where [ ]1 2 1 2, , , , ,dk k kθ ζ ζ= K  (d is degree of freedom) is the solution vector, ( )x k&&
 is the 

acceleration of numerical model calculated by Newmark integration method(β=1/4), and ( )x̂ k&&
 is 

measured from the unknown system. When ( )F θ  is the minimum, the values of θ  are the 
stiffnesses and damping ratios of the identified system. 

Then the parameters identification becomes the problem of finding the minimum of ( )F θ , 

so it is a problem of optimization. θ  is the solution vector and ( )F θ  is used as the fitness function, 
DE and PSO both can do the search work directly. 

 
 

3. SIMULATION 
 

3.1 The numerical mode 
 
A 5 stories mass lumped model (5 DOF system) is chosen as the numerical mode, as shown in the 
Figure 1. The masses and stiffnesses of the 5 DOF system are list in Table 1, the first mode damping 

ratio 1ζ  is 0.02 and the second mode ratio 2ζ  is 0.04. 
 
Table 1. Masses and stiffnesses of the 5 DOF system 
 

 
 

 
 
 
 

Figure 1. The 5 DOF system.  

Story (i) ki (N/m) mi (kg) 
1 60 30 
2 55 25 
3 50 20 
4 45 15 
5 40 10 

 
An earthquake record, El-centro, is the input of the 5 DOF system, whose sampling rate is 

50Hz and duration is about 53 seconds. The Newmark integration method(β=1/4) is used to calculate 
the system’s outputs which consist of the acceleration of each story. The interval of the response 
calculation is 0.02 second. 

In order to check the abilities of identification of DE and PSO, three cases are used in the 
simulation:  
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Case 1, the outputs don’t have noise;  
Case 2, the outputs polluted by different levels of noise;  
Case 3, the stiffness of each story is changed at 11th second during the vibration. 

In case 2, suppose that the noise is White Gaussian Noise (WGN) and different levels of 
noise are added into the output. The level of noise is defined as equation (3). 
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Where L is the level of noise, wσ  is the standard deviation of WGN and rσ  is the standard 
deviation of acceleration record. There are five levels: 5%, 10%, 15%, 20%, 25%, and 30%.  
 

Table 2. All Stiffness change at 11th second. 
 

In case 3, the masses and damping 
ratios of the 5 DOF system keep 
constant during vibration, but all 
the stiffnesses are changed at 11 th 
second. Because the reducing of 
stiffnesses is caused by damage, 
we can reduce the stiffnesses to 

simulate damage. At at 11th second, the damage of each story happens, as shown in the Table 2. 

Stroy k (N/m) before 11th sec k (N/m)after  11th sec 
1st  60 45 
2nd  55 48 
3rd  50 46 
4th  45 40 
5th  40 35 

Now suppose that the stiffnesses and damping ratios of the 5 DOF system are unknown in 
three cases, the identification work of these parameters is just based on the masses, the input and 
outputs, the error of each parameter identified by DE and PSO is defined as equation (4). 
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3.2 Identification via DE 
 
To use DE to identify the above 5 DOF model, some initial work must be done firstly. The settings of 
the control parameters are: the size of population NP=50, the maximum number of generations G=500, 
the weighting factor F=0.8, the crossover probability Cr=0.9, and the search range 

bL=0.5*[ ]1 2 3 4 5 1 2, , , , , ,k k k k k ζ ζ and bU =2*[ ]1 2 3 4 5 1 2, , , , , ,k k k k k ζ ζ .  
In case 1, Figure 2 shows the procedure of parameter identification of DE, from which we 

can see that the solution vector converges very fast and the fitness value almost equals 0 after its 
stabilization. It means that DE identified the parameters without any error. 

 
    (a) The stiffnesses         (b) The damping ratios        (c) The fitness function 

Figure 2. The procedure of DE in case 1. 
 

In case 2, we just give the errors (eq. (4)) of the results in Table 3. The stiffnesses can be 
correctly identified by DE even the outputs are polluted by 30% noise, but damping ratios have large 
errors as the increasing of noise level. 
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Table 3. The error of each parameter identified by DE under different noise levels 

 
DE 

Noise k1 
error(%)

k2 
error(%) 

k3 
error(%)

k4 
error(%)

k5 
error(%)

ζ1 
error(%) 

ζ2 
error(%)

10% 0.3405 0.404 0.001 1.132 0.4965 10 2.5 
15% 1.134333 1.150364 0.002496 0.488889 0.472 20 6.75 
20% 1.412667 1.510364 0.023166 0.144444 0.32 5.5 0.5 
25% 3.258833 2.706909 0.029128 0.669556 2.755 48 2.5 
30% 3.395 0.663818 0.027372 0.594444 1.45475 39.5 1 

 
In case 3, because the stiffnesses changed during the vibration and we didn’t know when 

the change happened, the identification work of DE was repeated every 5 seconds. During the 
procedure of identification, the accelerations of every potential solution vector were calculated by the 
Newmark integration method(β=1/4), so DE needed the displacements and velocities of each 5 
seconds to initialize the Newmark method. From Table 4, we can see that DE can identify correctly the 
stiffnesses even the stiffnesses change or damage happens during the vibration, but the damping ratios 
can’t be identified correctly. 
 

Table 4. The stiffnesses and damping ratios idenfified by DE in case 3. 
 

Time(sec) k1 k2 k3 k4 k5 ζ1 ζ2 
0-5 59.9939 54.922 50.187 45.637 40.4877 0.0215 0.0411 

5-10 59.6737 54.7686 50.0317 44.9618 39.9694 0.0266 0.0419 
10-15 47.64 52.9184 47.8865 40.7562 36.663 0.02 0.0436 
15-20 44.5535 48.0386 45.8191 40.1513 35.0253 0.0312 0.0425 
20-25 46.8932 47.1476 45.5701 39.5993 34.9329 0.0176 0.0425 
25-30 44.5813 47.4439 45.8807 39.7995 34.8804 0.0257 0.0415 
30-35 44.8205 47.6999 46.3446 40.022 35.0047 0.0205 0.04 
35-40 44.9988 48.142 46.0594 40.1193 35.0967 0.0225 0.0402 
40-45 44.8462 48.118 46.0672 39.9862 34.9729 0.0219 0.0402 
45-53 45.1769 48.3868 45.8995 39.8307 34.9893 0.0176 0.0398 

 
3.3 Identification via PSO 
 
The identification procedure of PSO is similar to that of DE, and some initial work must be done 
firstly. The settings of the control parameters are: the size of swarm N=50, the maximum number of 
iterations G=500, the inertia weight ω=0.8, acceleration coefficients c1=c2=2, the search range (xmax 

-xmin) is [ ] [ ]( )1 2 3 4 5 1 2 1 2 3 4 5 1 22* , , , , , , , 0.5* , , , , , ,k k k k k k k k k kζ ζ ζ ζ
and the max velocity is 

vmax=0.4*(xmax -xmin).  
In case 1, the results of PSO are almost the same as DE’s, from Figure 3 shows the 

procedure of parameter identification of PSO, from which we can see that the solution vector 
converges very fast and the fitness value almost equals 0 after its stabilization. It means that PSO 
identified the parameters without any error. 
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   (a) The stiffnesses            (b) The damping ratios         (c) The fitness function 

Figure 3. The procedure of PSO in case 1. 
 

In case 2, the errors (eq. (4)) of each identified parameter in different noise level are listed 
in Table 5, from which we find that the damping ratios can not be identified correctly as noise level 
increasing, but PSO has a good ability to identify stiffnesses even the output polluted by 30% noise. 

 
Table 5. The error of each parameter identified by PSO under different noise levels 

 
PSO 

Noise k1 
error(%)

k2 
error(%) 

k3 
error(%)

k4 
error(%)

k5 
error(%)

ζ1 
error(%) 

ζ2 
error(%)

10% 0.757667 0.850909 0.022612 0.712 0.01875 4.5 0.5 
15% 1.0955 1.264364 0.034262 1.038222 0.0095 7.5 1 
20% 2.609 2.184182 0.02341 0.530444 2.19475 38 2 
25% 1.9975 1.049455 0.024906 4.591333 1.77 50 5.25 
30% 1.948667 2.452 0.070764 1.883333 0.0745 16 1.75 

 
In case 3, PSO gave a result of every parameter in each 5 seconds, and the displacements 

and velocities of each 5 seconds were both used as initial values of Newmark integration method(β
=1/4). From Table 6, we can see that PSO can identify correctly the stiffnesses when the stiffnesses 
change or damage happens, but the damping ratios can’t be identified correctly. 
 

Table 6. The stiffnesses and damping ratios idenfified by PSO in case 3. 
 

Time(sec) k1 k2 k3 k4 k5 ζ1 ζ2 
0-5 59.9939 54.922 50.187 45.637 40.4877 0.0215 0.0411 

5-10 59.6737 54.7686 50.0317 44.9618 39.9694 0.0266 0.0419 
10-15 47.64 52.9184 47.8865 40.7562 36.663 0.02 0.0436 
15-20 44.5535 48.0386 45.8191 40.1513 35.0253 0.0312 0.0425 
20-25 46.8932 47.1476 45.5701 39.5993 34.9329 0.0176 0.0425 
25-30 44.5813 47.4439 45.8807 39.7995 34.8804 0.0257 0.0415 
30-35 44.8205 47.6999 46.3446 40.022 35.0047 0.0205 0.04 
35-40 44.9988 48.142 46.0594 40.1193 35.0967 0.0225 0.0402 
40-45 44.8462 48.118 46.0672 39.9862 34.9729 0.0219 0.0402 
45-53 45.1769 48.3868 45.8995 39.8307 34.9893 0.0176 0.0398 

 
 
 
 

 5



 

4. CONCLUSIONS 
 

In this thesis, the basic theories of structural parameters identification of MDOF system were 
introduced firstly, and then DE and PSO were used to identify the siffnesses and damping ratios of a 5 
DOF system. From the simulant results, some conclusions are summarized in the followings: 
1) DE and PSO almost have the same performance of the structural parameters identification, such 

as accuracy and convergence speed. 
2) Both DE and PSO can identify the stiffnesses and damping ratios correctly when the outputs 

have no noise and the parameters are constant at all times; 
3) When the outputs are polluted by noise, DE and PSO both can identify the stiffnesses with high 

accuracy, but both of them can not identify damping ratios. It means that DE and PSO have the 
anti-noise abilities for stiffnesses; 

4) When the stiffeness changes during vibration, the stiffnesses can be identified by DE and PSO 
with very small errors, but the damping ratios can not be identified by them. It means that DE 
and PSO have the abilities of damage detection; 

 
 

5. RECOMMENDATION 
 
We believe that this thesis contains useful contributions to the structural parameters identification. 
Although DE and PSO can identify the parameters of MDOF system in simulation, it is difficult to say 
they can be used to identify a real build successfully. Therefore the future research is certainly needed 
to use real buildings to confirm the performances of the two methods.  
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